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Abstract

A system for part-based segmentation of range data and their interpretation as a composition of
deformable superquadrics is described. Segmentation and reconstruction phases are performed using
the same agorithm at different scales. First, the data set is partitioned in regions corresponding
approximately to simple convex objects, and then single deformable models are fitted to each region.
Refinements of the model can be achieved by recursively applying the method. The proposed Moving
Target (MT) agorithm is an origina variation of the well known approach by Solina, ideated to avoid
the classical inconvenient of the minimization procedure where the solution escapes the global
minimum and/or gets stuck in a local one. Mativations of the proposed approach along with its
theoretical formulation are presented and discussed in detail. The whole system has been validated
using a several range images.

Key Words: Object recognition; Recognition by parts, Moving target; 3D Segmentation; Fitting of
range data; Superquadrics.

1. INTRODUCTION

The development of the vision system is a crucia part of the whole architectura design for an
autonomous robot: vision processes has to be at the same time fast, robust and accurate to guarantee the
correct perception of the essential elements that are present in the operating environment. Moreover,
the kind of images processed from the visual component of the robot, and the features that can be
extracted from them, affect the other sensors equipment, the shape and, to some extent, the mission
abilities of the robot itself.

Object recognition is one of the most intriguing visual processes to be modeled in a robot vision
system. Redlly, it is not so clear if we recognize an object using some sort of 3D mental model
encoding structural relations between its parts, or if we learn and store in our memory different views
of the object itself, that in turn allow recognition using a global matching with our actual perception.

These two ways of thinking produced an interesting debate, during the last twenty years, both in the

psychological and in the computer vision communities, giving rise to two main group of theories. On
one hand, there is a group of theories that are commonly referred to as “recognition by parts” which
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assume that human beings perform a sort of volumetric segmentation of the perceived image where
each part is related to the others by structural relations such asabove(), larger(), side() and so on (Marr
1982, Marr and Nishihiara 1978). The object shape is thus described with few flexible primitives that
can be related to each other in several ways. The most famous system in this area is JM and its
evolutions proposed by Biederman and his colleagues (Biederman 1987, Biederman and Hummel
1992, Hummel and Stankiewicz 1996). JIM uses “geons’ as geometric primitives, but other systems
have been poposed in the computer vison community that use superquadrics (Pentland 1987,
Dickinson Pentland and Rosenfeld 1992).

On the other hand several view-based theories of object recognition have been developed following the
key idea of a globa match between the perceived image and some image-like “views’ stored in our
long term memory. Several vision systems have been proposed in literature, each with its own
definition of the concept of view, depending on the particular theory to be validated. In general, one
can say that a view is a vector containing the spatial coordinates of some image features. Such
coordinates are expressed relative to a common reference point. The two main approaches to view
matching are the globa (holistic) image matching proposed by Poggio, Edelman and their collegues
(Poggio and Edelman 1990, Edelman and Poggio 1991, Edelman and Weishalll 1991, Bulthoff and
Edelman 1995, Edelman 1998) and the theory of alignment, proposed by Ullman, where two-
dimensional image features are geometrically aligned with a three-dimensional object model (Ullman
1989 and 1996, Ullman and Basri 1989).

Both recognition by parts and view-based recognition have been validated by psychological findings.
One of the strongest arguments supporting recognition by parts is that humans can easily recognize a
novel object as belonging to a particular class, despite slight variations in the displacement and in the
shape of its parts. This finding can be explained with the dynamic binding between parts in the object
structural description: few simple primitives can be arranged in different ways at recognition time to
obtain the whole model (Hummel 2000). In contrast, view-based approaches suffer from static binding
of features to their position in the vector defining the view, and are not able to catch consistent
rearrangement of the features in the reference space. The argument in favor of view-based approaches
is the recognition invariance to rotations in the image plane and, to some extent, rotations in depth. See
the example of the structural description of a coffee mug and a bucket in (Biederman 1987) for an
explanation of thistopic. The sensitivity of recognition by parts to rotation have been an arguments for
several debates between exponents of the two theories (Biederman and Gerhardstein 1993 and 1995,
Tarr and Bulthoff 1995, Tarr 1995).

In principle, both the approaches described above can be used in a robot vision system. Two-
dimensional feature matching is a classical paradigm in robot vision where the main task is navigation
and exploration of the environment (Arkin 1998). Even in the case of manipulators, view alignment can
be a good solution for the robot visual servoing problem (Hutchinson Hager Corke 1996) where the
environment is totally controlled as in plants or factories. The framework of the system presented in
this work is the development of the visual component for a robot manipulator that operates in a
partially known environment, so it has to learn objects’ structure, moving the actuator in a space not
well a priori defined, and classify novel objects. Such requirements can be satisfied only with a
rigorous knowledge about the geometry and the spatial relations between objects in a true 3D model of
the world.

The presented system has been developed in the framework of a cognitive architecture for robot vision
(Ardizzone Chella Frixione Gaglio 1992, Chella Frixione and Gaglio 1997 and 2000, Chella Gaglio
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Pirrone 2001). This architecture aims to integrate the perception of static and dynamic scenes with
their symbolic representation in order to understand the perceived environment and to guide the actions
of the robot in a feedback loop where novel perceptions enrich the symbolic knowledge about the
operating domain.

The integration of the presented system in the general architecture depends in a crucial manner from
the segmentation step. The model recovered from raw data can be useful to the symbolic component of
the robot only if it fulfills some criteria about the goodness of the obtained reconstruction. In particular
| clam tat a good reconstruction is minimal and meaningful. In what follows these two terms are
explained in detail.

A reconstruction is said minimal when the number of recovered models matches exactly the number of
the parts obtained with segmentation.

Meaningfulness means that each recovered model has to be recognizable (that is matched with a high
goodness-of-fit) as a convex primitive at most affected by a global deformation. FIGURE 1 provides a
graphical example of minimality and meaningfulness of the reconstruction.

FIGURE 1 NEAR HERE

Meaningfulness ensures that symbolic descriptions of the objects structures are coherent with each
other and that new ones can be added to a globa knowledge base. On the other hand, a minimal
reconstruction helps the autonomous agent to generate hypotheses about the object nature when it has
to disambiguate a particular reconstruction. In other words, meaningfulness acts as a syntactic
constraint over the reconstruction, making its symbolic description expressed using words that are
taken from awell defined vocabulary. In the same way, aminimal reconstruction is to be regarded as a
semantic constraint over the object description because its expressive power is limited to a particular
form (i.e. ahammer can be only described as above(box, cylinder) ).

In this context, the vision system presented in this work has been developed by the author with the
previous principles in mind. It is intended for 3D segmentation and modeling of range data as a
composition of deformable superquadrics, in order to provide detailed geometric and structural
description of the modeled object. The system is the perceptual component of a cognitive architecture
for the supervision and control of an autonomous robot performing grasp and manipulation tasks in a
partially structured operating environment. The robot needs detailed 3D information in order to
perform movements and to plan manipulation strategies to classify unknown objects.

The whole system relies on a novel algorithm proposed by the author to perform data fitting. The
Moving Target (MT) agorithm extends and generalizes the approach to fit superquadrics to range data
developed by Solina (Solina and Bajcsy 1990). It is applied repeatedly at different scales to the input
data, first to obtain part segmentation and then to fit each segment with a 3D model. In this context, a
“part” hasto beintended as aregion of the data set that can be modeled with a simple convex primitive
at most affected by a global deformation like bending or tapering. As a consequence the system
searches for regions with the maximum concavity in the data set and uses them to subdivide the scene
in convex segments.

Another source of inspiration is the work by (Whaite and Ferrie 1991). Whaite and Ferrie point out the
general non-uniqueness of data interpretation in the least-squares fitting procedure, regardless to the
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metric that is being used to measure goodness-of-fit. The main problem with misinterpretation of data
isin theinitial estimate of the model, above all when the viewpoint is prone to generate ambiguities
(one of the major axes of the model results aligned with the line of sight). In the MT gpproach, points
are projected from their true position onto the smallest enclosing sphere positioned in the data center of
mass. Then the fitting process is performed in multiple steps, each of them using the previous estimate
as the starting point to fit the model to a data set a bit more shrunk towards the original configuration.
In this way, the error surface is constrained to progressively deform towards its final shape.
Convergence of the solution is induced by the intrinsic convexity of the error function near the global
minimum (Solina 1987). The solution is always close to the global minimum and moves towards it
avoiding local ones and/or flat zones.

From the above description, it is straightforward to argue that maximum concavity points converge
more quickly then others to their true positions, so they can be easily detected as the ones with the
highest shrinking velocity. The whole system performs as follows: first the MT algorithm is applied to
the entire data set to separate convex regions; then the same agorithm is used to fit a 3D model onto
each part. Residual analysis has been used both to refine boundaries between convex regions and to
measure the goodness-of-fit for each recovered model. In case of poor fitting, the agorithm can be
applied repeatedly both to find new convex segments and to recover a better model for asingle part.

The rest of the paper is arranged as follows. In section 2 the mathematical formulation of the problem
is reported along with the motivations for the choice of superquadrics as geometric primitives. Section
3 describes in detail the MT algorithm for fitting a convex data set and the global segmentation and
fitting procedure. In section 4 experimental results are reported with severa typologies of depth
images. Finally, section 5 reports conclusion and some discussion about future work.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

The following mathematical formulation has been developed taking into account the literature about
model selection techniques following the Minimal Description Length principle (MDL) and its
applications to visual data segmentation for object modeling (Darrel Sclaroff and Pentland 1990, Solina
and Leonardis 1998).

Given some range data acquired from an object under a generic viewpoint, they can be regarded as a
set of three-dimensional points O ={x, :x, =(x, ¥, z)}",which definesthe object itself at the lowest

level of abstraction. The segmentation process is aimed to subdivide O in a number of non-overlapping
parts P; such that:

o=Jp "kp={x}i" Rl 0O

i=1 !

"B.B1 OP BRGP°O0.

A generic geometric primitive used to model raw data, is defined in the form #(x,&), whereéis a
suitable vector of tunable parameters, while x is a generic 3D point. Starting from the last definition a
reconstruction ® (O) isdefined as:
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M

®(0)=(Mm(x.&))",.

A reconstruction is therefore a tuple of instances of the model; each instance is characterized by a
particular configuration &, of the elementsin the parameter vector, and it fits one part of the data set:

m(x,&,)° ®(P)

Using the previous statements it is possible to provide a definition for a reconstruction ® that is both
minimal and meaningful. The former property is expressed claiming that ® must have the same
number of models as the number of parts obtained from the segmentation step:

o=J_EP &(0)=(mx8)",. (1)

The equation (1) is just a formalization of the MDL principle applied to the domain under
investigation, but in this formulation no a priori probability distribution is taken into account for the
segmentation and the reconstruction processes. The guiding principle is that the whole object is
segmented in simple convex parts, searching the data set for the regions with maximum convexity.

A general, but too restrictive, formulation of meaningfulness implies that each part P; has one and only
one reconstruction corresponding with the instance of the model defined by &, assuming that each P;

corresponds to a convex region.
"B 8l ou(x,e,): mlxe )0 ®'(R). 2)

The above statements are too general to be useful in a computational model. In practice, minimality is
satisfied using the constraint of modeling each part with a single instance of . Meaningfulness is
obtained as a constraint on the reconstruction goodness-of-fit. In what follows the reconstruction error
epr(®R) relative to a reconstruction will be used as inverse measure of goodness-of-fit. A general
expression for epr relative to the k-th part P, 1 O can be provided as:

epr(® (P))= T D((x,,&,)). (©)

xAPk

In (3) D is a suitable function depending on the analytical form of the metric one wants to use to
measure goodness-of-fit, while 9(x,,&, ) isthe result of evaluating the mode! instance defined by &, in

the point x;. Meaningful ness can now be expressed by the following:

" P, 1o epr*(R(Pj»o IférT]iLnepr(R(P/.))= IférTIiLn é D(M(Xl.,é)),j =1...,k. 4)

Here L is the parameter space. The formulation of (4) is a theoretical limit for two reasons. A
minimization procedure provides, in general, a sub-optimal solution in order to save computational
time. Moreover, the choice of D can influence the result depending on the constraints one has used in
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the construction of its analytical form (Gross and Boult 1988, Solina and Bajcsy 1990, Whaite and
Ferrie 1991).

In the working system, o has been implemented using deformable superquadrics. Superquadrics, in
their original form, have been introduced by Barr (Barr 1981) as a simple extension of the quadrics
where two real exponents can tune the shape profile both in latitude and in longitude. A superquadric
inside-outside function is expressed as:

..2/92 ..2/92 beZ/el __2/61
E%x (0] ey 0 - &z 0
f(x,y,z)=9§—i + li T i: =1.
8 adi g a g 5 a4 g

Superquadrics are a powerful tool for expressing different 3D shapes (see FIGURE 2) and have been
widely used in computer vision, since the first eighties, as good primitives for object description by
parts (Pentland 1986).

FIGURE 2 NEAR HERE

Some systems for 3D reconstruction from range data make use of other primitives like hyperquadrics
(Kumar Han Goldgof and Bowyer 1995, Kumar and Goldgof 1995) or extend the superquadric model
in order to cope with local shape deformations (Terzopoulos and Metaxas 1991, Bardinet Cohen and
Ayache 1998, Zhou and Kambhamettu 1999). The author preferred to use superquadrics than
hyperquadrics due to computational reasons. a hyperquadric requires 30 parameters to be fully defined
in 3D space, while a superquadric needs only 15 parameters including the ones describing
deformations. Moreover, the hyperquadric fitting procedure requires a rather complex initialization
where some parameters must be set using heuristic criteria that are not well specified. Computational
reasons also hold for the use of extended superquadric models to deal with local and/or global
deformations. These kinds of systems are more suited to computer graphics applications than for robot
vision: in fact, model computation becomes too heavy to alow fast recognition, above all in those cases
where parametric surfaces are used to describe object’s details. Starting from the expression of the
inside-outside function, the model is enriched with parameters describing attitude in 3D space and
eventual deformations. The parameter vector can be thus split in the following form:

6= 1818, 18 18]
Previous expression accounts separately for the parameters in the inside-outside function, the center

coordinates of the object, its orientation angles, the bending and tapering factors. The model 9 results
defined (according to Solina 1990):

M(X’é)o A(X’éint’éc’éor’éb’ét)=fe1 (X’éint)’
X =Trang(é,,Rot(é, ,Bend(é,, Taper(é,,x)))).

The selected metric isthe “minimal volume” one adopted by Solina and Bajcsy, so the expression for D
is:

D(A(x€)) = Jaa,a, (1- Alx,€)).
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Here a;, a», and a; represent the model size along its three main directions. The reconstruction error epr
is:

epr = %g \ Aya,0, (1- A(x,é))]2 .

Here N isthetotal number of data points. Finally the meaningfulness constraint is expressed as:

min%é Jaay (- Alx,E))f ©)

él L

This expression is exactly the minimization criterion adopted by Solina and Bajcsy. The author wants
to derive an extension of this method that copes with the segmentation problem and the procedure has
proved to work well if the object’s parts are extracted as convex regions where at most some
deformations of the model are needed in order to improve the reconstruction goodness-of-fit.
Moreover, Solina proposes this metric as a way to ensure “perceptual acceptability” of the model: this
constraint matches with the definition of meaningfulness previously given. Finally, in case of poor
reconstructions, an autonomous robot is able to perform disambiguation varying interactively the
viewpoint.

Despite previous considerations, different metrics have been used in the experimental phase without
any remarkable performance improvement. This topic will be discussed in detail in the next two
sections.

3. THE MOVING TARGET ALGORITHM

In this section the description of the MT algorithm will be provided along with a detailed discussion of
the implementation choices. First, the use of the MT algorithm to retrieve a single convex segment with
a deformabl e superquadric will be exposed, making a comparison with the original approach by Solina.
Then the general procedure to obtain segmentation and reconstruction of the whole object will be
discussed. Finally acomparison will be madewith other approaches proposed in literature.

3.1 Fitting a Single Segment
The MT agorithm is based essentially on a sequence of steps where a moddl is fitted to a “moving”
data set. The concept of moving data set means that the points configuration is slightly deformed at
each step, from a sphere placed in the data center of mass, to the actual shape, as it has been acquired
by the sensor.

FIGURE 3 NEAR HERE

With reference to FIGURE 3, the generic point x projects itself onto a point x, on the smallest
enclosing sphere by the data center of mass xo. Denoting with d =[x - x,| the Euclidean distance

between x and xo, and expressing the radius R of the sphereas R = maxd , it is possible to obtain x, as
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X, =X, +p. In turn, p has the following expression p = R(x - x,)/d meaning that it has a modulus
equal to R and the same direction of the difference (x - xo). Finally, x, has the form:

R
X, :x0+3(x- xo).

Shrinking deformation from x,, back to x is performed using the parametric equation of the straight line
passing by these two points, so the point x, at deformation step ¢ is obtained as x, =x, + (t/N, )(x - xp).
Here N, is the total number of deformation steps. Combining the expression of x, with the one derived
for x,, it is possible to obtain an iterative solution to compute intermediate configurations without
projecting points onto the smallest enclosing sphere:

t(d - R)
dN,

t

(6)

x,=x0+k(x- XO), k=§+

Intermediate deformations along with an enhanced minimization strategy, with respect to the
Levenberg-Marquardt implementation used by Solina, allow the algorithm to find meaningful solutions
even in the case of poor viewpoints. The working system has the possibility to switch between the
implementation of the Levenberg-Marquardt method provided by More (Moré 1977) and atrust region
algorithm that is based on the interior-reflective Newton method described in (Coleman and Y. Lin
1994 and 1996). Here each iteration involves the approximate solution of a large linear system using
the method of preconditioned conjugate gradients (PCG). The choice for these two algorithms derives
directly from the use of the moving target strategy. Both the cited approaches are based on the key idea
that the error surface can be approximated with a simpler function in a suitable neighborhood of the
solution, while the Levenberg-Marquardt or the PCG agorithms are used to move one step on this
surface towards the solution itself. In the presented system this is the case: Solina has demonstrated that
the error surface is concave near the global minimum, thus it can be locally approximated with a
second order surface, and the MT agorithm allows the solution to be always close to it, due to the
progressive deformation imposed by data shrinking (see FIGURE 4).

FIGURE 4 NEAR HERE

As regards the use of two different minimization algorithms, some authors (Bardinet Cohen and
Ayache 1998) have proposed the conjugate gradients approach with respect to Levenberg-Marquardt
because the former is faster, requiring only to compute the Jacobian of the function to be minimized,
while the latter requires also the Hessian. In the implemented system the two approaches exhibit
comparable performance as it is showed in FIGURE 5. A non-iterative method has been proposed in
literature to estimate single superquadrics from depth maps (Cotronel and Salvato 1996) but, if it saves
computational time, it is limited to un-deformed models, and needs exact knowledge of the projected
contours onto the coordinate planes, so it fails in case of noisy real data In what follows the control
flow of the algorithm is reported.
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FIGURE 5 NEAR HERE

ALGORITHM |: Moving Target strategy to fit asingle model.
StEP 1. Reduce the noise in the input data by applying a 7x7 median filter in order to remove isolated
points.
STEP 2. Transform range image points z(x, y) from image coordinate system to world coordinate system
x=(x, y, z) centered in the lower left corner of the input range image.
SteP 3. Compute the center of mass xo of the data set, and project each point x onto x, using the (6)
with 7=0.
StEP4. Perform initial model estimate
4a) Compute eigenvectors and eigenvalues of the moment matrix of the data points, put the z
axis along the eigenvector with the minimum inertia and estimate the Euler angles to determine
the pose.
4b) Compute the size of each axis as the extremity points of the data set along each eigenvector
computed at the step 4a), set the form factors to 1.0 and set all the deformation parameters to
0.0.
STEPS. Loop until =N,
5a) t=t+1.
5b) For each point in the data set compute x;+ ;.
5¢) Fit the data using whatever minimization method, with 9 asinitia estimate; exit when the
number n of iterations is reached or (epr|«.; — epr|i) goes below a suitable threshold at step £,
thus obtaining the model 34,4 ,.

3.2 The general approach

The MT agorithm described in the previous sub-section can be extended to perform multi-part
segmentation of the data set on the basis of some simple considerations that will be stressed in the
following.

According to the definitions for a minimal reconstruction and a meaningful one, the segmentation
process is aimed to isolate convex parts in the range data, each of them being modeled by one (at most)
deformed superquadric. As a consequence, the algorithm has to search the range image for contour
points and for points laying in regions with maximum concavity. The last ones will be referred to as
“junction points’.

After noise and isolated points are reduced with a 7x7 median filter, a Canny edge detector (Canny
1986) is used to find contours. Thisis a good choice due to the nature of the images: background (too
deep points) is black, surfaces vary smoothly, and boundary and occluding contours are easy to detect.
A simple contour following agorithm is used to detect closed and open contours, T-shaped junctions
between them, corners and termination points. The same algorithm removes small segments and small
closed contours (holes in the data set). Small gaps between contour extreme points are filled with
straight line segments. The flow control of the contour following agorithm is reported at the end of this
sub-section. Regions inside a closed contour are segmented immediately. In general, the edge detector
is not able to close contours in correspondence of junction points because their intensity values in the
range image vary too smoothly. In practice, junction points represent a discontinuity contour
connecting occluding contours with either boundary ones or other occluding contours (see FIGURE 6).
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Junction points will be searched only in those regions lying between the ends of an open contour
segment, and the MT algorithm provides away to initialize this search.

Consider atwo parts object as the one depicted in FIGURE 6. Applying the MT algorithm to the data
as a whole, gives rise to two consequences. First, one can observe that the junction points have the
highest shrinking velocity; moreover junction points exhibit the highest epr value, after reconstruction
has been performed. It is possible to express the first property in a mathematical form. Recalling
equation (6) the shrinking velocity can be expressed as the first derivative of x, with respect to the
parameter ¢. Because of ¢ isadiscrete variable, the first derivative of x, will be coincident with the finite
difference:

Remembering that |x, - x|° d , the scalar shrinking velocity vy is:

_R-d
== @

t

Dxt
Dt

In the implementation, v, has been scaled relative to d in order to obtain a sharper distribution near the
maxima, so the actual valueis v, = (R -d )/d where the constant N, has been neglected. According to

the previous statements, the criterion used to select junction points is to search for those points in the
data set having v’y > t, where t is a suitable percentage of the maximum value for the v’ distribution.
These points will form ajunction region. For a multi-part object, several small isolated junction regions
are obtained in correspondence to different sets of concavity points. In general, Jp; will indicate the
i-th junction region of the k-th part P, of the object. A junction region is accepted only if it contains
both the termination points for a given contour segment. Otherwise, a false positive has been detected:
the surface has no local concavity but is a rather flat pacth or has small local concavity that can be
fitted using a bend deformation. The range image made only by the junction regions is partitioned
using again the edge detector to find each region’s contour. Junction regions that do not contain the two
termination points for any given contour segment are discarded. Each junction region image is used to
initialize a snake (Blake and Isard 1998) aimed to interpolate exactely the junction points (see
Appendix A).

FIGURE 6 NEAR HERE

The whole algorithm works as follows. When some junction regions are detected, a snake is fitted for
each of them, and the data set is split in as much parts as the number of snakes plus 1. The fitting
procedure is applied to each part: if epr isnot so good for some part the splitting procedure is repeated,
searching for some other junction region. In the following, flow control of the whole algorithm is
reported.

CoNTEXTR: Function for contour extraction, labeling and segmentation of closed regions

SteEP 1. Apply the Canny edge detector to the range image.
STEP 2. Initialize the set of parts P={}
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StEP 3. Detect the first contour point and follow the contour to find each corner, T-shaped junction and
termination, thus computing £={ e:} that is the endpoint set.
Step 4. Compute the set of contour segments C={ c¢;=&;,e2,,1if} Where each contour segment is a triple
defined by the endpoints and the contour label.
SteP 5. Remove the contours that are too small.
Step 6. if thereare somec; such that e;° e

6a) Obtain the part P, asthe set of all the points belonging to the region bounded by c;.

6b) P=PE P,.

6¢c) C=C-{c}
Step 7. Merge chained contour segments in order to find closed contours or extended open contours.
STEP 8. Repeat Step 6.
SteP9. Return &,Ci

ALGORITHM I1: Global segmentation and reconstruction procedure using the MT algorithm.
STEP 1. Reduce the noise and remove isolated points.
STEP 2. Transform range image points z(x, y) from image coordinate system to world coordinate system
x=(x, y, z) centered in the lower left corner of the input range image.
StEP 3. Compute the set of parts P={ P}, and the set of contours C={ ¢;=&;,t»;,/i} &,Cfi- CONTEXTR.
StEP4. Set epr(R(Pr)) = MAXVAL for each k.
STEPS. For each part P, such that epr(®R(Py)) > th
5a) Compute the center of mass xo of Py, and project each point x onto x,, using the (6) with =0.
5b) Compute the distribution v ’(x, y) for each point in P;.
5¢) If there are some pointsz(x, ) I P, such that v’(x, y) > t.
5c.1) Apply the zero-crossing operator on the junction range image to obtain junction
regions Jp;, i=1,...,N.
5c2) Reject al the Jp,; such that @$lt, ¢, )1 ¢, :t,1 J,, Ut 1 J,, (fdse
positives).
5¢.3) Fit a snake to each Jp;, close the open contours whose endpoints belong to each
junction region and separate points inside each closed region, thus obtaining parts Ppy,
J=1,...,n+1.
5c.4) Update the set of parts P=(P-Py)E{ P} .
5d) For each P, 1 P apply steps4 and 5 of ALGORITHM | and obtain epr(R(Py)).

3.3 Discussion

Severa proposals have been made, during the last years, to face the problem of object segmentation
and modeling. In what follows, a general discussion about their performance is reported. Pentland
devised the first solution (Pentland 1989 and 1990) using a 2D contour-based blob segmentation of
range data and modal dynamics to represent deformations, but this approach is heavy from the
computational point of view and makes very restrictive assumptions on the true shape of data. Some
other systems (Gupta and Bajcsy 1993, Ferrie Lagarde and Whaite 1993, H. Zha T. Hoshide T.
Hasegawa 1998) have intersections with the one presented by the author, while the widely accepted
solution proposed by Solinaand his collegues (Leonardis Jalik and Solina 1997) uses a dual approach.

Solina claims that the segmentation effort in the modeling procedure is not useful because there are
some particular cases where surface properties of the range data do not allow to separate the object into
different parts. The method starts with some model seeds placed inside the range points envelop, and
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alternates afitting and a model selection phase. Models with the highest goodness-of-fit are selected to
grow and fit again their data plus some suitable neighborhood of points. Models not satisfying this
requirement are discarded. Segmentation is achieved automatically, but with a great computational
effort that is only partially counterbalanced by the small number of data points for each model.
Moreover, reconstructions are often not minimal, depending on the initial placement of seeds.

The author claims that the MT strategy is good in alowing both efficiency, meaningfulness and a
minimal reconstruction. The idea of a deforming 3D blob that eventually breaks into more parts to
improve fitting is a very intuitive one, and goes in the same direction as the paradigm proposed by
Marr (Marr 1982) regarding volumetric segmentation of data followed by structural description.
Moreover, in the context of a genera architecture for part-based recognition equipping a mobile robot,
ambiguities can be resolved by changing the viewpoint.

Among the other segmentation-based approaches cited above, SUPERSEG (Gupta and Bajcsy 1993)
seems to be the more similar one to the MT solution, due to the idea of a global fit of the object
followed by residual analysis. SUPERSEG uses also a surface-based segmentation technique, and
surface labeling supports decision making in the residual analysis phase to obtain 3D segments.

Snakes are used by (Ferrie Lagarde and Whaite 1993) but these are true 3D curves fitting concavity
points that were previously detected using differential geometry considerations. This approach results
very heavy in contrast to the MT algorithm where the range data are used as a 2D image, and classica
filtering techniques are adopted to extract features. This choice is supported by a fast search for
junction points that emerge automatically form the analysis of the points shrinking velocity.

Similar considerations apply to (H. Zha T. Hoshide T. Hasegawa 1998). They use directly residual
analysis to select junction points, and this technique leads to false positives. Think, as an example, to
the case of two tangent spheres with different radius, globally fitted by a tapered ellipsoid: pointsin the
bottom part of the larger one exhibit large residuals. Finally, fitting plane interpolation implies
minimization procedure with a greater computational |oad than the one required by snakes.

4. EXPERIMENTAL RESULTS

Several experiments have been performed to provide global validation of the proposed method. Data
have been mainly obtained from the range images provided by Solina as test platform for his system,
but also syntethic range data and shape-from-shading images have been used (see FIGURE 7). The
adopted shape-from-shading a gorithm was the one proposed in (Zhang Tsai Cryer and Shah 1994).

The whole system has been implemented in a prototypical form, using MATLAB 5.3 on a Pentium 11
1000 MHz processor with 256 MB RAM, running under Windows Me. All the auxiliary procedures,
like the Canny edge detector, the snake and the minimization agorithms, are taken from official
MathWorks or user-contributed toolboxes. The author is currently working to the definition of a MT
toolbox along with a set of executable programs for Windows platform.

In al the experiments, the size of the median filter has been set to 7x7, and the threshold to select
pointsin ajunction region has been set to the 80% of thev’; peak.
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FIGURE 7 NEAR HERE

Two experiments have been performed to check theoretical assertions about the agorithm. The first
experiment is related to the choice of the best expression for epr in order to obtain model estimation
with the maximum accuracy in case of viewpoint ambiguity. Several expressions exist in literature. The
“minimal volume” metric eprs proposed by Solina (equation (5)) prefers the smallest moded fitting to
data as the most perceptually acceptable. Gross and Boult (Gross and Boult 1988) propose a metric
eprgp defined as the mean distance between each data point x(h,w) and the corresponding superquadric
point x,(h,w) measured along the segment connecting x(h,w) with the superquadric center:

epProp =

1ow
ﬁainxi - Xy

Finally, Whaite and Ferrie (Whaite and Ferrie 1991) propose a variation of the previous metric, using
the inside-outside superquadric function:

1 ; .
ePhyr =NéiN:1|Xi||1' S el/z(xi’ex

In the experiment (see FIGURE 8) a deformed model under varying viewpoints was fitted using 10
moving target steps and the Levenberg-Marquardt minimization algorithm, trying all the three metric
values. Results confirmed the better perceptual acceptability of eprs, while eprgz and epryr provide
better numerical results. In practice, the minima volume metric is the better choice to obtain both a
minimal and meaningful reconstruction

FIGURE 8§ NEAR HERE

The second experiments regards the choice of the correct number of shrinking steps in the moving
target algorithm when it is used to fit a single segment. In this experiment, three different data sets have
been reconstructed with varying shrinking steps, using both Levenberg-Marquardt and the PCG-based
algorithm (see FIGURE 9). The experiment shows that when the number of steps becomes too large,
there is a sort of saturation because the difference between two models in two subsequent steps is
negligible, while the number of iterations per shrinking step decreases significantly. FIGURE 9 shows
that there is no significant difference between final models while increasing the number of shrinking
steps beyond 10.

FIGURE 9 NEAR HERE

A suitable numerical index of the computational load has been derived to measure performance with
varying shrinking steps. The index is computed as the product of the shrinking steps &, by the average
number of minimization iterations performed at each step:

I=N, Xt It =

1ow
— It
N a,.
Thisindex decreases till a minimum, and then tends to become asymptotic with /=N, (see FIGURE 10).
Evenin this case, the plot of / vs. N, attains the minimum for N,=10.
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FIGURE 10 NEAR HERE

5. CONCLUSIONS

A complete implementation of the recognition by parts theory applied to range data segmentation and
modeling with deformable superquadric has been presented. The architecture has been motivated both
from the psychological and computational point of view, and comparisons have been made with the
most cited approaches.

The experimental results prove that the system performs well in a wide range of situations, but some
critical situations cannot be disambiguated without some a priori knowledge about the structure of the
perceived object. The requirements for a minimal and meaningful reconstruction are a suitable way to
code the structural knowledge about the objects in the operating domain. As stated above, they act
respectively as syntactic and semantic constraints on the symbolic description of the model. In turn, a
rigorous symbolic description can be used to perform disambiguation.

The author and his collegues are working to the definition of a comprehensive robotic architecture for
manipulators acting in partially known environments, where the robot has to discover both novel
objects and the actual size of the operating space. Structural knowledge can be used, in this case, to
guide the actions of the robot on the basis of the expectations generated at the symbolic level by the
current perception. This feedback loop ends when perception is stable.

It is possible to draw a scenario in which the robot tries a model-driven fitting step in order to refine the
reconstruction. An interesting proposal comes from (L.H. Chen Y.T. Liuand H.Y. Liao 1997) where a
volumetric similarity measure for superquadrics is presented. The measure is expressed as the volume
difference between the two superquadrics that is the total volume of those regions that belong either to
the interior of one object or to that of the other, but not to those of both. In the cited work, similarity is
computed for superquadrics in canonical pose. Suppose to store, along with the symbolic description of
the model, the geometric description of al the superquadrics representing its parts expressed in a
normalized space, where at least one component isin the canonical pose. This normalized model can be
regarded as an implementation of the meaningfulness constraint. The volume metric could be used to
perform matching between the actual model and the stored one, while the constraint of minimal
reconstruction is used to prune the actual reconstruction from exceeding parts, discarding those with
the poorest matching degree. Obvioudly, translation, rotation and scale of the perceived model is
required to perform matching, so the entire procedure can be regarded as a sort of 3D alignment.

Matching with a normalized model of the object and interactive viewpoint change can aso used in the
case of novel object discovery, when the robot has first to create a new model. In this case, the robot
could learn by some different examples, refining the stored model in an adaptive way, till it works for
an aslarge as possible class of similar objects.

Another future extension of the system is the creation of a genera framework where a minimal
reconstruction is obtained taking into account the a priori probability distribution of different
segmentation outcomes. In this scenario, global perceptual features will be also used to segment data
instead of searching only for concavities. The obtained probabilities, in turn, will affect the
superquadric fitting scheme.
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As a fina remark, it is to be noted that the presented system is inspired by some psychological
considerations, as stated before, but it is essentially grounded on computer vision techniques. The
creation of an experimental set-up to perform comparisons between human and artificia abilities in
providing the structural description of an object in terms of its composing parts is no doubt an
interesting activity. In particular, it will be of interest to verify if the artificial system is able to discover
parts in the object that are similar or are the same of those selected by a human being. From the
segmentation ability depend the model selection the symbolic description of the object. In the case of
similar segmentation outcomes, the human and the robot will be able to share the same symbolic
description of the object, thus allowing their communication interface to be more flexible and efficient.
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APPENDIX A: THEORETICAL REMARKS ON SNAKES

A snake is adeformable curve that moves in the image under the influence of forces related to the local
distribution of the gray levels. In this case gray levels have the meaning of depth values. When the
snake reaches an object contour, it is adapted to its shape. Formally, a snake as an open or closed
contour is described in a parametric form v(s)=(x(s), y(s)) where x(s) and y(s) are the coordinates along
the shape contour and sisthe normalized arc length ranging in the [0 ,1] interval.

The snake model defines the snake energy of a contour as:

1

E e () = FE o () + e (o)

0

The energy integral is a functional since its variable s is a function (the shape contour). The internal
energy Ei, isformed from aTikhonov stabilizer and is defined by:

2

d?(s)
ds® |

2

+ b(s)

£, 0(0) =als| 2

ds

The first order continuity term, weighted by a(s), let the contours behave elastically, whilst the second
order curvature term, weighted by b(s), let it be resistant to bending. For example, setting b(s)=0 at
point s, alows the snake to become second-order discontinuous at point and to generate a corner. The
image functional determines the features which will have a low image energy and hence the features
that attract the contours. In general, this functional is made up by three terms:

Eimage =W1E1 +WeEe +W,E,

where U denote a weighting constant. The three terms account for lines, edges and end points energy
respectively. In the current implementation, the snake is initialized as an open curve following the
junction region contour, while the only term used in Ej.. is the edge functional that has been
implemented using a suitably defined operator searching for the junction region minima. When there
are no minima, the operator searches for those points with a significant difference between left and
right local gradient. This choice is justified by the shape of a generic junction region that is either a
valey or is made by two rather smooth pieces of surface z(x, y) and z,(x, y) intersecting along aline
whose points (x;, v;) are such that Nz;(x;, v)) £ Nzs(x, y1).
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FIGURE CAPTIONS

Fig.1. From left to right. An example of good (minimal and meaningful) reconstruction; a non-minimal
reconstruction; a non-meaningful reconstruction.

Fig. 2. Some superquadrics encompassing different shapes. From top to bottom and from left to right,
the two form factors take the values: 0.1, 0.5, 1.0, 1.5, 2.0.

Fig. 3. A 2D example of the geometry of the data set projection onto the smallest enclosing sphere.

Fig. 4. An example of deformation of the data set and of the error surface for a synthetic range image of
acylinder: =0, 5, 10, 20. For simplicity only the two form factors have been let free to change.

Fig. 5. Three examples of reconstruction using both minimization algorithms along with the value of
epr. From left to right: the original model, reconstruction with Levenberg-Marquardt and the PCG
based method.

Fig. 6. The MT approach to segmentation. From left to right: the input range image, junction region,
junction pointsfitted by the snake, model fitting of the two parts of the object.

Fig. 7. Some examples of the whole procedure using different data sources (true range data, and shape-
from-shading image). For each row: input data, contours and snakes (in gray) to perform segmentation,
fina reconstruction..

Fig. 8. Recovery of the model for the same data set under three different viewpoints (t,s) varying the
metric for epr. For each row: the model recovered using the metric by Solina, Gross and Boult, Whaite
and Ferrie. The parameters of the original model (depicted in the first row) arel ix=[0.8, 1.5, 3, 4, 5].

Fig. 9. Recovery of the model for two different data sets, varying the number of shrinking steps. For
each row the original model and those recovered after 1, 2, 5, 10, 20, 50, 100 shrinking steps are
reported.

Fig. 10. Plot of the index 7 vs. the number of shrinking steps N, for the first model depicted in figure 9.
The minimum is attained approximately for N,=10.
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