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Abstract

This paper proposes a semi-blind approach for the separation of sources that are not
totally uncorrelated. Up to now, all work on separation of components in astrophysical
maps have assumed statistically independent sources. In this work, we attempt to
perform a dependent component analysis of astrophysical sources and we propose a
semi-blind algorithm which provides separation using second-order statistics only.

1. INTRODUCTION

This paper proposes a semi-blind approach for the separation of sources that are not totally
uncorrelated. Up to now, all work on separation of components in astrophysical maps have
assumed statistically independent sources. However, it is well known that this is not always true.
For example, in sub-mm observations it is known that the galactic foregrounds are not completely
independent. In this work, we attempt to perform a dependent component analysis of astrophysical
sources and we propose a semi-blind algorithm which provides separation using second-order
statistics only. Our prior knowledge about the elements of the mixing matrix are utilised to reduce
the required number of equations hence enabling a unique solution by a second-order technique
only. Unlike other second- order techniques proposed in the literature, our approach is effective
even if some sources are correlated. The approach allows the unknown parameters of the mixing
matrix and the source covariance matrices at different shifts to be estimated. Our estimating
algorithm has been tested with a database that simulates the maps expected from the instruments
that will operate onboard ESAs Planck Surveyor Satellite to measure the CMB anisotropies all
over the celestial sphere. We performed separation in several sky patches, featuring different
levels of galactic contamination of the CMB, and assuming various noise levels, including the ones
derived from the Planck specifications. In all the cases, the CMB reconstruction was satisfactory
on all the angular scales considered in the simulation; the average performance of the algorithm
and its dispersion were checked and quantified against a large set of noise patterns.

Any radiometric measurement on sky emission results from a superposition of different radiating
sources. Separating the individual radiations from the measured signals is thus a common
problem in astrophysical data analysis. As an example, in Cosmic Microwave Background
(CMB) anisotropy surveys, the cosmological signal is normally combined with radiation of both
extragalactic and galactic origin, such as the Sunyaev-Zel’dovich effects from clusters of galaxies,
the effect of the individual radiogalaxies, the emission from galactic dust, the galactic synchrotron
and free-free emissions. All of these source signals have an interest of their own, and it could be
useful to extract all of them from multichannel data, by exploiting their different emission spectra.

Several different component separation techniques have been proposed in the literature. Some
authors (Hobson et al. 1998, Bouchet et al. 1999) have tried to achieve the component separation
assuming that the physical mixture model is perfectly known. Unfortunately, such an assumption
is rather unrealistic and could overconstrain the problem, thus leading to unphysical solutions.
Attempts have been made to avoid this shortcoming by introducing criteria to evaluate a posteriori
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the closeness to reality of the mixture model and allowing individual sources to be split into
separate templates to take spatial parameter variability into account (Jones et al. 1998, Barreiro
et al. 2003).

A class of techniques capable of estimating the source signals as well as identifying the mixture
model has recently been proposed in astrophysics (Baccigalupi et al. 2000, Maino et al. 2002,
Baccigalupi et al. 2002, Delabrouille et al. 2002). In digital signal processing, these techniques
are referred to as blind source separation (BSS) and rely on statistical assumptions on the source
signals. In particular, mutual independence and nongaussianity of the source processes are
often required (Hyvärinen and Oja 2000). This totally blind approach, denoted as independent
component analysis (ICA), has already given promising results, proving to be a valid alternative to
assuming a known data model. On the other hand, most ICA algorithms do not permit to introduce
prior information. Since all available information should always be used, semi-blind techniques are
being studied to make astrophysical source separation more flexible with respect to the specific
knowledge often available in this type of problem (Kuruoğlu et al. 2003).

The first blind technique proposed to solve the separation problem in astrophysics (Baccigalupi et
al. 2000) was based on ICA, allowing simultaneous model identification and signal estimation to be
performed. In order to get independence, the statistics of all orders should be taken into account,
and this can be achieved by explicit cumulant calculation or by suitable nonlinear transformations
on the estimated source signals (Comon 1994, Cardoso 1998, Hyvärinen and Oja 2000).

In general, the problem of estimating all the model parameters and source signals cannot be
solved by just using second-order statistics, since these are only able to enforce uncorrelation.
However, this has been done in special cases, where additional hypotheses on the spatial
correlations or, equivalently, on the spectra of the individual signals are assumed (Tong et al.
1991, Belouchrani et al. 1997, Delabrouille et al. 2002).

A fundamental point in all the previous methods is the assumption of mutual independence of
the sources. However, this assumption fails in many relevant cases. For example, it is known
that the different Galactic foregrounds (dust, synchrotron and free-free emissions) are not totally
independent among themselves. This is particularly true in the strongly contaminated areas of
the Galactic plane, where most separation component techniques based on the independence
assumption fail.

Another possibility of solving the separation problem on the the basis of second-order statistics
alone is when the relevant constraints are such that the total number of parameters to be
estimated can be reduced. This is the case in the problem of separating astrophysical foregrounds
from cosmic microwave background, provided that a structure for the source covariance matrix is
assumed. Indeed, on the basis of a possible parametrization of the mixing operator and assuming
that the correlation structure between the different sources is known, it is possible to reduce
the total number of model parameters. We will show that, under these hypotheses, a very fast
model learning algorithm can be devised, based on matching the theoretical covariance matrix at
several shifts with the one estimated from the available data. Moreover, this strategy allows the
strict assumption of uncorrelation between the source signals to be relaxed. Using this approach,
we will show that it is possible to learn the parameters of the mixing even when the sources are
significantly correlated among themselves, that is, we provide here for the first time a semi-blind
dependent component separation technique applied to astrophysics.

This paper is organized as follows. In Section 2, we formalize the problem and introduce the
relevant notation. In Section 3, we describe our method, and, in Section 4, we present some
experimental results. Some remarks and future directions are reported in the final section.

2. ASTROPHYSICAL SOURCE SEPARATION

Let us consider an experiment that observes the sky at � different frequencies. As usual, we
model the observations as

���� �� � ����� �� � ���� ��� (1)
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which means that the total radiation observed in a certain direction at a certain frequency is given
by the sum of a number � of signals (processes, or components). Here, � and � are angular
coordinates on the celestial sphere, �=���� � � �� � � � ��� is the � -vector of the observations,
� being a channel index, � is an � � � matrix whose entries, 	��, are related to the spectra
of the radiation sources and the frequency responses of the measuring instruments on the
different frequency channels, 
 being a process index, � = ���� 
 � �� � � � � �� is the � -vector of
the individual source processes and �=���� � � �� � � � ��� is the � -vector of instrumental noise.
Hereafter, matrix � will be referred to as the mixing matrix. For simplicity we assume that the
effects of the telescope beam on the angular resolution at different measurement channels have
been equalized (Salerno et al. 2000).

The separation problem consists in estimating the source vector � from the observed vector �.
Several estimation algorithms have been derived assuming a perfect knowledge of the mixing
matrix. As already said, however, this matrix is related both to the instrumental frequency
responses, which are known, and to the emission spectra 
����, which are normally unknown.
For this reason it is often necessary to estimate both the mixing matrix and the source vector.
For any procedure of this type, the estimation of � will be referred to as system identification (or
model learning), and the estimation of � will be referred to as source separation. In this paper,
we will only emphasize aspects related to learning; indeed, once the model has been identified, a
number of standard reconstruction procedures are available to separate the individual sources.

Assuming that the source signals are mutually independent, the �� unknown coefficients can
be estimated by finding a linear mixture that, when applied to the data vector, nullifies the cross-
cumulants of all orders. If, however, some prior information allows us to reduce the number
of unknowns, the identification problem can be solved by only using second-order statistics.
Learning the model on the basis of second-order statistics alone is computationally easier and it is
also advantageous with respect to robustness against noise; indeed, estimation of second-order
statistics is much more immune from erratic data than estimation of higher-order statistics. This
is the case with our approach, which is based on a parametrization of matrix �. This approach,
described in the following section, also works in the presence of correlated sources.

The elements of � are related to the source spectra and to the instrumental frequency responses
of the detectors. While the latter is usually very well known, the former is in many cases uncertain.
As we will see, in our case we have some knowledge about them. If we assume that the source
spectra are constant within the passbands of the different channels, we can write the elements of
the mixing matrix as 	�� � 
�����, where �� is the center-frequency of the �-th channel and 
� is
the frequency spectrum of the 
-th process.

In the microwave range, the dominant radiations are the CMB, the galactic dust, the free-free
emission and the synchrotron (see De Zotti et al., 1999). Another significant signal comes from
the extragalactic radio sources. Here we assume that the latter has been removed from the data
by one of the specific techniques proposed in the literature (Tenorio et al., 1999, Cayón et al.,
2000, Vielva et al., 2001). Regarding the other components, our knowledge about their frequency
spectra is as follows: The emission spectrum of the CMB is perfectly known, being a blackbody
radiation. In terms of antenna temperature, it is:


������ �
��� ��	����


��	����� ��
�
� (2)

where �� is the frequency in GHz divided by �
��. From (2), the column of � related to the CMB
radiation is thus known up to an inessential scale factor. For the synchrotron radiation, we have


������ � ���� � (3)

Thus, the column of � related to synchrotron only depends on a scale factor and the spectral
index ��. For the thermal galactic dust, we have


�	�
��� �
�����

��	����� �
� (4)
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where �� � ������	�
, and where � is the Planck constant, � is the Boltzmann constant and ��	�

is the physical dust temperature. If we assume a uniform temperature value, the frequency law
(4), that is, the column of � related to dust emission, only depends on a scale factor and the
parameter �. In general, if we assume to have a perfectly known source (such as CMB) and
� � � sources with one-parameter spectra, the number of unknowns in the identification problem
is � � � instead of �� . For the sake of simplicity, although other foregrounds (such as SZ and
free-free) could be taken into account, in our experiments we only considered synchrotron and
dust emissions, which are the most significant in the Planck frequency range.

3. SECOND-ORDER IDENTIFICATION ALGORITHM

Let us consider the source and noise signals in (1) as realizations of two stationary vector
random processes, whose components are mutually independent. The covariance matrices of
these processes are, respectively,

����� �� � �
���� ��� ��� 
��� � �� � � ��� ���
�
� � (5)

����� �� � ���� 
��� � � � � � ��� � Æ��� ��� ��� � ���� �� (6)

where ��� denotes expectation under the appropriate joint probability, �� is the mean vector of
process �, the superscript � means transposition, ��� �� is the shift at which the covariance
matrix are calculated and Æ is the two-dimensional Dirac distribution. The structure in eq. (6)
assumes that noise is stationary, uncorrelated across detectors (hence the diagonality) and has
no significant auto-correlation (so the covariance matrix is zero for non-zero shifts). We will see
later that the robustness of our method against noise allows it to work well even under non-
stationary noise conditions. As usual, the noise process is assumed signal-independent, white
and zero-mean, with known variances. Note that since mutual independence among the sources
is not assumed, �� is not necessarily a diagonal matrix.

By exploiting equation (1), the covariance of the observed data at any shift can be written as:

�
��� �� � ������ ���
� ������ ��� (7)

Let us now define the matrix

���� �� � ������ ���
� � �
��� �������� ��� (8)

As already proved (Belouchrani et al. 1997, Barros and Cichocki 2001), covariance matrices,
i.e. second-order statistics, permit blind separation to be achieved when the sources show a
spatial structure, namely, when they are spatially correlated. In these cases, the independence
requirement of the ICA approach (Comon 1994) is replaced by an equivalent requirement on the
spatial structure of the signal. In other words, finding matrices � and �� is generally not possible
from equation (8) at zero shift alone; higher-order statistics or the covariance matrices at several
shifts ��� �� must be taken into account (Belouchrani et al. 1997).

As assumed in the previous section, in this application we are able to reduce the number of
unknowns by parameterizing the mixing matrix. For example, let � only depend on � � �
parameters ��� � � �� � � � � � � �, and �� on its � �� elements. By introducing a large enough
number � of different shifts ��� � ���, � � �� ������ � we will increase the number of nonlinear
equations that can be used to solve the problem.

Actually, we do not possess matrix � as defined by (7) and (8), but we are able to get an estimate
of it from the known matrix �� and the following estimate of �
��� ��:

�
��� �� �
�

��

�
���


���� �� � �
� 
��� � �� � � ��� �
�
� � (9)

where the summation is extended over all the �� available data samples, and �� is the mean
vector of the data sequence. Let

�� � �
 ��� (10)
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be our estimate of matrix � (the indexes ��� �� have been dropped for simplicity). Matrices � and
����� �� can be estimated from

���� � � � � ����������� ���� � � � ������� ���� �

��� ���

�
��
�

�������� � � � � ����������� ����
����� � � � � ������ ����� � ���

���
�
� (11)

where the minimization is performed over all the possible values of the mixing matrix parameters
��� � � � � ���� and all the possible elements of the � covariance matrices ����� � ���. An
appropriate matrix norm should be selected. Our present strategy to find the minimizer is to
alternate a componentwise minimization in �� with fixed ��, and the evaluation of ��, whose
elements can be calculated exactly once � is fixed. A more accurate minimization strategy is now
being studied.

Once obtained the elements of � there are different techniques that can be used to recover
the sources (actually attaining separation), their probability densities and any other interesting
quantities such as the power spectrum of the CMB, etc. The estimated covariance matrices ��

at different shifts could be used as well to improve the separation. We will explore this interesting
possibility in a future work. For the moment, here we will only focus in the learning step of the
source separation.

4. EXPERIMENTAL RESULTS

We tested our technique against a simulated data set that is a simplified version of the one
expected from the Planck surveyor satellite (Mandolesi et al., 1998, Puget et al., 1998, see also
the Planck homepage1). The simulations have been made available as a database to the Planck
community by the Planck Technical Working Group 2.1. (diffuse component separation). For the
sake of simplicity we will consider only three different sources (� � �): the CMB anisotropy, the
galactic synchrotron and thermal dust emissions over the four measurement channels (� � �)
centered at 30 GHz, 44 GHz, 70 GHz and 100 GHz. The test data maps have been generated
by extracting several sky patches at different galactic coordinates from the simulated database,
scaling them exactly according to formulas (2)-(4) and generating the mixtures for the channels
chosen. We added realizations of noise; to make the simulations more realistic we used a noise
pattern such as the like expected for Planck, that is, signal independent noise that is pointwise
Gaussian, but whose rms is not stationary across the image. Several noise levels were tested,
from the expected Planck levels up to ten times more noise. Figure 1 shows the 100 GHz
templates of the three astronomical sources and the noise rms pattern for one of the sky patches
we considered. In this section, we report a specific example and describe the results of extensive
trials on different sky patches.

For this example we choose a patch located on a strongly contaminated area of the Galactic
plane (see figure 1). The instrumental noise levels were comparable to the ones expected for
Planck (roughly speaking, this corresponds to a rms of the noise that is � ��� of the rms of
the CMB at 100 GHz, see the Planck web site for more detailed specifications). The true mixing
matrix, ��, was derived from equations (2)-(4), with spectral indexes �� � ��� and � � ��� (see
for example Banday and Wolfendale, 1991, and Giardino et al. 2002):

�� �

�
���

� � �
����� ����� �����
����� ������ ����

���� �����
 ����


�
		
 � (12)

We tested our semi-blind method using a � � � grid of shifts, with each step in � and �
corresponding to a distance of 5 pixels. This number of shifts is large enough to allow us to
solve the problem and obtain an estimation of the spectral indexes, ��� � ����� and �� � �� ��.

1http://astro.estec.esa.nl/SA-general/Projects/Planck/
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FIGURE 1: Data maps corresponding to one of the realizations studied in this work, at 100 GHz. The
components are CMB (top left panel), synchrotron (top right) and dust emission (bottom left). The bottom
right panel shows the non-stationary rms map from which the noise realizations were generated.

This leads to an estimation of the mixing matrix:

�� �

�
���

� � �
������ ������ ������
������ ������ ����
�
���� � ��� �� ����
�

�
		
 � (13)

We obtain as well the covariance matrices of the sources at the �� � considered shifts. Figure 2
shows the agreement between the true value of the elements of the covariance matrices (blue
lines) and the estimated values (red lines). The agreement both in � and �� is very good
even considering that the area is located in the Galactic plane, the correlation between dust and
synchrotron is very strong and the noise is not uniform across the image.

To show the robustness of the method against noise, we performed a second set of simulations
introducing ten times more noise. In that case, the spectral indexes ��� � ����
, �� � �� � and
the mixing matrix

�� �

�
���

� � �
������ �����
 ������
������ ����
�� ������
���� � ������� ������

�
		
 (14)

are still very well estimated. The estimation of the covariance matrices is comparable to the
previous case as well.

We repeated this analysis for several patches and different noise levels. In all the patches taken
into account the average parameters estimated are the same as the ones reported above. It is
to remark that model learning performs better in patches taken at low galactic latitudes. At high
galactic latitudes the only dominant signal is the CMB, and the foregrounds are often well below
the noise signal, which makes it difficult for the method to learn the parameters of the foregrounds.
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FIGURE 2: True (blue) and estimated (red) value of the elements of the covariance matrices in our test
example. Each panel represents an element of the covariance matrix; panels are arranged in the same way
as the matrix elements: panels in the diagonal represent autocorrelations (top-left panel stands for CMB,
central panel for synchrotron, bottom-right panel for dust), off-diagonal panels show crosscorrelations among
different components. Note that off-diagonal terms corresponding to the crosscorrelation between CMB and
the Galactic foregrounds show very low values, whereas there is a significant correlation between dust and
synchrotron. Inside each panel, the �� � points corresponding to the different shifts have been arranged in
one dimension to facilitate visualization.

5. REMARKS

Obviously, the semi-blind identification technique described here cannot be seen as a general
approach to separation. However, it relies on a parametric knowledge of the emission spectra,
a fairly common assumption in astrophysical data analysis. Our approach permits a very fast
and robust model identification, thus enabling an accurate source estimation procedure to be
implemented. We also envisage a method to estimate the source covariation matrices at different
shifts, which, in their turn, can help the separation task.

Source separation by our method has been particularly interesting with data from low galactic
latitudes, where the foreground level is often higher than the CMB signal. Moreover, at these
latitudes the statistical dependence between the different Galactic foregrounds is very strong.
Note that many separation strategies, both blind and non-blind, have failed their goal in this
region of the celestial sphere. As an example, WMAP data analysis (see Bennett et al., 2003)
was often performed by using pixel intensity masks that exclude the brightest sky portion from
being considered.

This is the first method for semi-blind separation of correlated sources ever proposed for
astrophysical purposes. Recently, some methods for a complete blind separation of correlated
sources have been proposed in the literature (Barros, 2000). Their effectiveness in astrophysical
map separation has not been proved yet. Moreover, they have a high computational complexity.

A problem that is still open with the expected Planck data is the different resolution of the data
maps in some of the measurement channels. The identification part of our method can work
with maps whose resolution has been degraded in order to be the same in all the channels.
The result should be an estimate of the mixing matrix, which can be used in any non-blind
separation approach with channel-dependent resolution, such as maximum entropy. However,
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the possible asymmetry of the telescope beam patterns should be taken into account in verifying
this possibility.
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G., Górski K. M. and Salerno E., 2002, MNRAS, 334, 53
[21] Mandolesi N. et al., 1998, proposal submitted to ESA for the Planck Low Frequency

Instrument
[22] Puget J. L. et al., 1998, proposal submitted to ESA for the Planck High Frequency Instrument
[23] Salerno E., Baccigalupi C., Bedini L., Burigana C., Farusi A., Maino D., Maris M., Perrotta F.

and Tonazzini A., 2000, IEI-CNR, Pisa, Italy, Technical Report B4-04
[24] Tenorio L., Jaffe A. H., Hanany S. and Lineweaver C. H., 1999, MNRAS, 310, 823

2http://www.eso.org/science/healpix

Astronomical Data Analysis III 8



Separation of Dependent Sources

[25] Tong L., Liu R., Soon V. C. and Huang Y.-F., 1991, IEEE Trans. on CAS, 38, 499
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