
UNIFIED MODELING OF CONTROL
SOFTWARE AND PHYSICAL PLANTS

C. Secchi ∗ C. Fantuzzi ∗ M. Bonfé ∗∗

∗ DISMI, University of Modena and Reggio Emilia,
Viale Allegri 13, 42100 Reggio Emilia, Italy

e-mail: {secchi.cristian, fantuzzi.cesare}@unimore.it
∗∗ University of Ferrara,

Via Saragat 1, 44100 Ferrara, Italy
e-mail: mbonfe@ing.unife.it

Abstract: The aim of this paper is to provide a unified language for modeling both
control software and physical plants in real time control systems. This is done
by embedding the bond graph modeling language for physical systems into the
UML-RT framework, widely used to model distributed real-time software.

Keywords: Bond graphs, software engineering, formal languages

1. INTRODUCTION

Complex real time systems are made up of two
fundamental parts whose collaboration allows to
achieve a desired behavior for the overall system:
the real-time control software and the physical
plant. In order to master the complexity of soft-
ware applications, it has been proven necessary
first to build a model of the program and then
to exploit it to write the software. Object ori-
ented philosophy is by far the most successful
strategy for modeling software applications and
several development methodologies have been pro-
posed within this framework. Recently an effort
has been made to standardize the notation and
this has led to the Unified Modeling Language
(UML), (Rumbaugh et al., 1999) and some pow-
erful development methodologies have been pro-
posed using UML as, for example, the ROPES
strategy (Douglass, 2000). In order to special-
ize the UML for the development of real-time
applications a specific UML Profile (namely a
“standardized” language extension, typically cre-
ated for a particular domain) has been defined:
the real time profile (UML-RT), (Selic and Rum-
baugh, 1998). Within this profile it is possible to

easily model real-time complex, event-driven and
possibly distributed software architectures as a
set of capsules that exchange infomation following
a certain protocol. In complex control systems
the physical characteristics of the plant have a
fundamental impact on the software itself (Selic
and Motus, 2003) and, therefore, it is necessary to
model the physical plant in order to successfully
implement a control system. The language mainly
used to describe physical systems, namely that of
differential equations, is very different from that
mainly used to model the software and, therefore,
it is not possible to describe the overall control
system within the same framework. On the other
hand, since the control software and the phys-
ical plant form a whole, it would be beneficial
to model them together in a complete model.
Consider, for example, the problem of building a
fault detection and isolation unit for a complex
distributed control system. If a unified modeling
language is used, it is possible to build a strategy
that allows to detect both hardware and software
faults with no need of considering two different
modeling frameworks and their interdependence,
simplifying thus the design procedure. Further-



more a unified modeling language would provide
a sort of lingua franca for the communication
between control and software engineers. A very
insightful modeling strategy for physical systems
are bond graphs (Paynter, 1960), which describe
a system as a set of elements exchanging energy.
Recently this graphical language has been formal-
ized by introducing the concept of Dirac structure
(van der Schaft, 2000). The aim of this paper is to
exploit bond graphs and their mathematical for-
malization in order to provide a unified language
for modeling both physical plant and control soft-
ware. We illustrate how it is possible to describe a
physical system as a UML-RT model, namely as a
set of elements that exchange information along a
connector over which a communication protocol
is implemented. In this way, UML-RT can be
used as a modeling language for both software
and hardware of a complex, possibly distributed,
control system. The paper is organized as follows:
in Sec. 2 we provide some background on the
UML-RT profile and bond graphs. In Sec. 3 we
show how it is possible to map the bond graphs
formalism into the UML-RT profile. In Sec. 4 we
provide the UML notation for the description of
a physical system and in Sec. 5 we provide an
example to validate the results obtained in the
paper. Finally, in Sec. 6 we draw some conclusions
and address some future work.

2. BACKGROUND

The UML-RT profile. UML-RT extends stan-
dard UML (using the standard extension mech-
anism provided in UML) by adding five new
stereotypes through which real-time architectures
are modeled: capsule, port, connector, protocol,
protocol role. In the following we give a brief
description these elements focusing on modeling
aspects rather than on their software aspects, for
a more complete introduction see (Selic and Rum-
baugh, 1998). Capsules are the central modeling
constructs in UML-RT. They represent the major
architectural elements of complex real-time sys-
tems and their collaboration allows to model the
whole software architecture. A capsule can have
one or more ports through which it can commu-
nicate with the other capsules and it may con-
tain one or more sub-capsules which collaborate
together; the behavior of a (sub-)capsule can be
described by a state machine. Ports are boundary
objects that are “owned” by a capsule and that
provide the only way through which it can interact
with the rest of the world. A connector is the phys-
ical medium over which communication between
capsules takes place. A protocol is a specification
of a closed group of participantsand of the rules
that define the communication that can take place
over the connector that joins the participants. A

protocol role specify a specific part that a par-
ticipant has to play during the communication.
Formally a protocol P is defined by a 4-tuple
P = (E ,R,B,Q) (Selic, 1999): E is the event al-
phabet, namely the set of all the event types that
can be passed between the participants in a pro-
tocol, R are the protocol roles, namely the roles
that the participants to the protocol can play,
B represents the protocol reference behavior and
identifies the set of legal behaviors that constitute
a protocol, Q represents the expected quality of
service of the protocol. In the UML-RT frame-
work, a complex real-time software application
can be modeled as a set of capsules each of which
is endowed with ports. The capsules are joined,
through their ports, by means of some physical
connector over which a communication protocol
is implemented. Each port plays a protocol role
and the collaboration between the capsules allows
to achieve a desired goal.

Bond-graphs. In every physical domain, there
is a pair of variables, defined on a pair of dual
vector spaces Fp0 and Ep0, whose dual product is
power. These variables are generally called flow
and effort and, for example, in the mechanical
domain they are velocity and force and in the
electrical domain they are current and voltage.
A power port (van der Schaft, 2000) is defined
by a pair (e, f) ∈ Ep0 × Fp0 and represents
the means through which a physical system can
exchange energy with the rest of the world. The
bond graphs (Paynter, 1960) allow to represent
any lumped parameters physical system as a set of
basic elements (that can be either energy storing
or energy dissipating or source of energy) which
are endowed with power ports through which they
can exchange energy. The exchange of energy
takes place through bonds that are interconnected
by means of junctions whose behavior behavior is
governed by Kirchhoff like laws and that form the
network structure along which the basic elements
exchange energy. Each (and only) element that
can store energy has states associated to it; each
state models the storage of energy flowing through
a power port. Even if bond graph are in general
acausal (Paynter, 1960), it is possible to assign a
causality to each element and thus to fix an input
and an output for each power ports. Very often,
energy storing elements have an integral causality
associated and their behavior is represented by


ẋi = ui

yi =
∂H

∂xi

i = 1, . . . , k (1)

where k is the number of power ports associated
to the element and H is a function of the state
that represent the energy stored in the element
in a given configuration and u and y are dual
power variables representing the ith power port.
Dissipative elements impose an algebraic relation



between the input and the output variable such
that uT y ≥ 0, namely such that power is absorbed
by the element. Encapsulation is possible within
the bond-graphs framework: any physical system
can be decomposed into a power preserving inter-
connection of physical subsystems that exchange
energy and that can be further decomposed in
physical subsystems that exchange energy on their
own. Recently, the power preserving interconnec-
tion structure has been mathematically formal-
ized by introducing the concept of Dirac structure
(van der Schaft, 2000). A very effective way to
represent the physical interconnection behavior
is the so called kernel representation. Suppose
that there are m power ports exchanging energy
through the interconnection structure and build
the following vector:

f =




f1

...
fm


 ∈ Fp e =




e1

...
em


 ∈ Ep (2)

where ei and fi are the flow and the effort as-
sociated to the ith power port. The behavior of
any power preserving interconnection can be rep-
resented by the following relation:

E(x)e + F (x)f = 0 (3)

where x is the state of the physical system and
E(x) and F (x) are properly dimensioned matrices
that satisfy the kernel representation conditions
(van der Schaft, 2000).

3. A UML-RT MODEL OF PHYSICAL
SYSTEMS

In this section we show how it is possible to inter-
pret a physical system as a UML-RT model. To
this aim we first give a system theoretic descrip-
tion of a UML-RT model. Consider a system made
up of p capsules and m ports; a UML-RT system
and its dynamic evolution can be described by the
5-tuple (A,P, C, α, ψP). The set

A = A1 × · · · × Ap a = (a1, . . . , ap) (4)

is the set of the attributes that characterize the
overall system. Each set Ai is the set of the
attributes of the capsule i. Since it is possible
that some capsules have no attributes at all,
some of the sets Ai can be empty sets. Each
set Ai, and consequently A, in general has no
structure and it can be composed of several and
etherogeneous elements such as lists, integers,
data structures, etc. P is the protocol which is
defined by the 4-tuple (E ,R,B,Q) as detailed in
Sec. 2. In particular the event set is given by:

E =
m⋃

i=0

Ei (5)

where Ei represents the event alphabet that the ith

port can exchange in the protocol. It is possible
to define the following set:

E = E1 × · · · × Em ε = (ε1, . . . , εm) (6)

whose elements describe the ports configuration.
Obviously it can happen that some or all of εi

are empty, meaning that no message is crossing
the corresponding port. C is the connector, the
medium over which the capsules exchange infor-
mation. The map α : A × E → A is the attribute
transition map and it describes how the attributes
of the capsules change in correspondence of a
certain received message or of a spontaneous evo-
lution due to some value of the attributes or to
a transition of the state machine that can be
associated either to a capsule or to the global
system. The map ψP : A × E → E is the port
transition map and it describes the dynamics of
the messages crossing the ports. This dynamics
depend both on the attributes of the system and
on the signals crossing the ports and, implicitly,
on the protocol through which all the capsules
exchange messages. In general when a specific
event takes place both the port and the attributes
configurations can change. Time does not play any
role in the general description of the system since
the UML-RT modeling can be used to describe
both event based and time based systems. Now
we can show how any physical system fits into
this modeling framework.
Since a physical system is made up by a set
of basic physical subsystems that exchange en-
ergy, the major architectural elements are phys-
ical subsystem which therefore can be modeled
as capsules in UML-RT framework. Let p be the
number of capsules describing a physical system.
The attributes of each capsule are represented by
a physical states. Thus:

A = X1 × · · · × Xn = X x = (x1, . . . , xn) (7)

Usually, the set of attributes can be modeled as
a differentiable manifold. The number of physical
states is, in general, different from the number of
capsules since each capsules can be characterized
by several states or by zero states (e.g. purely
dissipative capsules). The information that phys-
ical subsystems exchange in order to achieve a
given behavior is energy. The exchange of energy
happens through a power port and, therefore, it
is associated to a pair of effort and flow variables.
Thus one port is not sufficient to model the ex-
change of information that a physical subsystem
has with the rest of the world, but a power port
is needed. Within the UML-RT framework, each
power port can be simply modeled by two ports,
one relative to the flow and the other relative
to the effort. Moreover, each capsule can have
ports that are used to transmit signal not di-
rectly related to the exchange of energy, such as,



for example, the state. Nevertheless these ports
can play a role in the exchange of information
among capsules. Each capsule can be further de-
composed in subcapsules that exchange energy. In
this case the energetic information exchanged by
the capsule through its ports can be relayed to
the ports of the subcapsules providing thus an
opening in the encapsulation shell. When model-
ing physical systems, it is possible to distinguish
between the means through which each capsule
is interconnected to the others and the way in
which the various subsystems are joined, namely
the topology of the interconnection. The medium
through which capsules are interconnected can be
modeled as a connector C in the UML-RT frame-
work and it is made up, for example, by electrical
wires, pipes, mechanical joints. The topology of
the interconnection, on the other hand, represents
the energetic paths, namely the way in which the
capsules exchange information. Thus, the phys-
ical structure of the interconnection is the con-
nector while the topology of the interconnection
is the protocol P, implemented over the connec-
tor, through which the capsules exchange energy.
Since physical systems behavior is continuous ,
the event set E has infinite cardinality and, there-
fore, in order to remark this difference, we call it
event space. As efforts and flows are exchanged
through the interconnection, the event space con-
tains Fp∪Ep. Energy is exchanged through power
ports and, therefore, the pair of ports representing
a power port participates to the protocol. Once
causality has been fixed, each port can play a
specific role: it can provide a flow, it can provide
an effort, it can receive a flow or it can receive
an effort; we call these roles energy roles. If a
port is a flow (effort) receiver its companion port
must be an effort (flow) supplier (this is a con-
sequence of the first principle of thermodynam-
ics, (Paynter, 1960)). In general the way energy
is exchanged depends on the states characteriz-
ing the interconnected capsules. This dependence
does NOT represent energy injection/dissipation
but rather a modulation in the transfer of energy
along the interconnection structure. Thus ports
that carry signals that are used to modulate the
interconnection structure play a further role in
the protocol, namely a modulating role. Thus each
capsule can participate to the protocol both by ex-
changing directly energy through ports that play
energy roles and by modulating the energy trans-
fer through ports that play a modulating role.
Therefore, the state manifold X of the physical
system is part of the event alphabet; summarizing
the event space is given by E = Fp ∪Ep ∪X . Since
the dynamic of a physical system is continuous,
the protocol behavior B is continuous. While in
software applications the behavior of the commu-
nication protocol can be arbitrarily imposed, all
protocols used for modeling the interconnection

of physical subsystems share the same character-
istic: they are energy preserving, meaning that
along the interconnection energy is neither stored
nor dissipated nor produced but simply trans-
ferred. The behavior of physical protocols can be
represented through the mathematical object of
Dirac structure and through, for example, a pair
of state dependent matrices E(x) and F (x) as
reported in Eq.(3). Since E(x) and F (x) satisfy
the kernel representation conditions, it is always
possible to calculate the signals (either efforts or
flows) that are to be sent to the receiving ports
(either effort or flow receiving) using the signals
incoming from the supplying ports (either effort or
flow supplying). When modeling physical protocol
there is not any quality of service assessment since
the protocol is just a model of how energy is
exchanged and not an implementation of a certain
messaging strategy. Let m ≥ n be the number of
power ports of the overall system. Once causality
has been assigned, it is possible to distinguish
an input signal ui and an output signal yi per
each power port. Thus, it is possible to define the
attribute transition map as a continuous function:

α : Fp × Ep ×X → X (f(t), e(t), x(0)) → x(t)
(8)

The function α defines the continuous internal
behavior of each interconnected capsule. In par-
ticular, assuming integral causality, for each state
we have that:

xi(t) = α(f, e, x(0)) = xi(0) +
∫ t

0

ui(τ)dτ (9)

where ui can be either fi or ei depending on the
port causality. The port transition map is given
by:

ψP : Fp × Ep ×X → Fp × Ep ×X (10)

Thus, each signal crossing the port at time t can
be calculated through the state information and
the port configuration at time t. In particular, per
each power port associated to an energy storing
element we have that:

yi(t) =
∂H

∂xi

∣∣
x(t)

i = 1, . . . , n (11)

where yi can be either ei or fi depending on the
port causality. H(x) is the function that expresses
the energy stored into the system. In case of power
ports associated to energy dissipation, we have
that:

yi(t) = gi(ui(t)) i = n + 1, . . . , m (12)

where gi is the algebraic function characterizing
the port. In case of signal ports, those that play
the modulating role in the communication proto-
col, we have that:

mi(t) = xi(t) i = 1, . . . , n (13)

Once the signals crossing the ports associated to
the output of power ports and those that cross



<<capsule>>
CapsuleClassA

<<port>>
portClassER

<<port>>
portClassFR

<<port>>
portClassFS

<<port>>
portClassES

<<port>>
portClassM

<<protocol>>
PhysicalProtocolA

<<protocolRole>>
ER

<<protocolRole>>
FR

<<protocolRole>>
FS

<<protocolRole>>
ES

<<protocolRole>>
M

*

*

*

*

(same multiplicity)

(same multiplicity)

(same multiplicity)

(same multiplicity)

*
*

*

*

*

*

Fig. 1. UML-RT representation of a physical sub-
system

the modulating ports, it is possible to calculate,
through the protocol behavior equation, the in-
puts of the power ports, thus completing the ports
configuration at time t. Thus we have proven the
following:

Proposition. Any lumped parameters physical sys-
tem can be represented as a UML-RT model

4. A UML DESCRIPTION

The aim of this section is to formalize, using UML,
a physical system in order to provide an unified
formalism to model both software and hardware
(i.e. physical systems) of a control system. In
UML-RT capsules are modeled by the class stereo-
type <<capsule>>. Ports are represented by the
<<port>> stereotype of class and each capsule is
in a composition relationship with its ports. A
connector is modeled by an association between
the classes that are interconnected. A protocol
is modeled by the <<protocol>> stereotype of
Collaboration and is in a composition relationship
to each of its protocol roles that are represented
by the <<protocolRole>> stereotype of Classi-
fierRole. In Fig. 1 is represented a capsule that
models a generic physical subsystem. Each capsule
can have several ports through which it can inter-
act with the other capsules. Physical capsules can
interact with the other physical capsules by means
of the physical protocol, which is a collaboration
indicated by the stereotype <<protocol>>. Each
physical protocol has five kind of roles: effort sup-
plier (ES), effort receiver (ER), flow supplier(FS),
flow receiver (FR) and modulating (M). The mul-
tiplicity of the composition relationship of the
protocol with each of its roles can be greater than
one. The fact that for each port playing an effort
(flow) supplier role there must be a port playing
an effort (flow) receiver role is captured by the
UML constraint {same multiplicity} applied
both to the multiplicity of the composition rela-
tionship between the capsule and its ports and
between the protocol and its roles. There are no
constraints, instead, on the number of ports that
play the modulating role. While in their standard

use in UML-RT capsules represent event-driven
entities, when modeling physical systems, capsules
represent continuously time driven entities. As
reported in (Selic and Motus, 2003), the general
UML standard does not impose any restrictions
on the modeling of time and it neither assumes
that time is continuous or discrete nor that there is
a single source of time in a system. This semantic
flexibility allows several models of time that can
be used to model both discretely an continuously
time-driven systems. “Physical” time can then be
modeled as a UML class and each continuously
evolving system is in an association relationship
with the physical time class. The attributes of
each physical capsule evolve continuously in time
and, therefore, a capsule is characterized by a
continuous behavior. Since the UML is expressly
a discrete modeling language, it does not provide
any direct means to represent continuous behav-
iors. Nevertheless it is possible to use the exten-
sion mechanism of UML and to model the continu-
ous behavior attaching the <<invariant>> stereo-
type to a class. In fact, the equations modeling the
behavior of a capsule can be represented through
invariants relations between input, output and
states.

5. EXAMPLE: DC MOTOR

Consider a DC motor that can be controlled either
in position or in velocity, depending on the op-
erator’s choice. The physical plant interacts with
the control software through velocity and position
sensors and can be actuated by setting armature
and field voltagess. The operator set the kind of
control to be performed through a simple graphic
interface composed by one label, through which
he/she can set either the position or the velocity
setpoint and a radio button through which he/she
can decide whether controlling the motor in po-
sition or in velocity. The structure of the overall
system is reported in Fig. 2 where, in order to
represent more concisely a capsule together with
its ports, the ports of each capsule are listed in
a specific port compartment. The name of the
port is reported first, followed by the name of
the protocol it participates to and finally by the
protocol role it plays; furthermore, the attributes
of each capsule are not listed in the diagram..
This particular notation is allowed in UML-RT
profile (Selic and Rumbaugh, 1998). The system
is composed by three main capsules: the graphic
user interface (GUI), the controller and the DC
motor. The GUI communicates with the human
operator and with the controller by the protocols
HG and GC respectively. Both HG and GC
are master slave protocols: The human operator
(master of HG) sets the reference and the kind
of control into the graphic interface (slave of HG



<<capsule>>
GUI

ports

p1[2]:HG::slave
p2[2]:GC::master

<<capsule>>
DCMotor

ports

p1:CM::slave
p2:MC::master

<<capsule>>
Controller

ports

p1[2]:GC::slave
p2[2]:CM::master
p3[2]:MC::slave

<<capsule>>
Label

ports

p1:HG::slave
p2:GC::master

<<capsule>>
RadioButton

ports

p1:HG::Slave
p2:GC::Master

1 1

<<capsule>>
Acquisition

ports

p1:MC::slave
p2:CC::master

<<capsule>>
Control

ports

p1:CC::slave
p2:CM::master

1 1

<<capsule>>
Field

ports

p1:CM::slave
x:Phys1::M
ep1:Phys2::ES
ep2:Phys2::FR

<<capsule>>
Armature

ports

p1:CM::slave
ap1:Phys1::FS
ap2:Phys1::ER

<<capsule>>
Mechanical

ports

p1:MC::master
mp1:Phys1::FS
mp2:Phys1::ER

1 1 2 1
1 11

1 11

<<capsule>>
Kinstoring

ports

p1:Phys2::FS
p2:Phys2::ER

<<capsule>>
Dissipating

ports

p1:Phys2::ES
p2:Phys2::FR

<<invariant>>

p1-R*p2=0

<<invariant>>

x-∫p2dt=0
p1-x/L=0

Fig. 2. The class diagram of the overall control
system

and master of GC) which, on its turn, set the
setpoint and the kind of control to the controller
capsule (slave in GC). The controller communi-
cates also with the DC motor through two other
master slave protocol named CM and MC. The
motor communicates the position and velocity
information through the MC protocol while the
controller set the control through the CM proto-
col. The GUI has two sub-capsules whose task is to
implement the input label and the radio button.
The controller has three sub-capsules: two sub-
capsules are responsible of conditioning the signal
received from the sensors and one sub-capsule has
to use these data to calculate the control input
to give to the DC motor. Thus the sub-capsules
have to communicate and they do it through the
master/slave protocol CC, where the ports of the
Acquisition sub-capsules play the master role and
those of the Control sub-capsule play the slave
role. The DC motor capsule can be decomposed
into three sub-capsules: the field sub-capsule, the
armature sub-capsule and the mechanical sub-
capsule that represent the armature circuit, the
field circuit and the mechanical part of the motor
respectively. Both the armature and the field sub-
capsule are endowed with a port that receives the
input voltage from the controller capsule. Further-
more the three sub-capsules communicate, namely
exchange energy, through the protocol Phys1.
The armature and the mechanical sub-capsules
have a pair of ports that implement a power port
and each of these port play a specific energy role
while the field sub-capsule is endowed with a port
that plays a modulating role within the physical
protocol. The multiple association is represented
by means of the standard UML diamond notation.
The protocol behavior is represented by:(

1 0
0 1

)
︸ ︷︷ ︸

E(x)

(
mp2
ap2

)
+

(
0 −kx
kx 0

)
︸ ︷︷ ︸

F (x)

(
mp1
ap1

)
= 0 (14)

where k is the electro-mechanical constant of the
DC motor. Furthermore, each sub-capsule can be
further decomposed in the interconnection of basic
sub-capsules. For example, the field capsule can
be decomposed in two sub-capsules: Kinstoring,
an element storing kinetic energy, and Dissipat-
ing, an element dissipating energy. These elements
communicate through the protocol Phys2. The
behavior of the sub-capsules Kinstoring and Dis-
sipating is reported exploiting the <<invariant>>
stereotype available in UML, where L and R are
the inductance and the resistance of field circuit
respectively. In order to keep the diagram simple,
the association between the DC motor and the
Physical time class has been omitted.

6. CONCLUSIONS AND FUTURE WORK

In this paper it has been shown how it is possible
to model a complex control system as a set of,
possibly compound, objects that achieve a certain
behavior by exchanging information. These ob-
jects can be either software object that exchange
information through a connector that implements
an event based communication protocol or phys-
ical objects that exchange information, namely
energy, through a physical connector which im-
plements a certain continuous physical protocol,
that can be modeled through a Dirac structure.
UML-RT profile has been used to provide a unify-
ing language for modeling both physical systems
and software architecture. Future work aims to
exploit the proposed unified language to build a
unified FDI strategy to detect both software and
hardware faults in distributed control systems

REFERENCES

Douglass, B.P. (2000). Real-time UML - devel-
oping efficient objects for embedded systems.
second ed.. Addison-Wesley.

Paynter, H.M. (1960). Analysis and Design of
Engineering Systems. M.I.T. Press.

Rumbaugh, J., I. Jacobson and G. Booch (1999).
The Unified Modeling Language Reference
Manual. Addison-Wesley.

Selic, B. (1999). Protocols and ports: reusable
inter-object behavior patterns. In: Proceed-
ings of the ISORC. Saint-Malo, France.

Selic, B. and J. Rumbaugh (1998). Using UML for
modeling complex real-time systems. Objec-
Time Limited white paper.

Selic, B. and L. Motus (2003). Using models
in real-time software design. IEEE Control
Systems Magazine 23(3), 31–42.

van der Schaft, A.J. (2000). L2-Gain and Passiv-
ity Techniques in Nonlinear Control. Commu-
nication and Control Engineering. Springer
Verlag.


