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Abstract: Air–sea heat fluxes are essential climate variables, required for understanding air–sea
interactions, local, regional and global climate, the hydrological cycle and atmospheric and oceanic
circulation. In situ measurements of fluxes over the ocean are sparse and model reanalysis and
satellite data can provide estimates at different scales. The accuracy of such estimates is therefore
essential to obtain a reliable description of the occurring phenomena and changes. In this work,
air–sea radiative fluxes derived from the SEVIRI sensor onboard the MSG satellite and from ERA5
reanalysis have been compared to direct high quality measurements performed over a complete
annual cycle at the ENEA oceanographic observatory, near the island of Lampedusa in the Central
Mediterranean Sea. Our analysis reveals that satellite derived products overestimate in situ direct
observations of the downwelling short-wave (bias of 6.1 W/m2) and longwave (bias of 6.6 W/m2)
irradiances. ERA5 reanalysis data show a negligible positive bias (+1.0 W/m2) for the shortwave
irradiance and a large negative bias (−17 W/m2) for the longwave irradiance with respect to in situ
observations. ERA5 meteorological variables, which are needed to calculate the air–sea heat flux
using bulk formulae, have been compared with in situ measurements made at the oceanographic
observatory. The two meteorological datasets show a very good agreement, with some underestimate
of the wind speed by ERA5 for high wind conditions. We investigated the impact of different
determinations of heat fluxes on the near surface sea temperature (1 m depth), as determined by
calculations with a one-dimensional numerical model, the General Ocean Turbulence Model (GOTM).
The sensitivity of the model to the different forcing was measured in terms of differences with respect
to in situ temperature measurements made during the period under investigation. All simulations
reproduced the true seasonal cycle and all high frequency variabilities. The best results on the overall
seasonal cycle were obtained when using meteorological variables in the bulk formulae formulations
used by the model itself. The derived overall annual net heat flux values were between +1.6 and
40.4 W/m2, depending on the used dataset. The large variability obtained with different datasets
suggests that current determinations of the heat flux components and, in particular, of the longwave
irradiance, need to be improved. The ENEA oceanographic observatory provides a complete, long-
term, high resolution time series of high quality in situ observations. In the future, more similar sites
worldwide will be needed for model and satellite validations and to improve the determination of
the air–sea exchange and the understanding of related processes.

Keywords: heat fluxes; remote sensing; modelling; in situ data; Mediterranean Sea; Lampedusa
mooring; time-series

Remote Sens. 2021, 13, 2188. https://doi.org/10.3390/rs13112188 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4203-0956
https://orcid.org/0000-0003-0239-0033
https://orcid.org/0000-0002-0477-173X
https://orcid.org/0000-0002-2405-2898
https://orcid.org/0000-0002-2171-1296
https://orcid.org/0000-0002-2900-5054
https://doi.org/10.3390/rs13112188
https://doi.org/10.3390/rs13112188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13112188
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13112188?type=check_update&version=2


Remote Sens. 2021, 13, 2188 2 of 19

1. Introduction

The ocean interacts with the atmosphere by means of exchanges of momentum, heat,
water, gases and particles at the air–sea interface, defining its energy and mass balance and
consequently its role in the regional and global climate system at all spatial and temporal
scales [1,2].

Air–sea heat fluxes (Figure 1) are essential drivers of the climate system, controlling
interaction processes from sub-diurnal to multi-decadal time scales and from regional to
global scales. The determination of the accuracy of the fluxes at the air–sea interface, either
retrieved from satellites or modelled, is essential for a correct assessment of the total heat
budget. In its turn, the assessment is fundamental for improving climate models and their
forecast skills. Determining the components of the surface heat budget is also critical to a
complete understanding of the water budget and the regional climate, especially in regions
such as the Mediterranean Sea, a semi-enclosed basin surrounded by continental regions
with complex orography and evident constraints in terms of mass and heat budget closure.
In the specific case of the Mediterranean Sea, the “heat budget closure problem” described
by several authors [2–5] states that that the long-term mean of the heat flux gained through
the Gibraltar Strait by advection must be compensated by the net heat loss at the surface
integrated over the whole basin. This heat compensation should ensure numerical closure
of the basin’s water budget.

Figure 1. Pictorial view of the air–sea heat exchange components.

Estimates of the mean Mediterranean heat exchange between ocean and atmosphere
range from −11 to +22 W/m2, with an evident dominance of negative estimates, i.e., heat
loss from the ocean to the atmosphere [5–11]. Some studies suggest that the Mediterranean
heat budget is close to a neutral value, −1 W/m2 [12] or +1 W/m2 [13]. The non-negligible
uncertainty on the estimation of heat flux components and the large variety of contrasting
estimates of the basin-wide net air–sea heat fluxes in the Mediterranean Sea, prevent the
achievement of an adequate solution for the problem of closing the Mediterranean heat
balance. This open question highlights the need to assess and, if possible, minimize the
uncertainties on the estimation of each component of the air–sea heat balance.

The net surface heat budget can be expressed as the sum of four distinct components:

Qnet = QS + QL + QE + QH (1)

where QS = QSW *(1 − α) is the net shortwave radiation flux, α is the ocean surface albedo,
QSW is the downwelling shortwave radiation flux, QL is the net longwave radiation flux,
QE is the latent heat flux and QH is the sensible heat flux.

Direct measurements of turbulent fluxes (i.e., latent and sensible heat fluxes) over the
ocean are particularly rare. These measurements are only occasionally available at a very
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limited number of sites. The paucity of such information is caused by the difficulties of
acquiring vertical wind components and high-frequency fluctuations in temperature and
humidity in the often hostile marine environment onboard vessels and/or equipped fixed-
platforms (e.g., mooring/buoys), while minimizing flow distortions due to the movement
and shape of the platform housing the instruments [14,15]. In practice, the most common
approach, even within numerical climate modeling, is to use empirical methods to estimate
the various components of air–sea heat (or momentum) exchange by linking micro-scale
turbulent transfer to more easily measurable macroscopic quantities, such as near-surface
wind intensity, humidity or temperature. This approach requires a thorough assessment
of the uncertainty on measurements of macroscopic environmental variables that enter in
empirical formulas and, ultimately, of bulk formulae performances. In the last decades,
various parameterizations of turbulent fluxes have been developed with varying levels
of sophistication, ranging from the “inertial-dissipation method” [16,17], essentially an
application of Kolmogorov theory for estimating turbulent fluxes, to “bulk aerodynamic
methods” based on Monin–Obukhov similarity theory [18–20].

The turbulent components of the net heat flux, i.e., the sensible (QH) and latent (QE)
heat fluxes as well as the wind stress (τ) can be written in terms of “Reynolds Averages” [20]:

QH = ρacpa
〈
w′T′

〉
= −ρacpau∗T∗ (2)

QE = ρaLe
〈
w′q′

〉
= −ρaLeu∗q∗ (3)

τ = ρa
〈
w′u′

〉
= −ρau2

∗ (4)

where w’, T’, q’ and u’ represent the turbulent fluctuations of the vertical component of
the wind vector, temperature, mixing ratio and wind horizontal component, respectively
and the variables with an asterisk can be considered as scaling parameters in terms of
Monin–Obukhov similarity theory [20,21]. The brackets denote the ensemble average,
which, in fact, are approximated by averages over time or space of finite data sets, by
assuming process ergodicity.

The “bulk” version of Equations (2)–(4), where scalar fluxes and wind stress compo-
nents are expressed in terms of macroscopic variables commonly measured in meteorologi-
cal practice, is:

QH = ρacpaChU(Ts − Ta) (5)

QE = ρaLeCeU(qs − qa) (6)

τl = ρaCdU(usI − uI) (7)

where Ch, Ce and Cd are the turbulent transfer coefficients for the sensible and latent heat
fluxes and wind stress, respectively; ρa is the air density; Le is the evaporation latent heat,
U is the mean horizontal wind value at a given height above the surface, z; Ts is the
temperature at the air–sea interface; Ta is the air temperature at z; qa and qs are the specific
humidity at z and the saturation humidity at the sea surface temperature Ts, possibly
corrected for the effect of salinity, respectively. Finally, the difference usI − uI represents
the wind speed relative to the surface ocean current usl. Regarding the values to be used
for the turbulent transfer coefficients Ch, Ce and Cd, there is a large body of literature that
suggests how to estimate their values as a function of usually available meteorological
variables [20,22,23].

Direct measurements of the radiative budget at the sea are not abundant, but still
far more numerous than those of turbulent fluxes, also in relation to the relative lower
complexity of execution. This has allowed the proliferation of various regression-based for-
mulations for estimating coefficients of empirical formulas aimed at minimizing differences
with direct measurements. Regarding the most popular empirical formulae for estimating
the two components of the radiative budget, validation exercises in the Mediterranean
Sea were described [24–26]. In many operational contexts and numerical models, the
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short-wave (insolation) budget is calculated based the formulas of Reed [27] and Simpson
and Paulson [28]. These were adapted by Rosati and Miyakoda [29] as:

Qs = Qs,Clear(1− 0.62 C + 0.0019 β)(1− α) (8)

where Qs,Clear represents the shortwave radiation reaching the sea surface under clear sky
conditions [26], C is the fraction of cloud cover, β is the sun elevation at noon (in degree) and
α is the surface albedo. This is the formulation used in most OGCMs (Ocean General Circu-
lation Model) for calculating the shortwave budget at the air–sea interface. In the case of the
net longwave radiation flux, several empirical formulations were developed [7,25,30–36].
All of these empirical formulas produce estimates of the longwave net flux as a function of
sea surface temperature (SST), air temperature (Ta), water vapor pressure e (or humidity q)
and cloud cover fraction C. The formula of Bignami et al. (1995) [25]:

QL = εσT4
s −

[
σT4

a (0.653 + 0.00535e)
](

1 + 0.1762C2
)

(9)

This formula was specifically designed for the Mediterranean Sea and is currently
used in ocean operational forecast systems and research studies for this basin [37–40].

Reliable heat flux data values at each grid point of the Mediterranean Sea are needed
to determine its total heat budget. The combined use of numerical models or reanal-
ysis data and satellite data is thus essential for these basin-wide estimates. Both have
synoptic coverage but different temporal and spatial resolutions, e.g., the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5;
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (last ac-
cessed on 21 March 2019) data are globally distributed at hourly frequency and spatial reso-
lution of 0.25 × 0.25 degrees, while Meteosat Second Generation (MSG) surface shortwave
and longwave irradiance data are distributed on hourly basis but at 0.05 × 0.05 degrees
resolution. In such a context, the comparison between heat flux components estimates
and direct measurements is crucial to assess the goodness of heat flux existing datasets.
This implies the validation of the meteorological parameters that contribute to heat flux
estimates in empirical formulae and the comparison of direct measurements with empirical
and modelled estimates. Given that errors in estimated fluxes are not great or small per se,
but in relation to a targeted application, a reasonable choice is to evaluate their impact on
some predicted environmental variable such as the near surface sea water temperature.

Evaluation of reanalysis products has already been done in several areas globally,
mostly over land (e.g., [41]). Over ocean, studies are much rarer, which is particularly true
for the radiative components of the energy budget, where ocean in situ measurements
are scarce. In addition, ERA5 is a relatively recent reanalysis and then no many formal
validation reports for several dataset over the ocean have been published. Among those
existing, the accuracy of MERRA-2 and ERA-Interim SST, air temperature and humidity
profiles was evaluated over the Atlantic Ocean [42]. Another work, comparing hourly
solar irradiation data from MERRA-2 and ERA5 over PIRATA (Pilot Research Moored
Array in the Tropical Atlantic) buoys in the Atlantic Ocean found biases between −10 and
+23 W/m2 and between −44 and +23 W/m2 for ERA5 and MERRA-2, respectively. RMS
varied within the range 113 to 138 W/m2 for ERA5 and within 128 and 163 W/m2 for
MERRA-2. The correlation coefficient ranged between 0.48 and 0.86 for ERA5 and between
0.29 and 0.80 for MERRA-2. [43]. Some additional evaluation was performed in the NW
Iceland Sea [44] where a meteorological buoy worked for 78 days, producing valuable
data for ERA5 assessment. Variables assessed where air temperature, SST, humidity, wind
speed, momentum and latent and sensible turbulent fluxes, in particular for wind speed
and air temperature (the variables in common between our and their analysis), biases,
RMSE and correlation coefficient were: 0.61 m/s, 1.64 m/s, 0.92 and 0.05 ◦C, 1.11 ◦C
and 0.92, respectively. The differences between ERA-Interim and ERA5 surface winds
fields relative to Advanced Scatterometer (ASCAT) ocean vector wind observations were

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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analyzed [45]. ERA5 winds showed a 20 % improvement relative to ERA-Interim in terms
of instantaneous RMSE to ASCAT observations.

In this work, we validate both ERA5 reanalysis and satellite radiative flux estimates
against quality-controlled in situ measurements, acquired at the Lampedusa Oceanographic
Observatory [46] over a complete annual cycle (4 June 2017, to 3 June 2018). Despite the
obvious limitation of using a single geographical location, the Lampedusa observatory
offers the possibility of having a coherent, complete and quality-controlled time series over
an entire annual cycle, experiencing a wide variety of Mediterranean climate conditions
(e.g., strong insolation with stable atmospheric summer conditions and lower insolation
with perturbed atmospheric stability in winter). To assess the impact of those differences
between available heat fluxes datasets on simulations of key oceanographic variables, both
global and regional ocean general circulation models (OGCMs) can be used, though with
very high computational costs. Here, we use a sophisticated one-dimensional turbulence
model, namely the GOTM (General Ocean Turbulence Model; www.gotm.net, accessed on
18 May 2021). This is a simplified but still physically meaningful model which contains all
the components of air–sea heat exchange although lacking transport and thus horizontal
advection. Thanks to its relatively low computational cost, GOTM permits to test a large
variety of flux forcing at very high vertical resolution. However, the model is used as
a diagnostic tool to identify the effect of changing heat budget components and is not
intended to describe the medium and long-term evolution of the system.

The paper is structured as follows. Section 2 describes the data used in this analysis:
ERA5 reanalysis, satellite data acquired by SEVIRI (www.eumetsat.int/seviri, accessed on
18 May 2021) and in situ observations at the Lampedusa Observatory. Some basic informa-
tion on the GOTM software is also included. Section 3 shows direct evaluation of relevant
ERA5 model and satellite SEVIRI products against the Lampedusa observations. Section 4
presents the impact of the different datasets on SST predictions by taking advantage of
the year-long Lampedusa time series. The work concludes with some remarks based on
these findings.

2. Data and Methods
2.1. In Situ Measurements

The measurements used in this study were carried out at the Lampedusa Oceano-
graphic Observatory (OO), which is located in the open sea and in an strategic area repre-
senting indeed the boundary between the western and eastern part of the Mediterranean
Sea. The buoy is located at 35.49◦N, 12.47◦E, about 3.3 nautical miles South West of the
island of Lampedusa (Figure 2). The bottom depth at the buoy site is 74 m. The island
belongs to the North-African continental shelf, with the Tunisian coast more than 100 km
west of the buoy.

The buoy was installed in 2015. The Oceanographic Observatory complements the
Atmospheric Observatory (AO, 35.52◦N, 12.63◦E), built on the island of Lampedusa in
1997 and dedicated to climate studies (http://www.lampedusa.enea.it) (last accessed on
18 May 2021). The distance between the two observatories is about 15 km. A wide set of
parameters related to climate are monitored at AO (e.g., meteorology, greenhouse gases,
aerosols, radiation, clouds, etc.). However, this paper presents results only based on in situ
data measured at OO.

The OO is primarily dedicated to investigating air–sea interactions. The buoy is of an
elastic beacon type, designed to minimize structure oscillations and rotation. Nominally,
the rotation of the buoy is <5◦ for sea state <4. Oscillations are also small: they are within
±1.7◦ along the West–East axis and within ±1.8◦ along the North-South axis for 90% of
the time in January. The buoy is connected to an anchor, placed on the bottom. A vertical
pylon about 8 m long emerges from water; a turret, which hosts the atmospheric sensors, is
placed about 6.5 m above sea level. A more detailed description of the buoy characteristics
is provided [46].

www.gotm.net
www.eumetsat.int/seviri
http://www.lampedusa.enea.it
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Figure 2. The Oceanographic Observatory (OO, left panel) and its position near Lampedusa Island.
AO indicates the position of the Atmospheric observatory. The Lampedusa island picture was taken
from the International Space Station (picture ISS 024-E-10246; see acknowledgments).

Measurements used in this analysis include various atmospheric and two submerged
sensors. The list of instruments is reported in Table 1, together with the measured parame-
ters, the position on the buoy and the period of operation on the buoy. Some sensors, like
the radiometers and the ocean pressure/temperature recorders, are routinely replaced with
freshly calibrated ones about once per year. The periods listed in Table 1 are relative to the
measurements used in this analysis.

Table 1. List of sensors, operational dates, parameters measured and positions at the OO. m.a.s.l.
stands for meters above sea level.

Sensor Operational
Dates Parameters Position

Kipp and Zonen
CMP21

6 April 2017–12
July 2018 downwelling solar irradiance 7.8 m.a.s.l.

Kipp and Zonen
CGR4

6 April 2017–12
July 2018

downwelling infrared
irradiance 7.8 m.a.s.l.

Vaisala HMP155 5 June
2017–present

temperature, relative
humidity 8 m.a.s.l.

Gill Windsonic 6 April
2017–present wind speed and direction 10 m.a.s.l.

Vaisala Baro-1QML 6 April
2017–present pressure 8 m.a.s.l.

SeaBird SBE39Plus
#7317

6 April 2017–20
April 2018 temperature and pressure 1 m depth

SeaBird SBE39Plus
#7726

6 April 2017–20
April 2018 temperature and pressure 2 m depth

All instruments were calibrated previously to deployment; the CMP21 solar radiome-
ter was calibrated against instruments referred to the World Meteorological Organization
World Radiation Reference scale, while the CGR4 infrared radiometer was referred to the
World Infrared Standard Group, WISG (WMO, 2014) before and after deployment. More
details on the radiometers’ calibration procedure can be found in di Sarra et al. [46]. The
SBE39 recorders were calibrated by the manufacturer before deployment and at the Italian
OGS (Istituto nazionale di Oceanografia e di Geofisica Sperimentale) after deployment; no
change in the calibration coefficients was found. Calibration dates for all instruments are
reported in Table 2.
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Table 2. List of instruments and calibrations at the OO.

Instrument First, Calibration Second, Calibration

Vaisala Baro-1QML 26 January 2015 -
Vaisala HMP155 17 April 2015 -
Gill Windsonic 11 March 2015 -

SeaBird SBE39Plus #7317 15 October 2014 4 September 2018
SeaBird SBE39Plus #7726 17 July 2015 4 September 2018
Kipp and Zonen CMP21 31 March–4 April 2017 15–31 July 2018
Kipp and Zonen CGR4 10 February–31 March 2017 15–31 July 2018

The nominal accuracy of atmospheric temperature and humidity measurements is
about 0.15 ◦C and 1–2%, respectively. The accuracy on atmospheric pressure measurement
is ±0.2 hPa, while that on the wind measurement is ±2% on wind speed and ±3◦ on the
direction. The nominal accuracy of the water temperature is ±0.002 ◦C and is ±0.002 dbar
for water pressure [46].

Solar irradiance measurements are corrected for the thermal effect using the signal
of the infrared sensor as recommended [46,47]. No correction for the instrument cosine
response is implemented, due to the good instrumental response. The overall estimated
uncertainty on the solar irradiance measurement is 1.7%, while it is ±5 W/m2 on the
infrared irradiance. Buoy attitude and deposition of aerosol and humidity on the radiome-
ters’ domes may affect both shortwave and longwave irradiance measurements. These
effects were discussed [46], based on the comparison between simultaneous measurements
made in 2016 at AO and OO. The root mean squared difference between the two sets of
hourly average measurements is about 19 W/m2 for cloud-free daytime solar radiation and
8.6 W/m2 for nighttime infrared radiation and all sky conditions. The mean bias between
daily average observations at OO and AO was −2.2 W/m2 for shortwave irradiance and
was +6.2 W/m2 for longwave irradiance. These differences were found consistent with
altitude and albedo differences between OO and AO, suggesting that highly accurate
radiation observations are obtained at OO.

2.2. ERA5 Reanalysis

The reanalysis data used in this work come from the ERA5 dataset (1950–present).
ERA5 is produced using 4D-Var data assimilation in CY41R2 of ECMWF’s Integrated
Forecast System (IFS), with 137 hybrid sigma/pressure (model) levels in the vertical,
with the top level at 0.01 hPa (IFS Documentation CY41R2-Part IV: Physical Processes).
ERA5 also includes “surface or single level” data, containing 2D parameters such as pre-
cipitation, 2 m temperature, top of atmosphere radiation and vertical integrals over the
entire atmosphere. The surface data are those used in this work. We downloaded hourly
data from June 2017 to June 2018 relative to the closest grid point to the Lampedusa
mooring from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
(https://cds.climate.copernicus.eu/#!/home) (last accessed on 2 June 2021). The parame-
ters were selected on the basis of the corresponding mooring measurements considering
also the list of variables that are typically used in empirical formulae, namely:

1. Sea surface temperature;
2. Air temperature near the surface (2 m from the surface);
3. Dew point temperature (2 m from the surface);
4. Cloud cover (fraction);
5. Wind intensity (10 m from the surface, zonal and meridional components);
6. Atmospheric pressure at the surface;
7. Longwave Irradiance (LW);
8. Shortwave Irradiance (SW).

https://cds.climate.copernicus.eu/#!/home
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2.3. Geostationary Satellite Irradiance Data

Satellite irradiance data is derived from hourly Spinning Enhanced Visible and In-
frared Imager (SEVIRI) visible and thermal infrared measurements, onboard MSG. The
products related to irradiance, i.e., Surface Solar Irradiance (SSI) and Downward Longwave
Irradiance (DLI), are produced operationally and continuously by the EUMETSAT Ocean
and Sea Ice Satellite Application Facility (OSI SAF). The algorithm used by OSI SAF to
derive the instantaneous value of SSI is a physical parameterization applied separately
to each pixel and is developed in a sequence of steps including calibration of counts in
bi-directional reflectance, conversion from the narrow band of the satellite to the broader
band of the solar spectrum, conversion of bi-directional reflectance to planetary albedo,
parameterization for clear skies [48] and finally a parameterization of the effect of cloud
cover [49].

The algorithm used by OSI SAF to derive the all-sky condition longwave irradiance
is an empirical parameterization that uses the outputs of the ECMWF NWP model and
corrects it with the cloudiness information obtained from the satellite. The estimation of
this irradiance should be considered instantaneous since the cloud information, derived
from the NWP SAF classification is instantaneous. These steps are described in some detail
in OSI SAF’s Product User Manual (PUM) for both shortwave and longwave irradiances.

2.4. GOTM

The General Ocean Turbulence Model (GOTM; [50,51], see updated version on gotm.net;
here, the MS Windows version 4.1 is used) is a one-dimensional water column model for
studying hydrodynamic and biogeochemical processes in marine and limnic waters. GOTM
includes a library of state-of-the-art turbulence closure models for the parameterization of
vertical turbulent fluxes of momentum and heat. GOTM has been shown to be a useful tool
for the study of evolution of thermal stratification [52], but other effects such as surface
boundary layer dynamics, entrainment into bottom gravity currents, mixing in sloping
bottom boundary layers and sediment dynamics can also be investigated. GOTM provides
a useful platform to compare across many Ocean Surface Boundary Layer (OSBL) param-
eterizations. The successful modelling of turbulence within GOTM has led to the use of
this module in ocean general circulation models such as the General Estuarine Transport
Model (GETM), the Regional Ocean Modelling System (ROMS), the Nucleus for European
Modelling of the Ocean (NEMO), the Semi-implicit Cross-scale Hydroscience Integrated
System Model (SCHISM), the Finite Volume Community OceanModel (FVCOM) and the
Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS).

3. Results and Discussion
3.1. Assessment of ERA5 Products

In situ data, measured at high temporal frequency, was averaged to the equivalent
ERA 5 hourly resolution. Regarding spatial match, we selected the closest single grid
point corresponding to the buoy position. A direct comparison between ERA5 hourly
estimates of the main meteorological variables needed to calculate the heat fluxes and the
corresponding measurements on the buoy is shown in Figure 3. There is an encourag-
ing agreement between the ERA5 estimates and the in situ measurements, which gives
confidence for subsequent estimates of the various heat flux components. Quantitatively,
in terms of standard statistical metrics (mean bias, MB; root mean square error, RMSE;
linear correlation coefficient, R; and slope of the linear fit between the two datasets), the
distance between the ERA5 estimates and the in situ measurements is reported in Figure 3.
Broadly, the differences between the in situ measurements and the reanalysis estimates
are quite small and apparently non-dependent on the variable value. An exception can be
found in the case of the wind intensity, that, as the intensity increases, shows an increasing
underestimation by the reanalysis with respect to in situ data. This is underlined by the
value of the slope of the regression line (Figure 3). Similar dependence of the bias on
wind intensity was observed in the Gulf of Lion, Ligurian Sea and Aegean Sea compar-
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ing Quickscat data with blended wind data from ERA40, ECMWF analysis and NCEP
(National Centers for Environmental Prediction) estimations [53]. On the other hand, an
opposite effect was observed in the Iceland Sea where a 78 day time series was analyzed
with and overestimation of the ERA5 wind intensity for high wind regimes [44], Figure 3c.

Figure 3. Comparison between key meteorological variables contributing to air–sea heat flux estimates from ERA5 and
from in situ observations. Air temperature (a), dew point temperature (b), atmospheric pressure at sea level (c), wind
intensity (d), sea surface temperature (e). The (hourly) SST was inferred from the “skin” SST by adding the mean value of
the difference with the “subskin” (0.17 ◦C) to make it more comparable with the sensor measurement at 1 m depth. Dot
color indicates data density, increasing from white to black. Data refer to the period 3 June 2017–3 June 2018. Boxes within
each plot include statistics of differences between ERA5 estimates and in situ measurements. Negative bias values indicate
underestimates of the reanalysis.

The instruments mounted on board the Lampedusa buoy give the opportunity to
verify the ERA5 estimates of shortwave and longwave downwelling irradiance. The scat-
terplots between the two datasets are shown in Figure 4. The shortwave irradiance shows
a general good agreement, though with some underestimation of the ERA5 throughout
the full range of values. The highly spread data points at the upper-left side of the panel
are most likely produced under scattered clouds and denote the difficulty of ERA5 at pixel
scale to correctly estimate rapidly varying cloud cover fraction over a given site at hourly
scale. Differences of longwave irradiances seem to be more significant, but in line with the
results of the shortwave irradiance comparison. Our results show much lower RMSE and
much higher correlation with respect to another ERA5 assessment against PIRATA buoys
in the tropical Atlantic Ocean [43], while our bias falls in their range of variability.
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Figure 4. Comparison between hourly shortwave (a) and longwave (b) irradiance estimated by ERA5 and corresponding
values measured on the buoy. Dot color indicates data density, increasing from white to black. Data refer to the period
4 June 2017–3 June 2018. Units are W/m2. Boxes within each plot include statistics of differences between ERA5 estimates
and in situ measurements of shortwave and longwave irradiance.

3.2. Assessment of Satellite Data

Hourly-averaged buoy data was matched to SEVIRI hourly data, extracted at the
closest single pixel corresponding to the buoy position. The standard statistical indices
of the comparison between satellite and buoy measurements are comparable with those
reported for ERA5 (Figures 3 and 5). The satellite shortwave irradiance shows a higher bias
with respect to in situ data than ERA5, with a somewhat lower RMSE, while correlation
and slope values are fully comparable with those obtained for ERA5. In the case of the
longwave irradiance, the bias between satellite and in situ data is smaller in absolute value
than that between ERA5 and in situ data and opposite in sign, indicating an overestimation
of satellite-derived data, while RMSE and correlation values are similar to those found for
ERA5. The slope is closer to the unit value than for ERA5.

Figure 5. Comparison between hourly shortwave (a) and longwave (b) irradiances estimated by SEVIRI and the corre-
sponding values measured on the buoy. Dot color indicates data density, increasing from white to black. Data refer to the
period June 2017–3 June 2018. Units are W/m2. Boxes within each plot include statistics of differences between satellite
estimates and in situ measurements of shortwave and longwave irradiances.

3.3. Impact of Flux Differences on Numerical Simulations: A Case Study

Once the differences between estimates of relevant meteorological parameters and
radiative fluxes have been determined, their consequent impact on GOTM model pre-
dictions is evaluated. The successive steps are to: (1) understand how relevant are these
differences with respect to the subsequent applications; (2) understand the extent to which
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the available datasets are interchangeable and (3) establish user recommendations, based
on the former findings.

The ideal setup would be to perform sensitivity experiments using general circulation
models at global and regional scale either in forecast or in re-analysis mode, forced by
the different available meteorological and flux data. Unfortunately, the computational
cost of such an approach would be excessive and the implementation time would be well
beyond the scope of this work. As an alternative, we carried out the sensitivity tests using
a simplified but still physically meaningful model which contains all the components of
air–sea heat exchange though lacks transport and thus horizontal advection. Here, we
used the GOTM one-dimensional water column model for studying the variability of
heat exchange processes under a variety of atmospheric forcing. GOTM solves the heat
transport equation for temperature, incorporating the forcing and boundary conditions for
each time step.

We forced GOTM with different heat components datasets such as those: (i) measured
at the Lampedusa observatory; (ii) provided by ERA5 or (iii) estimated from satellite
data. The GOTM simulation was started on 4 June 2017. Initial conditions were set as
the average temperature and salinity vertical profiles, acquired very close to the buoy
during an oceanographic cruise on 3 and 4 June 2017 (Figure 6). The vertical dimension
was discretized into 140 vertical layers, with increased resolution towards the surface.
At 1 m depth, the resolution was ~4 cm. The simulations were continued for 365 days
until 3 June 2018, using a 60 s time step and storing the outputs hourly. The water
temperature time series measured by a SBE39Plus sensor, T1m, was used as reference
for the comparison for all the numerical simulations. Its average depth was 1 m, though
subject to small instantaneous variations. The real sensor depth was determined from the
measured pressure value; and the temperature modeled at the same depth was used in
the comparison.

Figure 6. In situ CTD casts made from 3 June 2017 at 14:00 UTC to 4 June 2017 at 07:56:00 UTC close
to the Oceanographic Observatory. Dots represent individual CTD casts. The black lines represent
the average profiles for temperature (a) and salinity (b) used as initial condition for the simulation.

Table 3 describes the general model configuration, including features such as turbu-
lence modelling, light extinction parameterization and boundary conditions. The sum of
net longwave irradiance, latent and sensible heat fluxes is used as a boundary condition in
the model, while the solar radiation is treated as an internal heat source varying with depth
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as prescribed by Jerlov [54] (the so-called Jerlov-I attenuation model). Surface heat and
momentum fluxes can be “prescribed”, intended as forcing GOTM with flux data directly,
or indirectly set by means of meteorological data, which is used by GOTM to compute the
fluxes using bulk formulas while running.

Table 3. Options for the different GOTM parameters.

Parameters Option

1 Surface fluxes (heat and momentum)

Prescribed (From ERA5, in situ
measurements or Satellite data)

Calculated (using meteorological inputs:
measured or ERA5)

2 Shortwave radiation

Prescribed (From ERA5, in situ
measurements or Satellite data)

Calculated (using ERA5 Cloud Cover):
Rosati and Miyakoda 1988 [29] + Payne 1972

[55] for the albedo

3 Longwave radiation

Prescribed (From ERA5, in situ
measurements or Satellite data)

Bignami et al. [25]: Calculated (using ERA5
data or in situ measurements)

4 Turbulence closure Turbulence model calculating turbulent
kinetic energy and length scale

5 Type of equation for turbulence
kinetic energy Dynamic equation (k-ε style)

6 Length scale method Dynamic dissipation rate equation

7 Stability method Constant stability functions

8 Light extinction Jerlov Type I [54]

Table 4 describes all simulations (“experiments”) performed. All of them differed only
in the air–sea heat fluxes. The first two experiments evaluated the impact of forcing GOTM
with meteorological data coming from different sources. Near surface air and dew point
temperature (2 m above the surface), cloud cover (fraction), wind intensity (10 m above the
surface, zonal and meridional components) and surface atmospheric pressure were given
to GOTM, either measured in situ at the buoy (experiment 1) or from ERA5 (experiment 2).
However, because cloud cover fraction measurements were not available at the buoy site,
both experiments were run using the ERA5 cloud cover fraction, implying that the net
shortwave irradiance was the same for both.

The water temperature at 1 m of depth (T1m) is shown in Figure 7a together with
the measured value and Figure 7d shows the differences of the simulations to the latter.
Table 4 reports the values of annual mean bias (MB), root mean square error (RMSE)
and correlation coefficient (R) between the simulated and measured temperatures at 1 m
depth. Both experiments 1 and 2 reproduced the annual cycle very well. Experiment 1
underestimated T1m by 0.08 ◦C (annual average), while experiment 2 overestimated T1m
by 0.13 ◦C. The RMSE are 0.42 and 0.40 ◦C, respectively. This good agreement between
both model simulations and measured data is somewhat surprising since the simulations
were not aimed at reproducing the observations throughout a whole year, due to the lack of
horizontal advection. What we can say based on the results obtained is that the differences
between the buoy and the ERA5 meteorological variables are sufficiently small to produce
very similar air sea heat and momentum exchanges that, in turn, produce a nearly identical
water temperature evolution.
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Table 4. Numerical summary of all experiments. For each forcing, it is given: the net ocean heat loss
(latent + sensible + longwave), the heat gain due to shortwave and their sum. In addition, MB, RMSE
and R are given, expressing the mean difference, root means square error and correlation coefficient
of the simulated temperature respect to the temperature reference.

Experiment
n◦ Forcing

Heat
Loss

(W/m2)

Heat
Gain

(W/m2)

Net
Heat

(W/m2)
MB RMSE R

1

Heat and momentum fluxes
computed by the model
using bulk formulae and

ERA5 meteorological data

−215.2 217.4 2.2 −0.08 ◦C 0.40 ◦C 0.997

2

Heat and momentum fluxes
computed by the model
using bulk formulae and

meteorological in situ data

−215.8 217.4 1.6 0.13 ◦C 0.42 ◦C 0.997

3 Heat fluxes from ERA5 −198.8 216.6 17.8 1.07 ◦C 0.55 ◦C 0.995

4
Heat fluxes from ERA5 but

shortwave from in situ
measurements

−198.8 215.7 16.9 1.17 ◦C 0.58 ◦C 0.994

5 Heat fluxes from ERA5 but
shortwave from SEVIRI −198.8 221.7 22.9 1.80 ◦C 0.61 ◦C 0.991

6
Heat fluxes from ERA5 but

longwave from in situ
measurements

−182.6 216.6 34 2.68 ◦C 0.95 ◦C 0.978

7 Heat fluxes from ERA5 but
longwave from SEVIRI −176.2 216.6 40.4 3.54 ◦C 1.08 ◦C 0.973

No conclusions must be extracted on the accuracy of single heat flux components
because the overall effect is driven by the sum of the different contributions. The sum of
the net longwave and turbulent fluxes is equal to the ocean total heat loss and its time
series (10-day moving averages are displayed to improve readability) obtained from the
experiments 1 and 2 is shown in Figure 7g. The corresponding values of the annual mean
heat loss from the ocean to the atmosphere are reported in Table 4, amounting to 215.8 and
215.2 W/m2 for experiment 1 and experiment 2, respectively. This heat loss is balanced by
217.4 W/m2 of shortwave radiation that is transferred from the atmosphere to the ocean
(as estimated by using Rosati and Miyakoda [29] and Payne [55]), giving a net positive
ocean gains heat of 1.6 and 2.2 W/m2 for experiment 1 and 2, respectively.

Next simulations were performed with prescribed fluxes. A preliminary test, provid-
ing to GOTM the heat and momentum fluxes calculated applying the same bulk formulas
and the same data used in experiments 1 and 2 (not shown), returned the same results of
the “calculated by the model” version, giving us confidence that differences obtained by
providing different heat fluxes can entirely be attributed to the selected dataset and not to
differences of how bulk formulas are treated by the model or by ourselves.
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Figure 7. Comparison between in situ measurements of water temperature at 1 m depth (black curves in (a–c)) and GOTM
simulated water temperatures at the same depth obtained as follows: (a) Simulations using air–sea heat and momentum
fluxes computed by the model at each time step, using bulk formulae with ERA5 meteorological parameters (experiment
1, red line) or bulk formulae with in situ meteorological parameters (experiment 2, blue line). (b) Simulations imposing
air–sea heat and momentum fluxes obtained by ERA5 (experiment 3, red line), by ERA5 except for the shortwave irradiance,
which is from in situ measurements (experiment 4, blue line) and by ERA5 except for the shortwave irradiance, which is
estimated by SEVIRI (experiment 5, green line). (c) Simulations imposing air–sea heat and momentum fluxes obtained
by ERA5 (experiment 3, red line), by ERA5 except for the longwave irradiance, which is form in situ observations at the
buoy (experiment 6, blue line), by ERA5 except for the longwave irradiance, which is estimated by SEVIRI (experiment
7, green line). The differences between measured and simulated temperatures at 1 m depth are reported in panels d,
e, f, for: (d) Experiment 1 (red) and experiment 2 (blue). (e) Experiment 3 (red), experiment 4 (blue) and experiment 5
(green). (f) Experiment 3 (red), experiment 6 (blue) and experiment 7 (green). (g) Ocean heat flux loss (latent + sensible +
net longwave) computed by the model for experiment 1 (red) and experiment 2 (blue). (h) Shortwave component of the
heat fluxes from in situ measurements (blue), ERA5 (red) and SEVIRI (green). (i) Ocean heat flux loss (latent+sensible+net
longwave) for experiment 3 (red), experiment 6 (blue) and experiment 7 (green) A 10 days moving average filter has been
applied to curves in panels (g–i) to enhance readability.

A series of “prescribed fluxes” experiments was performed next, to evaluate the
impact of varying the net shortwave radiation. Starting from the general setup in Table 3,
ERA5 fluxes were given as inputs, except the shortwave radiation, which was either that
from ERA5 (experiment 3; annual average of 216.6 W/m2), in situ buoy measurements
(experiment 4, 215.7 W/m2) and SEVIRI (experiment 5, 221.7 W/m2). The corresponding
simulated temperatures are shown in Figure 7b, the differences to the measured value in
Figure 7e and the daily-averaged shortwave radiation is shown in Figure 7h. Annual values
of heat loss are reported in Table 4. The use of these three different fluxes produced mean
overestimations of T1m by 1.07 ◦C, 1.17 ◦C and 1.80 ◦C. The RMSE range between 0.55 ◦C
and 0.61 ◦C. As evident from Figure 7, these biases are not constant over time. Indeed, if we
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focus on the first month of simulations, when the role of horizontal advection is expected to
have produced a limited impact, the use of the measured shortwave irradiance produced a
smaller bias with respect to T1m, of only −0.08 ◦C, while using ERA5 or SEVIRI the bias
reached 0.21 ◦C and 0.53 ◦C, respectively. After the first month the bias tends to increase
up to slightly more than 1 ◦C for experiment 3 and 4 and up to 1.8 ◦C for experiment 5.

Additional “prescribed fluxes” experiments were performed taking experiment 3
as reference, but this time, the longwave irradiance (LW) was varied. Compared to the
−182.6 W/m2 of annual ocean heat loss in experiment 3, when LW came from in situ buoy
LW measurements (experiment 6), the heat loss amounted to −182.6 W/m2 and when
LW came from SEVIRI estimates (experiment 7) it resulted in heat loss of −176.2 W/m2

(Table 4). Contrarily to what happened in the experiments in which the SW irradiance was
varied, here the simulated water temperatures diverged from T1m and from the ERA5
values nearly immediately after the start of the run, reaching biases of almost 1 ◦C after
only a couple of weeks.

Looking at all experiments, it is interesting to note that in all cases the annual mean
net heat budget was positive (the ocean gains heat). Its value varied between +1.6 W/m2

(experiment 2) and +40.4 W/m2 (experiment 7). Using different radiation datasets pro-
duced the largest changes in the net heat fluxes, while the use of ERA5 or measured
meteorological parameters had a limited impact on the results, due to the high accuracy
of ERA5 meteorology. Thus, reducing uncertainties on the radiative terms is essential for
reducing uncertainties on the overall heat budget. In particular, the relative large biases
in the reanalysis and satellite datasets for the longwave irradiance with respect to the
in situ observations had a large impact, of the order of 22 W/m2, on the overall heat
budget determinations.

4. Conclusions and Final Remarks

In this work, time series of meteorological data and radiative fluxes obtained from
a marine observatory located in the central Mediterranean Sea have been used to locally
validate reanalysis and satellite air–sea heat flux estimates. The comparison of simulated
(ERA5) and measured meteorological variables is very encouraging for their use in many
oceanographic and, more generally, environmental applications (see Table 1 and Figure 3).
Biases are very small and generally not correlated with the measurements. The sole
exception can be found in the ERA5 wind speed that exhibits a clear tendency of the bias
to linearly increase with increasing wind intensity (Figure 8a).

Figure 8. ERA5 minus buoy wind speed (a) and ERA5 minus buoy heat loss (Latent + Sensible + net Longwave) as a
function of the in situ measured wind speed (b). Averages and standard deviations over 1 m/s intervals are shown as blue
squares and red bars, respectively.
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The data we have in hand do not permit us to establish whether the discrepancies
can be ascribed to a different quality of ERA5 reanalysis in the two regions or rather to the
increased opportunity of maintenance of the instrumentation thanks to the vicinity to the
small flat Lampedusa Island, where the ENEA research laboratory periodically operates
the cleaning of the instruments.

On average, the use of ERA5 wind speed instead of in situ data in bulk formulae,
produces an underestimation of the heat loss to the atmosphere of only 0.5 W/m2, nearly
linearly varying from +11 W/m2 in calm conditions to −18 W/m2 for winds larger than
17 m/s (Figure 8b). The existence of a linear relationship between bias and wind speed
was already reported for the ECMWF analysis and the ERA40 reanalysis [53]. Based on the
analysis of one year of data acquired at four different sites in the Mediterranean Sea, it was
shown that ECMWF analysis and ERA40 data underestimated the winds speed for values
greater than about 10 m/s and 5 m/s respectively.

The impact of biases among the different estimates of the heat budget components
on a numerical 1-D simulation (GOTM) of the near surface water temperature has been
evaluated over a full seasonal cycle (4 April 2017 to 3 April 2018). When fluxes from
measured meteorological data were used in the simulations, the modelled temperature
values agreed very well with the in situ reference data: the bias was −0.1 ◦C when the
model was run with in situ meteorological data and +0.1 ◦C when was run with ERA5 data
(Figures 5 and 7). However, more significant differences between in situ measurements
and simulations were observed when GOTM was forced with other estimates of the flux
components (prescribed fluxes): a mean overestimation of about 1 ◦C with respect to in
situ measurements is observed when ERA5 fluxes were prescribed.

When in situ observations of the shortwave irradiance is used in the model instead
of the ERA5 values, a good correspondence between modelled and measured water tem-
perature is found over a relatively extended time interval (about a month), during which
contribution from lateral advection may be considered negligible. When longwave irra-
diances are used, somewhat larger biases between modeled and measured temperatures
are found. Very similar values of the total net heat budget, about 17 W/m2, are obtained
with ERA5 fluxes and with ERA5 longwave radiation and turbulent fluxes and measured
shortwave irradiance. The total net heat flux becomes about 34 W/m2 when in situ mea-
surements of the longwave irradiance is used in the simulations. When ERA5 shortwave or
longwave irradiances were substituted with the corresponding satellite measurements, an-
nual mean biases increased in a range between 1.8 ◦C (shortwave from SEVIRI) and 3.5 ◦C
(longwave from SEVIRI) and the total net heat flux varied between 22.9 and 40.4 W/m2.
This result for SEVIRI’s data could be partially caused by the compensation of a bias in one
flux term with another one, given that also the latent and sensible fluxes contribute to the
total budget. To solve this question, satellite estimations of all flux components are needed.
To date, only geostationary satellite data are provided with enough temporal resolution to
resolve the diurnal cycle, excluding latitudes higher than 60 ◦N and 60 ◦S. In these high
latitudes, only polar orbiting satellites can provide radiative flux data with enough time
frequency due to intensified intersection of the swaths. The SEVIRI Downward Longwave
Irradiance (DLI), however, is a bulk parameterization combining the ECMWF NWP model
outputs and satellite derived cloud parameters and then cannot be considered a full satellite
product, being the satellite contribution limited to the cloud cover determination (see
http://www.osi-saf.org/lml/doc/osisaf_cdop3_ss1_atbd_geo_flx.pdf) (last accessed on 2
June 2021). On their hand, latent and sensible satellite heat flux determinations are mainly
based on microwave data that empirically estimate meteorological variables, that in turn
enter in the bulk formulae (for an example, see Algorithm Theoretical Basis Document
HOAPS release 3.2 https://www.cmsaf.eu/SharedDocs/Literatur/document/2011/saf_
cm_dwd_atbd_hoaps_1_1_pdf) (last accessed on 2 June 2021). This means that turbulent
fluxes satellite estimates can suffer from the same problem of any equivalent determination
based on bulk formulae.

http://www.osi-saf.org/lml/doc/osisaf_cdop3_ss1_atbd_geo_flx.pdf
http://www.osi-saf.org/lml/doc/osisaf_cdop3_ss1_atbd_geo_flx.pdf
https://www.cmsaf.eu/SharedDocs/Literatur/document/2011/saf_cm_dwd_atbd_hoaps_1_1_pdf
https://www.cmsaf.eu/SharedDocs/Literatur/document/2011/saf_cm_dwd_atbd_hoaps_1_1_pdf
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Future microwave missions, such as Copernicus Imaging Microwave Radiometer
(CIMR) and the Geostationary Interferometric Microwave Sounder (GIMS) [56] could
provide data with daily, or even sub daily, frequencies, resolving the diurnal cycle on a
global scale, potentially useful for turbulent heat flux estimates. CIMR will contribute to
estimates of air–sea turbulent heat and moisture fluxes from simultaneous SST, wind speed,
sea surface salinity, sea ice, rain rate and integrated cloud liquid water, opening a new era
for unprecedented satellite applications.
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