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Abstract. This paper introduces a framework for the matching of 3D
shapes represented by topological graphs. The method proposes as com-
parison algorithm an error tolerant graph isomorphism that includes a
structured process for identifying matched areas on the input objects.
Finally, we provide a series of experiments showing its capability to au-
tomatically compare complex objects starting from different skeletal rep-
resentations used in Shape Modeling.

1 Introduction

Work on shape representation and comparison is based on a trade-off between
conciseness and expressiveness of the chosen scheme. Shape representations have
to keep in a compact and effective way the object topology and geometry; for
instance, shocks graphs [7], component/max trees [9,19] in 2D imagining, and
topological graphs of 3D meshes [2] and volumes [10] are popular tools for the
abstraction of complex information. As shape descriptor we consider a topologi-
cal representation that codes the relations among the surface features in a graph
and serves as input for the matching algorithm. The matching method proposed
in the paper is based on an error tolerant graph isomorphism which identifies a
greedy approximation of the maximal common subgraph shared by the two input
graphs and that gives information about the analogies and differences among the
features of the compared objects. The paper is organized as follows: the graph
matching algorithm for attributed directed acyclic graphs is introduced in sec-
tion 2, where a possible similarity measure is also proposed. The definition of a
particular class of topological graphs, i.e. the Reeb graphs, is outlined in section
3, while a series of experiments for comparing complex objects and conclusions
are given in section 4.

2 Matching of Topological Structures

The problem of comparing topological structures has been approached in several
ways. In [6], multi-resolution Reeb graphs are extracted and compared in order

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 194–203, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



3D Shape Matching through Topological Structures 195

to estimate the similarity between 3D models; the graph matching algorithm is
based on a coarse to fine strategy that preserves the consistency of the graph
structure. In [21] the shock graph is used as signature of the shape of 2D objects.
In order to perform the graph matching the shock graphs are transformed in
rooted tree and then compared. Analogously, in [10] a skeletal graph is computed
from a volumetric object and the corresponding graphs are compared using the
methodology presented in [21].

In this paper we propose an algorithm to compare objects described by topo-
logical structures, where the input shape is represented by an attributed, directed
and acyclic graph as formalized in definition 1.

Definition 1. A M-graph G is given by a quadruple G = (V,E, µV , µE), where
V is a set of nodes, E ⊆ V × V is the set of the graph edges, µV : V → AV

and µE : E → AE are the node and the edge attribute functions, with AV ,
AE sets of node and edge attributes of G. The set of M-graphs is denoted by
MGset. A subgraph S of G is a quadruple (VS , ES , µVS

, µES
), where VS ⊆ V ,

ES ⊆ E ∩ (VS × VS), µVS
and µES

are induced by µV and µE, respectively.

Since the graph is directed, each node v ∈ V identifies a subgraph S of G,
where VS contains the v itself and all the nodes for which v is an ancestor. This
property is used during the graph comparison process in order to match not only
nodes, but subgraphs too.

The isomorphism notion defines an equivalence relationship among M-graphs,
[15]. Since the demand for two graphs to be isomorphic is a strong condition,
generally unsuitable for similarity tasks, we relax this hypothesis and propose
a weaker notion of isomorphism. Starting from the properties of weak isomor-
phism presented in [15], the definition of an error tolerant graph isomorphism
is introduced as a set of graph editing operations that makes the two M-graphs
isomorphic.

Definition 2. Let G and G′ be two M-graphs and ∆ = (δ1, . . . , δn) a sequence
of graph editing operations (where a graph edit operation, δi, is an addition, a
deletion or an attribute modification of nodes and edges), then:

– the edited graph ∆(G) is the graph ∆(G) = δn(δn−1( . . . (δ1(G)) . . .));
– an error tolerant graph isomorphism is a couple ψ = (∆, ψ∆), where
∆ is a sequence of editing operations such that there exists an isomorphism
ψ∆ between ∆(G) and G′.

Given two M-graphs (named input and model graph, respectively), we con-
struct an error tolerant isomorphism originating a subgraph (possibly not con-
nected) in the input graph that is “mapped” onto an isomorphic subgraph (with
respect to the graph edit operations) of the model graph. The error tolerant
isomorphism is seen as a transformation process from the input graph to the
model graph where the track of the editing operations explicits the differences
between the two objects and is used to check the effectiveness of the matching
process.
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2.1 Error Tolerant Graph Isomorphism

The construction of a graph isomorphism is intrinsically a NP-problem and, in
the scientific literature, most of methods compare graphs by exploiting statistic
[12], genetic algorithms [8], fuzzy approaches [13], optimization theory [4] or a
search in the space of states [15].

In this paper a heuristic algorithm has been devised to assess and quantify
an error tolerant graph isomorphism. Let S be the subgraph identified by v ∈ V ,
v is described by the vector sv =< (in(v), out(v), in sum, out sum, n, s sum) >,
where in() (resp. out()) is the indegree (resp. outdegree) of v, in sum (resp.
out sum) the indegree (resp. outdegree) node sum of S, n the cardinality of VS

and s sum the sum of the attributes of ES . The proposed algorithm is a search
in the state spaces defined by the input graph G1 = (V1, E1, µV1 , µE1) and the
model graph G2 = (V2, E2, µV2 , µE2), where a state is the ordered set of node
pairs St = {(vj , vk) | vj ∈ V1, vk ∈ V2, (vj , vk) is candidate to be mapped by ψ∆}.
The state ordering is based on a cost function associated to each pair of nodes and
computed by the real-valued function C(vj , vk), which is the Euclidean distance
between the vectors svj , svk

and works as a node similarity measure. Therefore,
if µVi , µEi are the attribute functions of Gi, i = 1, 2, we require that there exist
two totally ordered sets AV and AE , such that AVi ⊆ AV , and AEi ⊆ AE .

The algorithm maps nodes and edges of G1 and G2 moving from an initial
state St0 to a final state Stf , where Stf = ∅, through a sequence of intermediate
states Sti.
The initial state. The initial state St0 is set using a heuristics based on the
information associated to the nodes. The nodes of Gi, i = 1, 2 are ordered with
respect to µVi and a set of candidate node pairs is chosen as follows. Firstly,
the pairs having similar attribute value are selected. Then, the set of candidate
pairs is refined by considering only those with relevant nodes: since each node
generates a subgraph S, the bigger S is, the more the node is relevant. Finally,
the set of candidates is ordered with respect to the cost function C. In figure 1 an
example is shown on two directed acyclic M-graphs: the initial node candidates,
selected with respect to the node attributes and the node relevance, are marked
with the same symbols (see figure 1(a)). Leaves are not considered because the
associated information is negligible.
Choice of the best candidate node pair. The heuristic used to choose the
best candidate pair (vj , vk) involves both the cost of the node pair C(vj , vk) and
the information carried by the two nodes. The relevance related to a candidate
pair is given by the minimum between the cardinality of the subgraphs induced
by the two nodes. Therefore, the chosen candidate is the node pair of minimum
cost, with respect to C which has a relevance greater or equal to the average
relevance value in the state. This choice generates a priority list for the construc-
tion of the isomorphism node mapping. In figure 1(a), the first best candidate
pair is denoted by a grey square.
From the state Sti to the state Sti+1. The candidate node pair (vj , vk)
having highest priority is removed from Sti and becomes a component of the
node mapping isomorphism ψ∆. New candidate pairs are obtained from vj and
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(a) (b)

Fig. 1. Example of the matching method: initial state and best candidate pair (a) and
final matching (b).

vk: they are all the possible node pairs obtained by combining the child nodes
of vj and vk. Then, the state i+ 1 is the state i enriched by the new candidate
node pairs obtained from vj and vk. According to figure 1(a), when the node pair
(e, 7) is added to ψ∆, the new state is obtained from the previous one adding
the new node pairs (h, 6), (h, 8), (h, 9), (g, 6), (g, 8), (g, 9), (f, 6), (f, 8), (f, 9)
and removing (e, 7).
End of the search. When the set of candidate pairs is empty the final state
is reached. The node mapping that identifies the common subgraph (and conse-
quently the edge mapping) is complete and the set of graph editing operations ∆
(see definition 2) is computed. Results are shown in figure 1(b): node mapping
is highlighted with the same symbols; bold arcs represent the edge matching
induced.

According to the notation proposed in [3], a graph SM is a common subgraph
of G1 and G2 if there exists a subgraph isomorphism between SM and G1, SM

and G2. Moreover, G1 can be transformed into G2 by adding to ∆ a deletion
operation for each edge in E1 not belonging to SM and an addition operation
is inserted into ∆ for each edge in E2 not belonging to SM . Furthermore, mod-
ify operations are added to ∆ for each couple of edges belonging to the edge
mapping, that do not have the same attributes.

2.2 Similarity Measure

To compare two M-graphs G1 and G2, a distance metric d : MGset ×MGset →
[0, 1] that satisfies the properties of uniqueness, non-negativity, identity, sym-
metry and triangular inequality, is necessary, [22]. Then, the similarity measure,
s(G1, G2) between G1 and G2 is defined by s(G1, G2) = 1 − d(G1, G2).

The bigger the common subgraph SM of G1 and G2 defined by the error
tolerant isomorphism is, the bigger the similarity measure s(G1, G2) should be.
A possible choice [3] is dB(G1, G2) = 1 − |maxcs(G1,G2)|

max(|G2|,|G2|) , where maxcs(G1, G2)
is the maximal common subgraph of G1 and G2 and | . . . | is the number of
nodes of a graph. As required by our statements such a distance depends on
the size of the subgraph; however, it does not take into account the attribute
value of edges and nodes. This implies that each node of the subgraph has
the same weight, despite its relevance in the graph. Our aim is to compute
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the distance on the edges of SM (where an arc e belongs to SM iff the nodes
it connects do) and to adapt dB to our purposes, correcting the contribution
of each edge in SM by considering the difference between the attributes of the
corresponding edge of G1 and G2. More formally, our distance measure is defined

as: d(G1, G2) = 1 −
∑

e∈SM
(1− |µE(a)−µE(b)|

α )
max(|G1|,|G2|) , where α represents the maximal

attribute value on the edges of the graphs in the database and e = ψ∆(a) =
ψ∆(b), a ∈ E1, b ∈ E2. Clearly, if the edges of G1 mapped in SM have the same
attribute value of those ones in G2, our metric corresponds to dB . Furthermore
the non-negativity, uniqueness, identify and symmetry properties immediately
follow from the definition; if SM is the maximal common subgraph, also the
triangular inequality can be demonstrated, through a procedure similar to that
proposed in [3], and d is a distance.

2.3 Computational Complexity

The isomorphism construction involves the generation of the node description
represented by the vector sv previously described, the computation of the initial
state, the transition among states and the choice of a candidate. Denoting with
N the number of nodes of a graph, the generation of the vector sv has a linear
cost in N : each node or edge is read exactly once. The ordering of nodes with
respect to µV requires O(N2) operations, while the generation of the initial
candidates is quadratic. Also the transition between two states is O(N2). The
removal of the chosen candidate is performed in linear time, but the generation
of the new candidates has a quadratic cost. The choice of the best candidate
from the current state is linear in the number of the candidates but, in the worst
case, the number of candidates is quadratic in the number of nodes.

3 Topological Structures

Among the possible shape descriptors of 3D objects that may be coded as a M-
graph, we detail in this section a discrete representation of the Reeb graph [18]
discussing its application to shape retrieval. Let f : M → R be a real mapping
function defined on a surface M , and let [fmin, fmax] be the variation interval
of f on the surface M , and fmin < f1 < · · · < fh < fmax be the distribution
of the values of the contour levels of M , which are supposed to be all non
degenerate contours. In addition, let I = {(fmin, f1), (fi, fi+1), (fh, fmax)| i =
1, . . . , h−1}∪{fmin, f1, . . . , fh, fmax} be the partition of the interval [fmin, fmax]
provided by the set of the h + 1 interior parts and the function values of the
contour levels.

Definition 3. An extended Reeb equivalence between two points P,Q ∈ M is
given by the following conditions:

1. f(P ), f(Q) belong to the same element of t ∈ I;
2. f−1(f(P )), f−1(f(Q)) belong to the same connected component of f−1(f(t)),

t ∈ I.
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By the quotient relation in definition 3, all the points belonging to R :=
f−1(f(t)), for some t ∈ I, are Reeb-equivalent in the extended sense and they
are collapsed into the same point of the quotient space, called Extended Reeb
(ER) quotient space. Moreover the ER space, which is an abstract sub-space
of M and is independent of the geometry, may be represented as a traditional
graph which is called the Extended Reeb Graph, (ERG). The ERG with respect
to the function f is a M-graph; in fact, the nodes correspond to critical points
of f , i.e. the points of M where the gradient of f vanishes, while the node
attributes are provided by their classification (as minima, maxima or saddles)
and some geometric information such as the space position, the value of f , etc..
In addition, the function f induces a natural orientation on an edge e = (v1, v2)
by considering as relation f(v1) < f(v2), while the edge attributes are defined
as µE(e) = f(v2) − f(v1). However, additional geometric information, such as
cross-section length, area and volume of the portion of the corresponding part
of the surface, may be stored for each edge. Finally, due to the monotonicity of
f along an edge, the ERG is acyclic.

Likewise the Reeb graph [18,16], under the hypothesis I is a sufficiently
dense partition of the domain of f [1], the ERG representation identifies the
main topological properties of M independently of the chosen f . However, the
application domain restricts the choice of f ; for instance, a suitable mapping
function f has to be independent of rotation, translation, uniform scaling of
the object and user’s choices. These requirements prevent the use for matching
purposes of the height function [1], and the centerline representation [11,5] which
respectively depend on the orientation and on the selection of a seed point. The
family of continuous or Morse functions is a natural set for identifying f , and in
the following we present an overview of possible choices of f for coding triangular
meshes without boundary.
ERG with respect to the Euclidean distance from a point. Differential
topology and Morse theory guarantees that the distance functions of the surface
points from a given point p of the Euclidean space are appropriate for extracting
a Reeb graph. Such a point could belong to the mesh or not, even though a
reasonable choice seems to be the barycenter of the object [2] which is easily
calculated and, due to its linear dependence on all the vertices, is stable to small
perturbations. In figure 2(a), an example of this graph representation is given.
ERG with respect to the integral geodesic distance. A different map-
ping function has been defined by Hilaga et al. [6], where the notion of inte-
gral geodesic distance has been introduced for matching purposes. In partic-
ular, for each vertex of a mesh M , the value of the function f is given by:
f(v) =

∑
i g(v, bi) · area(bi), where g(v, bi) represents the geodesic distance be-

tween v and bi, {bi}i are the base vertices for the Dijkstra’s algorithm that are
scattered almost equally on the surface, and area(bi) is the area of the neigh-
borhood of bi (see figure 2(b)).
Geodesic distance from curvature extrema. The strategy proposed in [17]
extracts the M-graph of a surface represented by a simplicial complex. More
precisely, once computed a multi-resolutive Gaussian curvature on the input
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(a) (b) (c)

Fig. 2. The Reeb graph with respect to the distance from the barycenter (a), the
integral geodesic distance (b), and the curvature extrema distance (c). The blue, red
and green nodes represent minima, maxima and saddles, respectively.

mesh [14], for each high curvature region Ri, i = 1, . . . , n, a seed vertex pi is
selected. Starting at the same time from all the representative vertices, rings
made of vertices of increasing neighborhoods are computed in parallel until the
whole surface is covered. Rings growing from different seed points collide and
join where two distinct protrusions depart, thus identifying a branching zone. A
graph is drawn according to the ring expansion: terminal nodes are identified by
the seed points, while union or split of topological rings give branching nodes.
Arcs join consecutive nodes of the graph, (see figure 2(c)). Experimental results
have shown that this framework works on shapes of arbitrary genus.

4 Experimental Results and Concluding Remarks

The behavior of the different ERG representations has to be taken into account
during the similarity analysis: in fact each function emphasizes different aspects
of the object shape. For instance, the geodesic distance distribution on a hu-
man model does not change if the legs and the arms are stretched rather than
curled up, since the geodesic distance from the body does not change, while the
Euclidean distance from the center of mass does. Therefore, if the aim is to dis-
tinguish between different poses of the same object, the ERG with respect to
the distance from the barycenter should be preferred.

Figure 3 highlights how the choice of f influences the matching results. In
fact, a teapot has been slightly modified and the graphs result much different.
The graph obtained by distance from the barycentre function is a representation
of the spatial distribution of the object with respect to the barycentre: even if a
part of the handle has been removed the remaining part folds on itself, generating
a critical points in the Reeb function. The graph based on the integral geodesic
does not take into account the spatial embedding, thus the broken handle of
the teapot results in a maximum critical point with respect to the geodesic
distance, neglecting the shape of the handle itself. Concerning the distance from
the curvature extrema the modification of the teapot handle results in a new
curvature extreme generating a new maximum critical point.
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Fig. 3. Matching between the teapot and its modified version for the three ERG struc-
tures and corresponding similarity values.

In our experimental results the ERG structure, obtained from a uniform
partition I of the interval [fmin, fmax], highlights that the main structure of the
object is better detected through a rough subdivision of it, while smaller features
are located when the number of sub-intervals of I increases. On the contrary,
the representation provided by the geodesic distance from curvature extrema
depends on the choice of the base points, which are individuated using the multi-
resolution strategy proposed in [14]. Finally, we observe the function f in our
ERG representation is always non-negative. Then, to compare the shape features
according to their relevance on the model, we adopt the following “normalized”
ERG extraction: for each model the partition I is given by I = IP ∩ [fmin, fmax],
where IP = {( i∗fmax

m , ( (i+1)∗fmax

m ) | i = 0 . . .m − 1} ∪ { i∗fmax

m |i = 0 . . .m} is a
partion of the interval [0, fmax] and m is an integer chosen by the user.

Experimental results of our matching method are shown in figure 4, where
the top objects retrieved by our matching algorithm on two query models (a child
and a dog) are shown. Results are arranged according their similarity value with
respect to the query models, in decreasing order from left to right. For both,
all the proposed ERG representations where compared: line (a) corresponds to
the distance from the barycentre, line (b) to the integral geodesic distance and
(c) to the geodesic distance from curvature extrema. For each function the best
match was the model itself and was not depicted.

We can conclude that the graph comparison reflects the intuitive notion of
similarity and groups the objects in a number of families (for instance quadru-
peds, humans, pots, hands, etc.) even if some false positive results are obtained.
This phenomenon rises more frequently when the graph representation of the
query model is very simple, both in terms of number of entities and of config-
uration: in this case the query graph itself is easily contained into other graph
representations of the models in our database. The framework for graph match-
ing proposed in this paper is valid not only for Extended Reeb graphs but also for
each graph-like representation which can be related to a M-graph. In particular,
for the digital context, the component tree [9], the max-tree [19] and the topo-
logical graph proposed in [20], seem to be natural candidates. Moreover, even if
the adopted matching approach is mainly based on the topological information
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Fig. 4. Matching results for two query models in our database with respect to the three
ERG representations: (a) distance from the barycentre, (b) integral geodesic distance
and (c) distance from curvature extrema.

stored in the M-graph, as a future development we are planning to consider a
greater number of geometric attributes which should improve the results so far
obtained. Further improvements of the matching algorithm can be also obtained
by considering the sequence of the editing operations of the input and model
graphs and using them for partial mapping or metamorphosis purposes.
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efficacy of topological skeletons in shape modelling. Proc. of Shape Modelling and
Applications 2003, IEEE Press, Seoul, pp. 245–254, 2003.



3D Shape Matching through Topological Structures 203

3. H. Bunke and K. Shearer A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters, 19:255–259, 1998.

4. S. Gold and A. Rangarajan. A Graduated Assignment Algorithm for Graph Match-
ing. IEEE Trans. on Patt. Anal. Mach. Intell., 18(4):377–388, April 1996.

5. F. Hétroy and D. Attali. Topological Quadrangulations of Closed Triangulated
Surfaces using the Reeb Graph. Graphical Models, 65, pp. 131–148, 2003.

6. M. Hilaga, Y. Shinagawa, T. Komura and T. L. Kunii. Topology Matching for
Fully Automatic Similarity Estimation of 3D Shapes. ACM Computer Graphics,
(Proc. of SIGGRAPH 2001), Los Angeles, pp. 203–212, 2001.

7. B. Kimia, A. Tannenbaum and S. Zucker. Shapes, shocks, and deformations, I.
Computer Vision 15:189–224, 1995

8. K. G. Koo and P. N. Suganthan. Multiple Relational Graphs Mapping Using
Genetic Algorithms. Proc. of Congr. on Evolutionary Comp., pp. 727–733, 2001.

9. R. Jones. Connected Filtering and Segmentation Using Component Trees. Com-
puter Vision and Image Understanding, 75(3):215–228, 1999

10. H. Sundar, D. Silver, N. Gagvani and S. Dickinson. Skeleton Based Shape Matching
and retrieval. Proc. of Shape Modelling and Applications 2003, IEEE Press, Seoul,
pp. 130–139, 2003.

11. F. Lazarus and A. Verroust. Level Set Diagrams of Polyhedral Objects. ACM
Solid Modeling ’99, Ann Arbor, Michigan, pp. 130–140, 1999.

12. B. Luo and E. R. Hancock. Symbolic Graph Matching using the EM Algorithm
and Singular Value Decomposition. Proc. of Int. Conf. on Pattern Recognition,
Vol. 2, pp. 2141-2144, 2000.

13. S. Medasani, R. Krishnapuram and Y. Choi. Graph Matching by Relaxation of
Fuzzy Assignements. IEEE Trans. on Fuzzy Systems, 9(1):173–182, February 2001.
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