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Abstract
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1. Introduction

Consider a directed, polygonal curve in 3D consisting of n axis-parallel straight line
segments of positive lengths, and de?ne its shape to be the sequence � of n direction
labels East, West, North, South, Up, or Down determined by the directions of the n
segments of the curve. Clearly, every such curve has a unique shape.
On the other hand, one may start with a shape �, and produce curves that have

that shape by specifying coordinates for the initial endpoint of the curve and assign-
ing to each element in � a positive length. Such curves are called realizations of
�. Of course, it may happen that such a realization, while having the desired shape,
intersects itself. As will be seen shortly, self-intersections can easily be avoided by
choosing lengths with some care, provided that � contains no element (say, for ex-
ample, East) that is immediately followed by its opposite direction (West). What will
concern us here is whether a given shape has a realization satisfying a given reach-
ability constraint: not only should the realization be a curve that does not intersect
itself, but also, the curve should start at the origin and terminate at a speci?ed point in
space.
To formalize this notion of shape realization subject to a reachability constraint,

consider a directed, graph theoretic path P, and specify a shape for this purely com-
binatorial object P by giving an ordered sequence � of n labels East, West, North,
South, Up, or Down, one for each of the n edges of P. Each label in the sequence
speci?es a direction for the corresponding directed edge of P when that edge is
realized as a straight line segment in 3D. A realization of this pair P; � of com-
binatorial objects as an orthogonal polygonal curve in 3D is speci?ed by giving a
start point for the curve and an assignment of positive lengths for the edges of the
curve.
Given a point p in 3D and a shape � for a directed, graph theoretic path P, the 3D

shape reachability problem is to ?nd an assignment (if one exists) of positive lengths
to the directed edges of P so that the resulting realization of P; � is an orthogonal,
polygonal curve that
• ends at p if it starts at the origin;
• is simple, that is, does not intersect itself; and
• satis?es the direction constraints on its segments as speci?ed by �.
The 3D shape reachability problem has instances that do not admit solution. For

example, consider a point p that lies in the octant determined by the three direc-
tions East, Up, and North and consider the shape � given by the sequence of labels
UWDESWN, where U stands for Up, W stands for West, and so on. Shape � cannot
be the shape of any simple, orthogonal, polygonal realization of a path that starts at
the origin and terminates at p, even though � contains an E label, a U label, and an N
label (see Fig. 1).
Of course the notion of shape extends to arbitrary dimensional space. The shape of

a directed, orthogonal polygonal curve in d dimensions is a sequence of n direction
labels of the form X+

1 ; X
−
1 ; : : : ; X

+
d ; X

−
d . Because, the 3D setting is our main interest,

we will mainly be describing our results there, proving in Section 4.1 some lemmas
in 2D needed to obtain the 3D results. We will use the direction labels E;W; N;W in
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Fig. 1. No path of shape �=UWDESWN can start at the origin O and reach a point p in the octant
determined by the three directions East, Up, and North.

2D and the direction labels E;W; N; S; U; D in 3D, rather than the notation X+
1 ; X

−
1 , etc.

We will use the latter notation in Section 5, when we generalize our characterization
from R3 to Rd.
We regard a point in Rd as having 2d coordinates: the X+

i coordinate and the X−
i

coordinate have opposite signs but agree in absolute value. Thus, in R3, for example,
a point that is 3 units East of the origin has E coordinate 3 and W coordinate −3.

In general, we omit the speci?cation of the dimension in front of terms such as
“shape”, as the dimension of the ambient space should be clear from the context.
The main result of this paper is a combinatorial characterization, for arbitrary di-

mension d, of those shape reachability problem instances that admit solution. We also
give recognition and embedding algorithms based on this characterization. In ?xed di-
mension such as 3D, these algorithms are linear. When the algorithms must handle
inputs of arbitrary dimension, then the running time grows superexponentially with the
dimension.
Various 2D versions of our 3D shape problem have been studied in several papers,

including [12,14]. This kind of problem has also been considered for non-orthogonal
polygons and for some graphs drawn with non-orthogonal edges (see [6,10,13]).
A basic technique for 2D orthogonal layout in VLSI and in graph drawing is to

give a “shape” for a graph, that is, an assignment of direction labels E; W; N , and S
to the edges, and then to determine lengths for the edges so that the layout is non-
crossing [14]. The graph must have maximum degree less than or equal to 4. In the
VLSI context, each vertex represents either a corner of a bounding box containing
components, or a connection pin on the side of such a box. The edges at a vertex
connect it to its two neighbors (pins or box corners) on the bounding box and, in the
case of a pin vertex, to a pin on another box.
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The well-known topology-shape-metrics approach [4] for constructing a rectilin-
ear embedding of a planar graph consists of three main steps, called planarization,
orthogonalization, and compaction. The planarization step determines an embedding,
i.e., the face cycles, for the graph in the plane. The orthogonalization step then spec-
i?es for each edge (u; v) a shape that the orthogonal polygonal line representing (u; v)
is to have in the ?nal embedding. For example, (u; v) could be labelled NESNE,
which would say “starting from u ?rst go North, then go East, etc.”. Finally, the
compaction step computes the ?nal embedding, giving coordinates to vertices and
bends.
The push to manufacture at ever smaller scales (see, e.g., [7] for one view of the

possibilities) means that the VLSI 2D layout problems of the past will be replaced by
a host of 3D graph embedding problems, arising from new 3D manufacturing technolo-
gies. Furthermore, there is interest in 3D layout of graphs for visualization purposes,
and some experimental evidence that such layouts can be useful [15].
While the literature on 3D orthogonal embeddings of graphs is quite rich (see, e.g.

[1,2,3,5,8,9,11,16,17,18]), the extension of the topology-shape-metrics approach to 3D
remains, as far as we know, to be carried out. The 3D shape reachability results we
present here are an essential pre-requisite for such a program.

2. Overview of the main results for 3D

In order to state our characterization result for 3D precisely, we introduce the con-
cepts of a 8at and of a canonical sequence in a shape �. The de?nitions here are
given for the context of three dimensions; we will extend them to higher dimensions
in Section 5, where we generalize our characterization. As these are key concepts for
our work, it is important to understand them clearly from the outset. However, we do
not expect that it will be clear at this point why these concepts are so useful.
A 8at of � is a consecutive subsequence �′ of � such that �′ contains at least two ele-

ments and is maximal with respect to the property that its labels come from the union of
two oppositely directed pairs of directions, i.e., either from the set {N; S; E;W}, or from
the set {N; S; U; D}, or from the set {U;D; E;W}. Thus, any realization of the shape
�′ must consist of segments that lie on the same axis-aligned plane. Since there are at
least two segments, they cannot be colinear. For example, the shape �=UWDESWN
of the path drawn in Fig. 1 contains two Mats: F1 =UWDE , and F2 =ESWN . Observe
that two consecutive Mats of � share a label and that they must be drawn on perpen-
dicular planes. For example, the last label, E, of F1 coincides with the ?rst label, E,
of F2. (Observe that the notion of “Mat” also makes sense in 2D, where any shape of
length n¿2 consists of exactly one Mat.)
A not necessarily consecutive subsequence �⊆ �, where � consists of k¿1 elements,

is a canonical sequence provided that:
• any two elements of � indicate mutually orthogonal directions (hence 16k63 in
3D); and

• if a Mat F of � contains one or more labels of �, then �∩F forms a consecutive
subsequence of �.
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Note that the following facts follow immediately from the de?nition of canonical
sequence: every single element of a shape is a canonical sequence; any two consecutive
elements of a shape form a canonical sequence; and two non-consecutive orthogonal
elements of a shape form a canonical sequence if and only if they do not belong to
the same Mat.
The type of a canonical sequence � is given by the (unordered) set of direction

labels it contains.
For example, the shape �=UWDESWN of the path drawn in Fig. 1 contains two

canonical sequences of type {U;N;W}. To obtain one of the canonical sequences of
this type, consider the ?rst two elements of �, which are a U and a W . These elements
belong to the same Mat, F1, where they appear consecutively; they do not belong to F2.
The last element of � is an N , which belongs to Mat F2 but not to Mat F1. Thus, the
conditions for a canonical sequence of length k =3 and type {U;N;W} are satis?ed
by the subsequence of � consisting of its ?rst, second, and last elements. To obtain
the other canonical sequence of type {U;N;W}, take the ?rst, next-to-last, and last
elements of �. Note, however, that � does not contain a canonical sequence of type
{U; E; N}: these labels occur in unique positions in �, and in particular, the unique U
and the unique E both belong to the same Mat F1, but they are not consecutive in �.
The essence of our combinatorial characterization of solvable shape reachability in-

stances is given below. For concreteness, the characterization is given with respect to
the UNE octant. As explained in the next section, the results for other octants can be
obtained by a suitable permutation of the direction labels.

Theorem 1. Let � be a shape and let p be a point in the UNE octant. Then there
exists a simple, orthogonal, polygonal curve of shape � that starts at the origin
and that terminates at p if and only if � contains a canonical sequence of type
{U;N; E}.

In other words, p can be reached, starting from the origin, by a simple orthogonal
polygonal curve of shape � if and only if it is possible to choose from � a particular
U element NU , a particular N element NN , and a particular E element NE, not necessarily
in that order, such that if any Mat of � contains two of the elements NU; NN; NE, then these
two elements are consecutive in �.
We believe that the necessity of this condition is far from obvious. On the other

hand, the proof of the suOciency of the condition will be given by a construction for
which we can oPer the following intuition. Imagine that the three particular elements of
a canonical sequence are realized as very long line segments, connected by sequences
of shorter segments. A construction based on this idea would create a path that could
reach a point p in the UNE octant. The fact that two of these long segments must be
adjacent if they belong to the same Mat oPers hope that the construction can produce a
simple path; by contrast, if two long segments with orthogonal direction labels belonged
to the same Mat but were not adjacent, then, depending on the construction, they might
cross each other.
The rest of this paper is organized as follows. Preliminaries are in Section 3.

As a basic tool for obtaining the results in this paper, we developed a theory of
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shape reachability in 2D. Our results on the shape reachabilty problem both in 2D
and in 3D are presented in Section 4. An extension of our results to higher dimen-
sional spaces can be found in Section 5. We conclude with some open problems in
Section 6.

3. Preliminaries

We regard each coordinate axis in the standard 3D coordinate system as consisting of
the origin plus two open semi-axes, directed away from the origin and labelled with a
pair of opposite direction labels from the set {N;W; S; E; U; D}. A triple XYZ of distinct
unordered direction labels no two of which are opposite speci?es the XYZ octant. Note
that unless stated otherwise, we consider octants to be open sets. Similarly, a pair XY
of distinct orthogonal direction labels speci?es the XY quadrant in 2D or 3D. Finally,
a direction label X speci?es the X semi-axis, which consists of those points that are
positive multiples of the unit vector in the X direction. For short, we call a semi-axis
an axis. Thus, 3D space is partitioned into eight octants, twelve quadrants, six axes,
and the origin.
Let � be a shape consisting of n elements or labels. 1 An embedding or drawing

of �, denoted as �(�), is a non-self-intersecting, directed, orthogonal polygonal curve
consisting of n segments such that the kth segment (k =1; : : : ; n) of �(�) has positive
length and has the orientation speci?ed by the kth label of �. Unless stated otherwise,
we assume that the start of the directed curve �(�) lies at the origin of the reference
system.

Assumptions. Since, we are interested in shapes that admit embeddings, we assume
from now on that shapes do not contain adjacent labels that are oppositely directed.
Furthermore, we assume that shapes do not contain adjacent labels that are identi-
cal, since the reachability properties of shapes with adjacent, identical labels are not
changed by coalescing such labels. Finally, to avoid lengthy special case handling, we
assume that the point p to be reached in an instance of the shape reachability prob-
lem lies in an octant in 3D (and in the analogous full-dimensional subspace in the
general case).

Remark. Let �( ) be a permutation of the six direction labels that maps opposite pairs
of labels to possibly diPerent opposite pairs (for example, � might map N; S; E;W;U;D
to E;W; N; S; D; U , respectively). Note that �( ) de?nes a linear transformation of 3D
space that is not necessarily a rotation or reMexion. Nevertheless, this transformation
de?nes a bijection between embeddings of � and embeddings of �(�). Here, �(�)
denotes the sequence of labels obtained by applying � to the labels of �. For concrete-
ness, we often state our results and proofs referring to some given octant, quadrant, or
axis where points of embeddings of � can lie. However, the results can also be stated

1 Since the elements of a shape have direction labels as values, we often refer to the elements as labels.
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Fig. 2. The expanding drawing for �=ENWSEDNUNDSWUNUED. The drawing starts at the origin, and
each segment travels one unit farther in its direction than any preceding segment has gone.

with respect to any other octant, quadrant, or axis since they are preserved under the
�( ) transformation. This remark generalizes to higher dimensions.

De nition. A drawing �(�) of a shape � is an expanding drawing if each segment
travels farther in its direction than the extreme points, with respect to that direction,
of the previous segments of �(�).

De nition. A drawing �(�) of a shape � is extensible if its last segment can be
replaced by one of arbitrary length without causing collisions with �(�).

Expanding drawings are useful because they provide a simple way to make an ex-
tensible drawing (Fig. 2).

Lemma 1. Every shape � admits an expanding, extensible drawing

Proof. We must prove that expanding drawings do not intersect themselves and that
they are extensible. Suppose �(�) contains n segments, and let B0 denote the point
at which it starts. Clearly, the lemma holds for n62, so assume n¿2. For i¿1, let
Bi denote the axis-aligned bounding box for the ?rst i segments. Let si denote the
segment corresponding to the ith element of �. Since the tip of si protrudes from Bi−1,
and since si+1 is orthogonal to si, the in?nite line determined by si+1 does not intersect
Bi−1. Thus, si+1 can be made any length, and so �(�) has no self-intersections and is
extensible.

Assumption. To be concrete, we assume from now on that unless stated otherwise,
each segment of an expanding drawing travels one unit beyond the bounding box of
the previous segments.
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In the next sections, we shall characterize the reachability properties of shapes by
means of canonical sequences. We will sometimes use special notation to distinguish
the labels of a shape � that have been chosen to belong to a canonical sequence. For
example, we say that { NU; NN; NE} is a canonical sequence in � meaning not only that it
has type {U;N; E} but also that the U label chosen to be in the canonical sequence is
a particular element NU of �, and so on. We also use symbols such as Û ; N̂ ; Ê. Indeed,
when it is necessary to refer to two diPerent elements having the same value such
as U , we may use both Û and NU in the same discussion or proof. Since particular
elements of � are indicated by this kind of special notation, the order of these particular
elements in � and in the canonical sequence is determined. This order is not necessarily
the same as the order in which the elements may appear inside the curly brackets for
set notation.

4. The shape reachability problem

We say that a drawing �(�) of a shape � reaches point p if �(�) terminates at p
when it starts at the origin. A shape � reaches a point p if it admits a drawing �(�)
that reaches p. A shape � reaches a set of points if it reaches each point in the set.
For example, shapes NEU, NUE, and NWUE all reach the UNE octant; that is, for
each point of the UNE octant, each of these shapes has a drawing that terminates at
that point.

Lemma 2. Let � be a shape. If � reaches a point p in an axis, quadrant or octant,
then it reaches that entire axis, quadrant or octant, respectively.

Proof. Let �(�) be a drawing of � that reaches p. Then for any other point q in the
same axis, quadrant or octant as p, we can construct a drawing of � that reaches q
by suitably scaling �(�). For example, if p and q are in the NE quadrant, then we
multiply the lengths of the segments of �(�) that are associated with N or S labels by
a constant equal to the ratio of the length of the orthogonal projection of q to the N
axis to the length of the orthogonal projection of p to the N axis. Lengths of the
segments of �(�) that are associated with the labels E or W are scaled separately in
an analogous way.

Note that if a shape reaches the UNE octant, then it must contain a U label, an N
label and an E label. Notice, however, that the converse is not always true. As previ-
ously observed, the shape UWDESWN does not reach the UNE octant, even though
it contains a U label, an E label, and an N label.
In the rest of this section, we investigate the problem of determining whether a

shape can reach a given portion of 2D or 3D space. We distinguish between shapes
that consist of only one Mat and shapes that have more than one Mat. A shape of the
?rst type is a 2D shape, while a shape of the second type is a 3D shape. Clearly, a
canonical sequence for a 2D shape can contain at most two elements, and if there are
two, they must be adjacent.
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4.1. Reachability in 2D

In this section we answer the following question: Given a point p in a quadrant
and a 2D shape �, can � reach p? By Lemma 2, this question can be answered by
characterizing when � can reach the quadrant containing p.
We start by investigating a special type of reachability. Let � be a shape in 2D

whose labels belong to {N; S; E;W}, and let �(�) be a drawing of � that reaches the
NE quadrant. We say that �(�) reaches the NE quadrant for the @rst time with label X
if X is the direction associated with the ?rst segment of �(�) entering the NE quadrant
when walking along �(�) starting at the origin.

Lemma 3. Let �(�) be a drawing of a 2D shape �= �′E such that �(�) reaches the
NE quadrant for the @rst time with its last label, E. Then � contains the subsequence
NE, where E immediately follows N .

Proof. If �(�) has two edges, then �=NE. Assume, for k¿3, that the statement is
true for shapes with k − 1 elements and that � has k elements. The next-to-last edge
of �(�) must be directed either N or S because its last edge is directed E. In the ?rst
case, we are done. For the second case, let p denote the starting point of the next-to-
last edge. This point p must lie above the horizontal line l through the last edge, since
by assumption, the next-to-last edge is directed S. Note that in fact, p either lies on
the N axis or in the WN quadrant. In travelling from the origin to p, drawing �(�)
must cross l in the NW quadrant, since this portion of the drawing can contain no
points of the NE quadrant and cannot cross l on the N axis. Let q denote the initial
endpoint of the ?rst (closed) edge of �(�) to reach or cross l. Clearly, q is not at the
origin, and hence is not the initial endpoint of the ?rst edge of �(�). Also, q is clearly
SW relative to the terminal endpoint of �(�). Applying the induction hypothesis to the
portion of the drawing from q to the terminal endpoint of �(�), implies that the strict
subsequence of � that corresponds to this portion of the drawing, and hence � itself,
contains the consecutive subsequence NE.

Lemma 4. Let �= �′�′′ be a 2D shape such that �′ reaches the NE quadrant. Then
� reaches the NE quadrant.

Proof. Let �(�′) be a drawing for �′ that reaches the NE quadrant. Append to �(�′)
one by one segments having the directions speci?ed by �′′, using the rule that each
new segment should travel half-way to the closest obstacle in front of it, if there is
one; the new segment should travel one unit if there is no obstacle in front of it. Here,
the coordinate axes as well as the segments are regarded as obstacles. Clearly, �(�′′)
does not leave the NE quadrant, and hence �(�) reaches the NE quadrant.

We are now ready to consider the more general problem of quadrant reachability.

Theorem 2. A 2D shape � reaches the NE quadrant if and only if � contains a
canonical sequence of type {N; E}.
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Proof. We prove ?rst that if � contains a canonical sequence � of type {N; E}, then
it reaches the NE quadrant. First, assume �= �1NE�2, where �1 or �2 or both may
be the empty string. By Lemma 1, �1 has an expanding, extensible drawing �(�1).
Extend �(�1) to a drawing for � as follows. Append to the terminal point of �(�1)
a segment oriented N that is so long that (i) its terminal point projects to the N axis
and (ii) the resulting drawing is still an expanding drawing. Because the new drawing
is expanding, we can append to its terminal point a segment oriented E that is long
enough to enter the NE quadrant. Thus, �1NE⊆ � reaches the NE quadrant, and hence
by Lemma 4, so does �. The case �= �1EN�2, where NE has been replaced by EN ,
is handled analogously.
Suppose now that �=X1; : : : ; Xn reaches the NE quadrant, and let �(�) be a draw-

ing of � that terminates at a point in the NE quadrant. Suppose the ?rst segment of
�(�) to intersect the NE quadrant is the ith segment, whose associated direction is
Xi. Let �′ denote the initial sequence X1; : : : ; Xi of �. Then �(�) contains a drawing
�(�′) of �′. If Xi=E, then by Lemma 3, �′ and hence � contains the consecutive
subsequence NE. Similarly, if Xi=N , then � contains the consecutive subsequence
EN .

Based on the results above and on Lemma 2 it is straightforward to design a linear
time algorithm for deciding whether a 2D shape � with n labels can reach a point p
in some quadrant, and if so, for constructing an embedding that reaches p. Namely,
suppose p is a point of the NE quadrant. By Theorem 2, p can be reached if and
only if � contains NE or EN consecutively, which can be determined by a linear-time
scan of �. Also, observe that the construction in the proof of suOciency in Theorem 2
computes the coordinates of the endpoints of the segments of a drawing and requires
O(n) time if the real RAM model of computation is adopted. Since the lengths of some
segments might require S(lg n) bits to record, the running time becomes O(n lg n) for
a Turing machine model.

Theorem 3. Let � be a 2D shape with n labels, and let p be a point of a quadrant.
There exists an algorithm that decides whether � reaches p and that computes an
embedding for � that reaches p when such an embedding exists. The algorithm runs
in O(n) time in the real RAM model of computation.

4.2. Reachability in 3D

In this section we answer the following question: Given a point p in an octant and
a 3D shape �, can � reach p? Again, by Lemma 2, this question can be answered
by characterizing when � can reach a given octant. To this aim, we introduce the key
concept of a doubly extensible drawing. This concept will later be used for the study
of shape reachability.
A doubly extensible drawing is a drawing in which the ?rst and last segments can

be replaced by arbitrarily long segments without creating any intersections within that
drawing. Fig. 3 shows an example of a doubly extensible drawing.
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Fig. 3. A doubly expanding drawing for �=WNENESWNUNUSWUNEDS.

In the constructions of the lemmas that follow, we use the reverse shape �r of a
shape �; �r is obtained by listing the labels of � in reverse order and then replacing
each label with the label that corresponds to the opposite direction. For example, if
�=WNENESWN , then listing the elements in reverse order gives NWSENENW;
replacing each of these labels by its opposite then gives �r =SENWSWSE .

Lemma 5. Let � be a shape with n labels such that � either contains exactly two
labels or contains at least two 8ats. Then � has a doubly extensible drawing that
can be computed in O(n) time in the real RAM model of computation.

Proof. If � consists of exactly two labels, then since these labels are orthogonal, the
statement of the lemma is clearly true.
Now suppose � contains at least two Mats, and denote the ?rst Mat by �1. Let m denote

the length of �1. Thus, �= �1�2, where �2 contains the remaining elements of �. Thus,
the length of �2 is n−m¿0. In Fig. 3, �1 =WNENESWN and �2 =UNUSWUNEDS.

Before giving in detail the construction for a doubly extensible drawing for �, we
?rst give an overview. (See Fig. 3.)
The construction of a doubly extensible drawing for � will resemble the construction

in the proof of Lemma 1, but with the following diPerence. Before, segments were
created in the same order in which they appeared in �. This time, they will be created
in a diPerent order. An artist following our construction would place a pen at the
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origin, draw �1 in reverse by creating an expanding drawing of �r1 , then lift the pen
and return it to the origin, and ?nally draw �2 in the forward direction to form a
complete drawing for �.
Now we describe the construction of a doubly extensible drawing in more detail.

To obtain the drawing of �1, by Lemma 1, make an expanding drawing �(�r1 ) for
�r1 , placing the start point of �(�r1 ) at the origin and making each segment extend
the frontier in its direction of travel by one unit. In the example given by the ?gure,
�r1 =SENWSWSE . To obtain a drawing for �1, take the start point of �(�r1) as the
endpoint for �(�1), and take the endpoint of �(�r1 ) as the start point for �(�1). Thus,
the drawing of �1 terminates at the origin, and the start point of the drawing for � is
away from the origin.
Note that the ?rst label of �2 is orthogonal to the Mat of �1. (In the ?gure, the ?rst

label of �2 is U .) Starting at the origin, draw a directed segment of unit length for
this label. Hence, the segment leaves the plane containing �(�1), and the bounding
box of the drawing made thus far becomes truly 3D. Continue creating segments for
the labels of �2 one by one in such a way that each new segment is given a length
that increases the extent of the bounding box of the current drawing (which includes
�(�1)) by one unit in the direction of the new segment. This completes the description
of the construction.
In order to prove that the computed drawing is doubly extensible, it must be checked

that no self-intersections have been created, and that furthermore, the segments that
correspond to the ?rst and last elements of � may be made arbitrarily long without
creating intersections.
Let si denote the segment corresponding to the ith element of �, and let di denote

the ith segment to be drawn. Thus, d1 = sm, since sm is drawn ?rst, and dj = sj for all
j¿m. Let B0 denote the point at the origin, and let Bj denote the bounding box of
d1; : : : ; dj.
For 1¡j6n, segment dj protrudes beyond Bj−1. Clearly, �(�1) does not intersect

either itself, or dm+1; dm+2. For m+26j6n, segment dj is attached to the end of dj−1

that protrudes from Bj−2. Hence, �(�) does not intersect itself, and sn=dn may be
replaced by an arbitrarily long segment without causing a collision.
It now remains to be shown that segment s1 =dm may be replaced by an aribitrarily

long segment without creating a collisions, even with a possibly extended sn.
For a contradiction, suppose extending s1 causes an intersection with sj. Clearly,

j¿m since �(�r1 ) is extensible, so sj =dj. Also, j is clearly not equal to m+1; m+2.
Now consider the bounding box Bj−2, which contains s1, and the extension s+1 of s1
from Bj−2. The tip of segment sj−1 protrudes from Bj−2 and then sends the segment
sj in an orthogonal direction into s+1 . Thus, sj−2 is parallel to s+1 , and s

+
1 ; sj−2; sj−1 lie

in a common plane. This plane does not contain the origin, since s1 does not lie on a
line through the origin.
Using the same notation for segments and their corresponding elements of �, let

dk = sk be the ?rst element in the Mat containing sj−1; sj. Clearly, k¿m+ 2 and sk is
orthogonal to s+1 . Thus, the tip of sk−1 protrudes from Bk−2 in some direction X , so the
common X coordinate value of all points on sk ; : : : ; sj is greater than the common X
coordinate value of all points on s+1 , contradicting that sj intersects s+1 .
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Finally, observe that the drawing algorithm described above is based on a linear
scan of �; while the lengths of some segments might require S(lg n) bits to record,
the time complexity is O(n) for the real RAM model of computation.

We call the doubly extensible drawing constructed in the proof above a doubly
expanding drawing.
The next lemma gives a suOcient condition for octant reachability; the proof is

based on connecting together singly and doubly expanding drawings for subsequences
of shapes and gives rise to a linear time embedding algorithm.

Lemma 6. Let � be a 3D shape that contains a canonical sequence of type {U;N; E}.
Then � reaches the UNE octant.

Proof. Assume the hypothesis holds, and let Û ; N̂ , and Ê denote the direction labels
U; N , and E of the canonical sequence. Without loss of generality, we may assume
that Û ; N̂ and Ê appear in � in the order Û ; Ê; N̂ and hence that �= �1Û�2Ê�3N̂�4,
where �i (i=1; : : : ; 4) may be empty.
We give an algorithm that takes as input any point p in the UNE octant and

computes in linear time an embedding of � that terminates at p. The algorithm creates
separate coordinate systems, called “local coordinate” systems, for various parts of
the drawing and then later positions these local coordinate systems into one global
coordinate system. Thus, the origin of each local coordinate system will eventually be
assigned coordinates in the global coordinate system. This will determine the global
coordinates of the various pieces of the drawing.
Compute an extensible drawing (for example, an expanding drawing) for �1Û , and

store the coordinate information for the start point of the edge for Û in the local
coordinate system for �1Û as a vector whose tail is at the local origin and whose tip
is at the start point of the edge for Û . Compute the bounding box, possibly degenerate,
for the portion of �(�1Û ) corresponding to �1. If �1 is empty, this bounding box is
simply a point, the local origin.
Compute a doubly extensible drawing (for example, a doubly expanding drawing)

for Û�2Ê, as given by the construction in the proof of Lemma 5. Compute the coordi-
nates of the vector whose tail is at the terminal point of the edge for Û and whose tip
is at the start point of the edge for Ê. Compute the bounding box, possibly degenerate,
for the portion of the doubly expanding drawing corresponding to �2. Process Ê�3N̂
similarly.
Finally, compute a drawing �(N̂�4) for N̂�4 that terminates at the origin of its local

coordinate system by computing an extensible (for example, expanding) drawing for
(N̂�4)r that starts at the origin of the local coordinate system. Compute the coordinates
of the vector whose tail is at the terminus of the edge of N̂ in �(N̂�4) and whose tip
is at the origin. Compute the bounding box for the portion of the doubly extensible
drawing that corresponds to �4.
It now remains to connect these drawings together by assigning new lengths to

Û ; Ê; and N̂ and placing the local coordinate systems and their drawings into a global
coordinate system.
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Place the origin of the drawing for �1 at the global origin. Compute a length lÛ
for Û such that a vector of length lÛ in the U direction, when added to the ?rst of
the four vectors computed above, results in a vector whose U coordinate is positive.
Similarly, compute lengths for lÊ and lN̂ . Compute by simple arithmetic on known

vertex coordinates any increase in these lengths needed to ensure that the bounding
boxes computed above are well separated in the ?nal drawing.
Finally, compute three scale factors, one for each pair of opposite labels, and apply

them to the lengths of the edges with these labels so that the drawing terminates at
the desired point p. Since the drawing undergoes a linear transformation, it remains
crossing free.
The correctness of the algorithm follows from Lemma 5 and the separation of the

bounding boxes.

Note that before the application of the scale factors in the proof just given, the
construction had yielded a drawing whose segments had integer lengths and whose
bounding box was of length O(n) in each dimension, where n is the number of elements
of �.
The next lemma proves that the condition of Lemma 6 is also necessary for octant

reachability.

Lemma 7. Let � be a 3D shape that reaches the UNE octant. Then � contains a
canonical sequence of type {U;N; E}.

Proof. First, we begin by proving a weaker form of this:
If � is a 3D shape that can reach the open NE quarter-space (i.e., the union of the

UNE octant, the DNE octant, and the NE quadrant), then there is a canonical sequence
of type {N; E} in �.
To prove this, consider a drawing �(�) that reaches the open NE quarter-space. Let

(a; b) be the ?rst segment of � that enters this quarter-space. Suppose, without loss of
generality, that (a; b) has direction E. Since this E segment lies in the N half-space,
there must be a previous N segment, (c; d), that enters this half-space. If the chosen E
and N segments do not share a Mat, we are done since the labels of (a; b) and of (c; d)
form a canonical sequence in �. So assume that they do share a Mat. Let & be the
NSEW plane containing the Mat. Note that b is in the (open) NE quadrant of &. We
claim that c is a point in the closed SW quadrant of &. This is because d, which is
in the (open) N half-plane but not in the (open) NE quadrant, must lie in the (open)
NW quadrant or on the N axis. Imagine moving the origin to c, and let �′ denote the
subsequence of � corresponding to the portion of �(�) from c to b. Let �(�′) denote
the drawing of �′ inherited from �(�). Since �(�′) travels to the NE quadrant, by
Lemma 3 one can ?nd a consecutive pair NE or EN in �′ and hence also in �. This
completes the proof of the preliminary result.
To obtain a proof of the original statement, consider a drawing �(�) that reaches

the ENU octant. Let (p; q) be the ?rst segment of �(�) that enters this octant, and
suppose without loss of generality that (p; q) has direction U . Since this U segment
lives in the NE quarter-space, there must be a previous segment, (r; s), that enters
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this quarter-space. Assume without loss of generality that (r; s) is an N segment. We
remark that:
• Since s cannot be in the ENU octant (otherwise segment (p; q) would not be the
segment entering this octant), s is a point in the END octant or the NE quadrant.

• Since (r; s) is an N segment, r is a point in the ESD octant, or the SE quadrant or
the DE quadrant.
Let �′ denote the portion of � that corresponds to the portion of �(�) from the

origin to s, and let �(�′) denote the drawing of �′ inherited from �(�). Since �(�′)
reaches the EN quarter-space, by the preliminary result just proved there is a canonical
sequence { NE; NN} in �′. Let �′′ denote the portion of � that corresponds to the portion
of �(�) from r to q, and let �(�′′) denote the drawing of �′′ inherited from �(�).
Imagine moving the origin to r. Since �(�′′) reaches the UN quarter-space, by the
preliminary result just proved there is a canonical sequence {Û ; N̂} in �′′.

Note that �(�′) and �(�′′) share only one segment, namely (r; s). We can therefore
partition � as follows: �= �1‘r; s�2, where ‘r; s is the N label associated with segment
(r; s); hence, �′ = �1‘r; s and �′′ = ‘r; s�2. To summarize, � contains a canonical se-
quence { NE; NN} followed by ‘r; s followed by a canonical sequence {Û ; N̂}, where ‘r; s
might be equal to NN or to N̂ . In order to show that � has a canonical sequence of
type {U;N; E}, we start by observing that NE and Û belong to diPerent Mats of �, for
if they were in the same Mat it would also contain the intervening ‘r; s=N , which is
impossible.
We construct a canonical sequence of type {U;N; E} by considering the following

(not mutually exclusive) cases:
• Label NN precedes NE in �. In this case { NE; NN; Û} is a canonical sequence appearing
in the order NN; NE; Û .

• Label N̂ follows Û in �. In this case { NE; N̂ ; Û} is a canonical sequence appearing
in the order NE; Û ; N̂ .

• The labels appear in the order NE; NN; N̂ ; Û . If NN and Û are in diPerent Mats,
then NE; NN; Û form a canonical sequence. Otherwise, if NE and N̂ are in diPerent Mats
then NE; N̂ ; Û form a canonical sequence. If neither of these cases applies then NN
and Û share a Mat and NE and N̂ share a Mat; thus all four labels lie in one Mat,
which is impossible.

Lemmas 6 and 7 can be summarized as follows.

Theorem 4. Let � be a 3D shape. Shape � reaches the UNE octant if and only if it
contains a canonical sequence of type {U;N; E}.

Theorem 4 and Lemma 2 yield a linear time algorithm for deciding whether a
3D shape � with n labels can reach a point in an octant. Given a point p that can
be reached, the drawing algorithm in the proof of Lemma 6, which computes the
coordinates of the endpoints of the segments, requires O(n) time if the real RAM
model of computation is adopted. Since the lengths of some segments might require
S(lg n) bits to record, the running time becomes O(n lg n) for a Turing machine model.
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Theorem 5. Let � be a 3D shape with n labels, and let p be a point of an octant.
There exists an algorithm that decides whether � reaches p and that computes an
embedding for � that reaches p when such an embedding exists. The algorithm runs
in O(n) time in the real RAM model of computation.

Proof. First, we show a linear time method for testing whether � reaches the UNE
octant. The methods for the other octants are analogous.
It follows from Theorem 4 that � reaches the UNE octant if and only if � contains

a subsequence Xi; Xj; Xk of elements such that Xi Xj Xk is one of the six permutations
of the labels U;N; E and such that if two of Xi; Xj; Xk are in the same Mat, then they
are adjacent. Since no Mat of � can contain all three of the labels U; N and E, such
a subsequence Xi; Xj; Xk must satisfy the condition that either
(i) no Mat of � contains two of Xi; Xj, and Xk , or
(ii) j= i + 1 or j= k − 1.
We now describe an algorithm that tests for the existence of such a subsequence

Xi; Xj; Xk by making several scans through �. For simplicity of explanation, we do not
combine the scans as this does not aPect the asymptotic analysis. As a preliminary
step, scan � to ensure that each of U; N , and E occurs at least once in �. If not, then
� cannot reach the UNE octant.
Next, consider the permutation UNE of {U;N; E}, and look for a subsequence

Xi; Xj; Xk satisfying either (i) or (ii) above and such that Xi=U; Xj =N , and Xk =E.
The remaining ?ve permutations will be processed in the same manner.
To test for Xi; Xj; Xk satisfying (i), observe that if such a subsequence exists, and if

Xi is not the ?rst occurrence of U in �, then (i) still holds if Xi is replaced by the
?rst occurrence of U in �. Hence, let X̂i denote the ?rst occurrence of U . Likewise,
(i) still holds if Xj is replaced by the ?rst occurrence of N in a Mat following the
ones that contain Xi. Let X̂j denote this occurrence of N . Finally, (i) stillholds if Xk
is replaced by the ?rst occurrence of E in a Mat after the ones containing Xj. Let X̂k
denote this occurrence.
Scan for X̂i; X̂j and X̂k . Shape � contains a subsequence U;N; E satisfying (i) if and

only if the scan successfully ?nds X̂i; X̂j and X̂k .
If the scan is not successful, then test for the existence of a subsequence Xi; Xj; Xk

satisfying (ii). Such a subsequence must either satisfy j= i + 1 or j= k − 1. If such
a subsequence exists such that j= i + 1, then (ii) still holds if Xi and Xj are replaced
by the ?rst occurrence of the subsequence UN such that N immediately follows U .
Let X̂iX̂i+1 denote this occurrence. Furthermore, (ii) still holds if Xk is replaced by the
?rst occurrence of E in a Mat following the one containing X̂i X̂i+1. Let X̂k denote this
occurrence.
Scan for X̂i X̂i+1 X̂k . Shape � contains a subsequence U;N; E such that N immediately

follows U if and only if the scan successfully ?nds X̂i; X̂i+1 and X̂k .
If this scan is not successful, to complete the search for a subsequence U;N; E

satisfying (ii), scan for a subsequence X̂i; X̂k−1; X̂k , where X̂i is the ?rst occurrence
of U in �, and where X̂k−1 X̂k is the ?rst occurrence of the subsequence NE such
that E immediately follows N in a Mat following the ones that contain X̂i.
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If this last scan is not successful, then � does not contain a subsequence U;N; E
satisfying either (i) or (ii).
In a similar manner, test the other ?ve permutations of U;N; E for one that corre-

sponds to a subsequence of � that satis?es either (i) or (ii).
Shape � reaches the UNE octant if and only if one of these tests is successful.

Each of these six tests involves a small, constant number of scans that can be done
in O(n) time and space within the real RAM model of computation. A successful
test produces the labels {Û ; N̂ ; Ê} used by the linear time algorithm in the proof of
Lemma 6. This algorithm then produces in linear time an embedding that terminates
at p.

5. Higher dimensions

Our characterization of shapes that can reach a given point generalizes to arbitrary
dimension. The de?nition of a Mat remains the same: it is a maximal 2D object.
The intuition for why the notion of a Mat is also a key concept for the arbitrary
dimensional case is the following. Two segments that intersect determine a plane. If
they are segments that we wish to make long in a drawing, and they do not belong to
the same Mat, then some perturbation should remove the intersection. If they lie in the
same Mat, we cannot necessarily make them long without intersection. The condition
that two canonical segments in the same Mat must be adjacent means that they can be
made long without colliding with each another.
Of course, in the context of Rd, a canonical sequence should be allowed to contain

as many as d orthogonal direction vectors. As the intuition given above suggests, the
de?niton of canonical sequence is otherwise unchanged.

De nition. Let � be a shape containing labels from d pairs of opposite direction labels.
A not necessarily consecutive subsequence �⊆ �, where � consists of k¿1 elements,
is a canonical sequence provided that:
• any two elements of � indicate mutually orthogonal directions (hence 16k6d); and
• if a Mat F of � contains one or more labels of �, then �∩F forms a consecutive
subsequence of �.
Here we adopt the usual notation for dimension greater than three, regarding a

point as a d-tuple of coordinate values, called the X1; : : : ; Xd coordinates, respec-
tively. We now refer to the full, two-way in?nite coordinate axes as the X±

1 ; : : : ; X
±
d

axes. The positive semi-in?nite axes are denoted X+
1 ; : : : ; X

+
d . The set of points of

Rd whose coordinates are all positive is called the X+
1 ; : : : ; X

+
d space. As before,

for concreteness, we assume that the point we wish to reach lies in this
space.

Theorem 6. A shape � reaches the X+
1 ; : : : ; X

+
d space if and only if � contains a

canonical sequence of type {X+
1 ; : : : ; X

+
d }.
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Proof. The construction for the proof of the suOciency of the condition is exactly as
for the d=3 case: doubly-expanding drawings can be made to connect long segments
realizing the canonical labels as in the proof of Lemma 6.
To prove the necessity of the condition for dimension d¿3, consider a drawing �(�)

that reaches the X+
1 ; : : : ; X

+
d space. Let (a1; b1) be the ?rst segment of �(�) to have a tip

with any positive coordinate. Permute the indices of the axes if necessary so that the X1
coordinate of b1 is positive. Note that b1 has no other positive-valued coordinate. This
is because travelling along a segment whose direction label is X±

i changes only the Xi
coordinate. Thus (a1; b1) must have direction label X+

1 , since travelling along (a1; b1)
changes the X1 coordinate from negative or 0 to positive value; all other coordinates
of points on (a1; b1) must have 0 or negative value.

For 26i6d, let (ai; bi) be the ?rst segment to have a tip with positive values
for coordinates X1; : : : ; Xi−1 plus an additional coordinate with positive value. By the
observation made above for b1, this additional positive-valued coordinate is unique.
Permute the indices of the X±

i ; : : : ; X
±
d axes if necessary so that the additional positive-

valued coordinate is the Xi coordinate.
We remark that:

• bi−1 has positive values for its X1; : : : ; Xi−1 coordinates and negative or 0 values for
its remaining coordinates.

• Since (ai−1; bi−1) has direction label X+
i−1, point ai−1 has positive values for its

X1; : : : ; Xi−2 coordinates if any, and negative or 0 values for its remaining
coordinates.
For 16i6d, denote by �i the subsequence of � that corresponds to the portion of

�(�) from the origin to bi, and let �(�i) denote the portion of �(�) from the origin
to bi.
We prove by induction that for 16i6d, shape �i, and hence �, contains a canonical

sequence of type {X+
1 ; : : : ; X

+
i }. The statement holds trivially for i=1. Suppose the

statement holds for all values less than some i¿1, and let us prove that the statement
holds for i.
Since �(�i−1) reaches a point bi−1 whose ?rst i − 1 coordinates are all positive,

then by the induction hypothesis there is a canonical sequence of type {X+
1 ; : : : ; X

+
i−1}

in �i−1. Let { NX+
1 ; : : : ; NX

+
i−1} in �i−1 be such a sequence.

If the labels of � corresponding to (ai−1; bi−1) and (ai; bi) do not lie in the same
Mat, then adding the label NX+

i corresponding to (ai; bi) to the canonical sequence for
�i−1 gives a canonical sequence for �i.
If the elements of � corresponding to (ai−1; bi−1) and (ai; bi) do lie in a common

Mat, this Mat must be an X±
i−1X

±
i Mat.

Let �′′ denote the subsequence of � corresponding to the portion of �(�) from ai−1

to bi, and let �(�′′) denote the drawing of �′′ inherited from �(�). Since (ai−1; bi−1)
and (ai; bi) share a Mat, Theorem 2 concerning quadrant reachability in 2D applies: �′′

must contain a canonical sequence {X̂+
i−1; X̂

+
i } of type {X+

i−1; X
+
i }. This is because bi

has positive Xi−1 and Xi coordinates whereas ai−1 has 0 or negative values for its Xi−1

and Xi coordinates. If i=2, the argument thus far provides a complete proof that �2
contains a canonical sequence of type {X+

1 ; X
+
2 }.
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Now we complete the proof for the case i¿2. Note that �(�i−1) and �(�′′) share
only one segment, namely (ai−1; bi−1). We can therefore partition �i as follows: �= �1
‘(ai−1 ; bi−1)�2, where ‘(ai−1 ; bi−1) is the X+

i−1 label associated with segment (ai−1; bi−1);
hence, �i−1 = �1‘(ai−1 ; bi−1) and �′′ = ‘(ai−1 ; bi−1)�2.
To summarize, �i contains a canonical sequence { NX+

1 ; : : : ; NX
+
i−1}, followed by

‘(ai−1 ; bi−1), followed by a canonical sequence {X̂+
i−1; X̂

+
i }, where ‘(ai−1 ; bi−1) might be

equal to NX+
i−1, or to X̂

+
i−1, or to both, but not to NX+

i .
In order to show that �i has a canonical sequence of type {X+

1 ; : : : ; X
+
i }, we ?rst

observe that none of the NX+
1 ; : : : ; NX

+
i−2 shares a Mat with X̂+

i ; otherwise, the shared Mat
would also contain the intervening label ‘(ai−1 ;bi−1) =X

+
i−1, which is impossible.

We construct a canonical sequence of type {X+
1 ; : : : ; X

+
i } for �i by considering the

following (not mutually exclusive) cases:
• Among the canonical labels for �i−1, label NX+

i−1 is not the last to occur in �i−1.
In this case { NX+

1 ; : : : ; NX
+
i−1; X̂

+
i } is a canonical sequence for �i, with some canonical

label NXj occuring between NX+
i−1 and X̂+

i in �i.
• Label X̂+

i−1 follows X̂+
i in �. In this case { NX+

1 ; : : : ; NX
+
i−2; X̂

+
i−1; X̂

+
i } is a canonical

sequence for �i; in �i, label X̂+
i−1 is preceded by X̂+

i , which is preceded by the
remaining canonical labels in some order.

• The order of the labels in �i is such that X̂+
i is preceded by X̂+

i−1, which is equal to
or preceded by NX+

i−1, which is preceded by NX+
j for some j¡i−1, which is preceded

by any remaining canonical labels in some order. If NX+
i−1 and X̂+

i are in diPerent
Mats, then NX+

1 ; : : : ; NX
+
i−1; X̂

+
i form a canonical sequence. Otherwise, if NX+

j and X̂+
i−1

are in diPerent Mats, then NX+
1 ; : : : ; NX

+
j ; X̂

+
i−1; X̂

+
i form a canonical sequence. If neither

of these cases applies, then NX+
i−1 and X̂+

i share a Mat and NX+
j and X̂+

i−1 share a
Mat; thus all four of these labels, at least three of which are distinct, lie in one Mat,
which is impossible.

This completes the proof.

6. Conclusion and open problems

We have given a combinatorial characterization, together with linear time recognition
and embedding algorithms, for those instances of the 3D shape reachability problem
that admit solutions. Our constructive embedding algorithms produce drawings that,
before scaling to reach particular points, have segments of positive integer lengths
and that lie in bounding boxes of length O(n) on each side. Our results may enable
the extension to 3D of the classical topology-shape-metrics approach to 2D rectilinear
layout problems.
We have also generalized our 3D characterization to arbitrary dimension d.
Several issues remain open. We mention some that in our opinion are interesting.
1. Study the reachability problem under the additional constraint that the lengths of

some of the segments are given.
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2. Study the reachability problem in the presence of obstacles.
3. Study the reachability problem for paths that must be embedded in a ?xed grid

and that are to reach speci?ed points in this grid.
4. Study the reachability problem for a larger set of direction vectors.
5. Our recognition algorithm generalizes to arbitrary dimension d. A naive general-

ization would yield an algorithm whose running time is worse than exponential in
d, as it would treat as separate cases the d! possible ways in which the canonical
labels could appear in a canonical sequence. Find a recognition algorithm with
running time as low as possible.

In the case of item 3, it is no longer true that a shape can reach a point if and only
if it can reach all the other points in the same octant. One can no longer construct a
drawing and then scale it so that its terminus is located at some speci?ed point p, as
scaling would move some edges oP grid lines.
Note also that for drawings in a ?xed grid, bounding box volume becomes an issue.

While expanding and doubly expanding drawings provide simple constructions, they
may waste space.
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