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Abstract
It has been proved that the standard representation of water demand in a Water Distribu-
tion Network (WDN) leads to pipe head loss errors as well that the fully satisfied demand
regardless water pressure assumption is misleading. This follows that different algorithms
have been developed in order to overcome these two drawbacks although separately and
independently. Consequently, this paper introduces an alternative formulation of the Global
Gradient Algorithm (GGA), referred to as UD-PD, which is able to solve uniformly dis-
tributed pressure driven demands along the pipes of a WDN in extended period simulations.
In addition, this new scheme is tested against reference solutions and its performances are
compared with the standard WDN models. Finally, the UD-PD is applied to a real WDN
under pressure deficit conditions. Numerical results show that the hydraulic heads computed
with the UD-PD result higher than those simulated with standard demand driven models and
that the UD-PD is able both to capture the non linear behavior of the hydraulic head along
the network and to correctly compute the flow inversion even in pressure driven conditions.

Keywords Water distribution network modelling · Uniformly distributed demand ·
Pressure driven demand · Global Gradient Algorithm

1 Introduction

Nowadays, the water scarcity scenarios (Jakob and Steckel 2016) and the effects of climate
change on water resources (Oki and Kanae 2006) drive the development of hydraulic tools
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able to correctly simulate Water Distribution Networks (WDNs). It can be argued that these
are mandatory steps in order to manage and prevent urban water crisis as recently recognized
by the European Environmental Agency and underlined by the Water Framework Directive
(Conte et al. 2012). In particular, more accurate models of pressures and flow rates inWDNs
are intent on properly support water system designs, rehabilitation plans and water demands
management strategies.

Since early 1930s, many network hydraulics solvers have been developed. Firstly,
Cross (1936) designed a scheme based on iterative solution of flow equations in looped
pipes. Afterwards, different authors applied the Newton-Raphson technique to calculate
water flows and hydraulic heads in both opened and closed networks (Epp and Fowler
1970; Boulos and Altman 1991; Murty 1972). It is only with Todini and Pilati (1988)’s
works that the researchers’ efforts arrived to a breakthrough when the so called Global-
Gradient-Algorithm (GGA) was developed. This scheme combines energy loss equations
and mass balance equations providing a simultaneous solutions for nodal head and pipe
flows. This method has become de-facto the standard for WDN solvers and was adopted
in the widespread and open-source program EPANET (Rossman 2000). Some examples of
EPANET diffusion in the scientific community as well in the WDN design and management
sectors can be found in Avesani et al. (2012), where EPANET is extended in order to simu-
late unsteady flow in water distribution networks with variable head tanks, in Ingeduld et al.
(2006), Ingeduld (2007), which uses EPANET to model both water intermittent water flows
and real-time demands forecasting in WDN. Specifically, a complete and historical review
about WDN solver methods can be found in Ormsbee (2006) and a survey on EPANET in
Rossman (2000).

Despite the utility and feasibility of the above schemes, they presents two limits: firstly,
water demands are modelled with lumped withdrawals at network nodes and not distributed
along pipes. This approximation does not preserve the energy balance along pipes and
leads to significant head loss errors, as reported in Berardi et al. (2010), Giustolisi and
Todini (2009). Secondly, standard hydraulic network solvers are not able to representWDNs
affected by pressure deficit conditions (Giustolisi and Todini 2009).

Consequently, in the past decade, the researchers’ efforts have been focused on the devel-
opment of proper extensions and alternative formulations of standard WDNs models in
order to overcome those two drawbacks. Starting with models able to correctly taking into
account actual demand along pipes, initially Giustolisi and Todini (2009) formulated a mod-
ification of the GGA able to simulate uniformly water demand along pipes in the so called
EGGA scheme. Afterward, Berardi et al. (2010) extended the EGGA to any empirical head
loss monomial formula and Menapace et al. (2018) developed an EPANET extension to
consider both node and uniformly distributed demand driven demands.

A second category of schemes involve instead models able to correctly consider pressure
demand driven although still at the individual node level. For example, Ang and Jowitt
(2006) presents a novel algorithm based on artificial reservoirs; Rossman (2007) introduces
pressure dependent demands using proper emitters and Kalungi and Tanyimboh (2003)’s
scheme recognizes the pressure dependency of water consumption in the solution procedure
by adjusting nodal flows. Other nodal pressure driven approaches instead are based on head-
flow relationship embedded in hydraulic network equations. Some examples can be found in
Giustolisi and Todini (2009), Tanyimboh and Templeman (2010) and Siew and Tanyimboh
(2012) in which a constitutive head-flow equation allows to compute the actual withdrawn
water in a node according to the nodal demand and pressure.
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Nevertheless, to the best of authors knowledge, none mathematical solution has been yet
formulated capable of representing distributed water demands and pressure deficit condi-
tions simultaneously. As a result, the aim of this paper is to developed a proper mathematical
formulation in order to model distributed pressure driven demand in a WDN. The paper
is organized as follows: Section 2 presents the mathematical model for the uniformly dis-
tributed pression driven head loss equation; Section 3 describes the new numerical model in
order to introduce the distributed pressure driven demand into the GGA scheme; in Section 4
the new scheme is compared with reference solutions and applied to real test cases; and
finally, Section 5 summaries the main finding and outcomes of the present paper.

2 Mathematical Model

In a real WDN, along each pipe, connections identify the exact location of water with-
drawals, due for example to residential or industrial water consumptions, while the main
pipes join in crossing sections which usually do not deliver water (Giustolisi et al. 2008).
Usually, the first ones are called internal nodes and the seconds structural nodes. An exam-
ple of representation of a pipe and its connections is reported is Fig. 1a. It has to be noticed
that the actual water withdrawals depend on available hydraulic pressure at the connection
point and could not fulfill the real water demands, as for example discussed in Tanyimboh
and Templeman (2010) or Wu and Clark (2009).

This follows that, in a formal mathematical formulation, the function representing the
water withdrawals along the generic ij -th pipe connecting the i-th and j -th nodes has to
be written as:

wij (h(x)) =
nw,ij∑

k=1

∫ ∞

−∞
wk (h(xk)) δ(x − xk); (1)

where x is the pipe linear coordinate whose origin is in the node i; wk is the k-th withdrawal
at the location xk; hk is the local hydraulic pressure in xk; nw,ij is the number of withdrawals
in the ij -th pipe; and δ is the Dirac delta function, whose definition can be found in Dirac
(1939). Thus, according to the Eq. 1, the total amount of water withdrawn in the ij -th pipe
assumes the following expression:

Wij,tot =
∫ Lij

0
wij (h(x)) dx;

=
∑nwij

k=1
wk (h(xk)) ; (2)

and the pipe discharge at the distance x from the initial node should be written as:

Qij (x) = Qij −
∫ x

0
wij (h(ξ))dξ ; (3)

where ξ is spatial coordinate, Qij is the flow of ij -th pipe in the node i-th. This follows
that the total amount of withdrawn water in the pipe ij -th, Wij,tot equals the total amount of
demand water in the corresponding pipe, i.e. Dij,tot = Wij,tot only when there is sufficient
pressure in each withdrawal points.

It has to be noticed that from a mathematical point of view both Eqs. 1 and 3 are discon-
tinuous functions. Specifically, Eq. 3 is a step function of general validity, which is able to
properly taken into account the flow direction along each pipes even when a flow inversion
occurs and Eq. 1 is a sampling function. It is obvious that this topological representation,
which is provided by Eqs. 1 and 3 and shown in Fig. 1, is correct and accurate although it
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Fig. 1 Schematisation of: a Actual pipe connections, water demands and water withdrawals; b standard
water withdrawas; c uniformaly demand driven water withdrawals; d uniformaly pression driven water
withdrawals

presents two drawbacks. First, the discontinuity in the flow and in the withdrawal force to
split the problem in a number of joint pipe equal to the number of connections. This increase
the complexity in the topological representation of the WDN reducing the computational
efficiency. Second, in real applications and network analysis there is the assumption of uni-
formly distributed water demands along the pipe due to the lack of information about the
actual connections and demands.

In order to overcome this problem and at the same time to preserve the network
topology, standard schemes, such as the GGA, adopt some important simplifications; the
water withdrawals are consider pressure independent, namely equal to water demands (i.e.
wij,k(h(x)) = dij,k), where dij,k is k-th point water demand in the ij -th pipe; and the total
water demand Wij,tot is equally split (Wij,tot /2) between the nodes i and j . This preserve
the mass balance and reduces the flow in each pipe to a continuous and constant function,
which reads as:

Qij (x) = Qij = Q̄ij . (4)

Thus, the head loss slope due to friction along a pipe in steady flow conditions read as

J (x) = − d

dx
h(x) = −rij (x)

∣∣Q̄ij

∣∣n−1
Q̄ij (5)
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where n ∈ [1, 2] depends on the chosen mathematical expression and rij is the. For example
in the standard Darcy-Weisbach formula n is set equal to 2, while in the Hazen-Williams
expression to 1.852 (Wu and Clark 2009). Furthermore, the term rij (x) is the resistance
coefficient which depends on the flow regime, on the pipe equivalent roughness, and on
the pipe diameter. However, in common practice, empirical formulations are adopted where
the unitary hydraulic resistance is assumed constant, i.e. rij (x) = rij , along each pipes and
independent from the flow regime. Thus the total head loss in the ij -th pipes is:

hi − hj =
∫ Lij

0
rij Q̄ij |Q̄ij |dx; (6)

which reduces to:
hi − hj = Rij Q̄ij |Q̄ij |n−1; (7)

where Rij = Lij rij .
On the other hand, following Giustolisi (2010), in case of pressure independent demand

uniformly distributed along the ij -th pipe it is easy to prove that:

Qij (x) = Qij − qij x; (8)

where qij is the non negative demand per unit length in the ij -th pipe and is equal to

qij = Wij,tot

Lij

. (9)

As in the node demand model, Eq. 8 results continuous, which implies that can be directly
integrated, and varies linearly along the pipe. This follows that the total head loss can be
directly computed as:

hi − hj =
∫ Lij

0
rij (Qij − qij x)|(Qij − qij x)|n−1dx;

= rij

qij

∣∣Qij

∣∣n+1 − ∣∣Qji

∣∣n+1

n + 1
; (10)

where Qji is the flow of ij -th pipe in the j -th node. As reported in Giustolisi and Todini
(2009), Giustolisi (2010), the Expression (10) preserves both mass and energy.

Nevertheless, in case of uniformly distributed pressure driven demand, the actual water
withdrawal is not constant, as in the uniformly distributed demand driven case, although it is
still a continuous function. As a result, the head loss in the ij -th pipe has to be rewritten as
presented in Eq. 11 in order to properly taking into account the water withdrawn dependency
on hydraulic pressure:

hi − hj =
∫ Lij

0
r(x)

(
Qij −

∫ x

0
wij (h(ξ)) dξ

) ∣∣∣∣Qij −
∫ x

0
wij (h(ξ)dξ)

∣∣∣∣
n−1

dx. (11)

It is worth noting that the Eq. 11 is a function whose solution depends on the function
itself and consequently admits a direct solution only in very simple cases: firstly, when the
withdrawal is null, which reduces (11) to nodal demand case; secondly when withdrawal is
constant, namely constant water demand, which leads to the Eq. 10. For sake of complete-
ness, Eq. 11 admits still a direct solutions when it assumes the Volterra integral formulation
(Press et al. 2007) which is nevertheless not applicable to the WDN equations.

Nevertheless, differently from the original (1), the wij function results now continuous
and differentiable. In particular it could be approximated within an iterative scheme like
those characterizing WDN hydraulic solvers. Therefore, the novel idea presented in this
paper is to developed a strategy in order to compute an approximate wij function which still



1722 A. Menapace, D. Avesani

allows a correct simulation of the head loss in a pipe. In particular, the core of the scheme
is borrowed from high order numerical Finite Element Methods (FEM) where high order
polynomials approximate the exact solution in each mesh element from the values computed
in the nodes of the mesh by the FEM solver.

3 The New Scheme for Distributed Pressure Driven Demand

In FEMs, the computational domain is divided in elements with nodes. According to the
approximation order, each element has additional nodes where the numerical solution has
to be computes. For example, Fig. 2a shows a two-dimensional domain divided in four ele-
ments, where each element has four additional nodes which allow to compute second order
polynomials in order to approximate the analytical solution of the problem. An example of
second order approximating function is reported in Fig. 2c.

As in the FEM-based schemes, WDN are made by nodes linked not with multidimen-
sional elements but with one dimensional element, i.e. the pipes, where an arbitrary number

grid
grid points
additional points

(a) Example of two dimesional finite element

grid.

n 1

n 2

n 3

water supply network
water supply network nodes
water supply network additional nodes

(b) Example of water supply system network.

η

ξ

first order basis function
second order basis function

(c) Example of one dimesional basis functions.

h 1

h 2

h 3

n 1 n 2n 3

piezometric head
first order piezometrix head approximation

(d) Example of piezometric head distribution.

Fig. 2 A comparison between finite element nodes displacment and water supply system junctions
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of additional nodes can be added in order to reconstruct the water withdrawal function,
known the pressure head in each nodes, as shown in Fig. 2b and d. It follows that, starting
from the classical Global Gradient Algorithm, each iterative step could provide the solution
of the hydraulic head both in water supply network nodes and in the pipes additional nodes.
After that, known the hydraulic head and chosen a proper head-flow relationship such as
those described in nodal pressure demand schemes, the withdrawal function along each pipe
of the network can be approximated.

Specifically, following the general FEM formulation, the actual water demand function
wij (x) along the ij -th pipe is approximated with a generic polynomial function w̃ij (x)

which reads as:

w̃ij (x) =
nd∑

l=1

w̃ij,lx
l−1; (12)

where the terms w̃ij,l denotes the set of unknown coefficients of the reconstruction poly-
nomial for each ij -th pipe and nd are the total number of point which have to be consider
in each pipes according to the polynomial order M . Namely, nd is equal to M + 1. It is
clear that nd include both the pipe initial node i and final node j . For sake of clarification,
Appendix A describes the general procedure to compute the unknown coefficient of the
reconstructed withdrawal function w̃ij (x) of arbitrary order of approximation and more in
details illustrates the case of second order appropriation.

Hence, according to the approximation given by the Eq. 12, the Eq. 11 can be re-written
as:

hi − hj =
∫ Lij

0
rij

(
Qij −

∫ x

0
w̃ij (ξ)dξ

) ∣∣∣∣Qij −
∫ x

0
w̃ij (ξ)dξ

∣∣∣∣
n−1

dx; (13)

which reduces to:

hi −hj =
∫ Lij

0
rij

(
Qij −

M+1∑

l=1

1

1 + (l − 1)
w̃ij,lx

l

) ∣∣∣∣∣Qij −
M+1∑

l=1

1

1 + (l − 1)
w̃ij,lx

l

∣∣∣∣∣

n−1

dx.

(14)
It is important to underline that Eq. 14 is directly integrable, different against Eq. 11, and
can be used to compute the head loss along the ij -th pipe connecting the i-th and j -th
node, known the flow Qij in the node i-th and the withdrawal along the pipe.

As a matter of fact, the head loss in the ij -th pipe is a known function H which can be
written as:

hi − hj = H
(
Rij , Lij , w̃ij,l , Qij

)
(15)

where the total piezometric head-loss, i.e. Δhij = hi − hj , depends on the resistance clo-
sure formula, on the length of the ij -th pipe and on the coefficients of the approximated
water demand function which has been computed at the previous iterative step. It worth not-
ing that the function H results continuous and differentiable and known once choosen the
appropriation order for the withdrawal function.

Consequently, it is possible to write the flow problem in a generic WDN as:
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where nij,l is the number of withdrawal polynomial points, nt is the total number of nodes
and nn is the total number of junction, i.e., the number of nodes where the piezometric head
is unknown. According to the standard formulation, Eq. 16a describes the head losses along
each pipe of the network and Eq. 16b represents the mass balance at each of the unknown
head nodes. On the other hand, differently from the origial formulation, the Eq. 16c has
been also introduced in order to properly compute the unknown pressure dependent with-
drawal function along each pipe. This follows that the System (16) is a non linear system of
equations which, as for the standard GGA scheme, can be linearized using the Taylor series
expansion.

Hence, the head loss equation at iteration step f + 1 is therefore written as:

Δhij

∣∣∣
Q

f +1
i

= Δhij

∣∣∣
Q

f
i

+
(
Q

f +1
ij − Q

f
ij

) d

dQij

Δhij

∣∣∣
Q

f
i

; (17)

Q
f +1
ij = Δhij

∣∣∣∣Qf +1
ij

(
d

dQij

Δhij

∣∣∣∣Qf
ij

)−1

−Δhij

∣∣∣∣Qf
ij

(
d

dQij

Δhij

∣∣∣∣Qf
ij

)−1

+Q
f
ij ; (18)

Simplifying the notation, the Eq. 18 is written as:

Q
f +1
ij = (h

f +1
i − h

f +1
j )a

f
ij − b

f
ij ; (19)

where

a
f
ij =

(
d

dQij

Δhij

∣∣∣∣Qf
ij

)−1

; (20)

and

b
f
ij = a

f
ij (h

f
i − h

f
j ). (21)

Therefore the final iterative schemes results:

which can be directly cast inside the GGA procedure where only one additional step in
the iterative procedure has to be considered. In order to facilitate the developed and the
explanation of the new scheme, we limit ourself to a general discussion of the method.
However, Appendix B reports the Equations in case of second order approximation for water
withdrawals, flow rate and head loss in a generic pipe. The coefficients for Taylor series
expansion are also derived.

4 Test Cases

In the following Section the new distributed pressure driven scheme is tested with reference
solutions and its effectiveness is compared with standard nodal demand scheme, nodal pres-
sure driven scheme and distributed demand driven scheme. Without loss of generality, in all
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the following test cases the Darcy-Weisbach equation has been used to model the head loss
and the following pressure demand-relationship is considered:

wk = qk

exp(α + βpk)

1 + exp(α + βpk)
; (23)

where pk = hk − zk with zk the local geodetic elevation. Moreover, α and β are defined
respectively as (Tanyimboh and Templeman 2010; Siew and Tanyimboh 2012):

α = −4.595pr − 6.907pmin

pr − pmin
; (24)

β = 11.502

pr − pmin
. (25)

In Eqs. 24 and 25, the term pmin is the hydraulic pressure below which outflow is zero and
pr is the pressure for full demand satisfaction. In addition, a second order of approximation
has been used in order to approximate the withdrawal function. For the sake of clarity, we
call hereafter the nodal demand driven scheme N-DD; the nodal pressure driven scheme N-
PD; the uniformly distributed demand driven scheme UD-DD; and the uniformly distributed
pressure driven scheme UD-PD.

4.1 Reference Test Case

The aim of this test case is to verified the present new UD-PD scheme with a reference
solution. In particular, the test consists in simulating the pressure and the flow rate in a
single dead-end pipe connecting two nodes, named i and j , where the hydraulic pressure in
the node i and the water demand are the only known variables of the problem. In order to
compare the solution obtained with the different methods the following reference solution
is considered: the ij pipe is divided with 100 nodes equally distributed which have a water
demand of 0.1 l/s. This follows that it is possible to solve the standard head loss equation,
where the flow rate is constant, for each section of the pipe and to apply the mass balance
in each nodes sequentially starting from the initial node i where the pressure is known.
In particular, it is possible to calculate in each node the actual withdrawal, which depends
locally on the pressure as described by the Eq. 23, and through an appropriate mass balance,
know the water passing through the next node.

Figure 3a and b show the comparison between the reference solution, the N-DD, N-PD,
UD-DD and UD-PD models for both the hydraulic heads and water flow along the pipe. It
can be observed that the new UD-PD scheme reproduces accurately the reference solutions
for both hydraulic pressure and water flow. On the contrary, the other schemes are not able
to represent the solution. As expected, the hydraulic heads computed with both the nodal
demand base models (i.e. N-DD, N-PD schemes) are linear and are not able to capture the
non linear behaviour of the solution. On the other hand, despite the hydraulic head computed
with the UD-DD model is cubic, according to Eq. 10, it still underestimates the reference
solutions. The same drawbacks can be found also in the water flow solution: the nodal base
model consider a constant flow along the pipe while the UD-DD reproduces a water flow
that varies linearly along the pipe. Also in this case, the UD-PD model is the only model
that correctly reproduces the reference solutions.
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Fig. 3 Comparison between different scheme for pressure (a) and flow (b) in a reference test case

4.2 Two Tank Test Case

In order to discuss the implications of the new UD-PD scheme, a simplify WDN is consid-
ered. It consists in two tanks, named T 01 and T 02, connected with three pipes (see layout
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and detailed report of the network in Fig. 8 and Table 1 of Electronic Supplementary Mate-
rial). In order to cover both demand driven and pressure deficit conditions, four scenarios
are simulated. In the first case, case(i), the water levels is set at 80 m for the tank T 01 and
70 m for the tank T 02 while in the second case, case(ii), the water levels are set at 30 m

and 20 m respectively for the tank T 01 and the tank T 02 (see Table 1 in Supplementary
Material). In both cases two water total demands are taken into account: Dtot,AB = 5 l/s

and Dtot,AB = 20 l/s. These configurations have been specifically chosen because they
allow to compare the presented UD-PD scheme, where the total water demand is uniformly
distributed along the pipe AB and is pressure driven, with both the standard uniformly dis-
tributed and demand driven schemes. In the N-DD, the total demand equally distributed in
both node A and B.

Figure 4 illustrates the hydraulic piezometric head along the network pipes and the node
A and B computed with the N-DD, UD-DD and UD-PD in the four scenarios. According
to withdrawal-head relationship in case(i) tank T 01 and tank T 02 are able to deliver all
the water demand and there are no pressure deficit conditions. Regarding the first config-
uration, Fig. 4a shows that: the tank T 01 supplies all the demand water; there is no flow
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Fig. 4 Case (i) configurations: a Dtot,AB = 5 l/s and b Dtot,AB = 20 l/s. Case (ii) configurations: c
Dtot,AB = 5 l/s and d Dtot,AB = 20 l/s



1728 A. Menapace, D. Avesani

inversion; and all the model are able to compute the same pressure in both nodes A and
B. As expected, the pressure along the pipe AB computed with the N-DD scheme differs
from the pressure derived with the UD-DD and UD-PD schemes. This differences has been
already discussed in Giustolisi et al. (2008), Giustolisi and Todini (2009) and consequently
no further details are here necessary. On the contrary, Fig. 4b shows negative grade of the
hydraulic pressure in the pipe B-T 02 computed with the UD-DD and UD-PD models when
the water demand increases to Dtot,AB = 20. This means that both tank T 01 and T 02 cover
the water requested in pipe AB resulting in a flow inversion in the pipe AB. This produce
a small difference between the pressure computed with the three different model which
amplify along the pipe. It is important to noticed that the hydraulic head computed with the
UD-PD scheme corresponds to the one computed with the UD-DD scheme in both water
demand scenarios proving that the new UD-PD scheme represents a generalization of the
UD-DD model.

Moving to case (ii), the pressure drops and the two tanks do not ensure enough pressure to
satisfy the water demand. This implies that the differences between the N-DD, UD-DD and
UD-PD models increase, as reported in Fig. 4c and d. Focusing on Dtot,AB = 5 l/s demand,

Fig. 5 a Hydraulic head of the Apulian WDN obtained with the UD-PD scheme; b normalized difference
between the heads obtained with the UD-DD and UD-PD schemes
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Fig. 4c shows that both distributed models simulate a non linear behaviour in the hydraulic
pressure along the pipeAB the pressure differs both along the pipes and in the nodes. On the
contrary, the pressure computed in the node A and B with the demand driven models results
similar in the nodes and differs from the one computed with the UD-PD. Similar to case(i),
both distributed models are able to capture the flow inversion even in case of Dtot,AB = 20
l/s although the pressure in the UD-PD results higher due the fact less water is withdrawn
in case of pressure driven demand. It worth to notice that this results are in agreement with
the conclusions presented in Section 4.1 and further underline the differences between the
UD-DD and the demand driven models in pressure scarcity conditions.

4.3 Case Study

This test case has two purposes: firstly, to show the applicability of the new UD-PD scheme
to a real network; and secondly, to demonstrate that the hydraulic head distribution could
considerable change when the distributed pressure driven demand is considered. As a con-
sequence, the new UD-PD method has been applied to a real WDN, known in scientific
literature as Apulian Network test case (Giustolisi et al. 2008) (see layout and detailed
report of the network in Fig. 9 and Table 2 of Electronic Supplementary Material). It has
to be underlined that the original nodal water demand presented in Giustolisi et al. (2008)’s
work are herein distributed along each pipe to enforce the differences between pressure and
demand driven simulations.

Figure 5a and b illustrate respectively the hydraulic head and the pressure along the Apu-
lian network computed with the UD-PD scheme. As it can be noticed, the higher hydraulic
head values are located near the network tank and they decrease as the the distance from
the tank increases. As expected, the hydraulic pressure results instead very low near the
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Fig. 6 Normalized difference between pipe water demand and pipe withdrawan water for each pipe
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Fig. 7 Comparison between different scheme for pressure (a) and flow (b) in a reference test case
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tank increases in the nodes adjacent to the tank and reaches again low values in the external
pipes of the network. This follows that, according to the pressure-flow relationship used in
these these test cases, there is not sufficient pressure to satisfy the water demands along the
network pipes. In particular, defying the following parameter:

η = Dij,tot − Wij,tot

Dij,tot

; (26)

it is possible to visualize in Fig. 6 the rate of the actual withdrawan water with respect to
the real demand water and to quantify the impact of the pressure driven simulation. It worth
noticing that according to the definition in Eq. 26 η ∈ [0, 1], where η = 0 in case that all
the water demand, in the selected pipe, is satisfied and η = 1 when no water is delivered.
Hence, in pipe 34, which is the pipe with the lowest pressure, η assumes a value very closed
to 1, meaning that almost all the demand is not satisfied. Correspondingly, in the pipes 13
and 14 η has a value close to 0.8 which means that only the 20% of the demand water is
withdrawn. As reported in Fig. 5c and a, pipes 13 and 14 are not only the pipes where the
both the pressures and hydraulic heads are lower but also where the differences between
the UD-DD and the UD-PD models are higher. On the contrary, in pipes 1, 6 and 18, where
both the hydraulic head and pressure are high, η decreases to a value of 0.56, 0.56. and 0.57
which denotes that almost the 40% of the demand is satisfied. In order to better underline
the differences between the UD-DD and UD-PD schemes Fig. 7a shows the hydraulic head
in the network noted computed with the two methods and Fig. 7b illustrates the hydraulic
heads along some external pipes of the network, which further illustrates that the UD-
PD even in a real WDN is able to capture both the non linear behaviour of the hydraulic
head along the network and to correctly compute the flow inversion in pressure driven
conditions.

5 Conclusion

This paper presents a new formulation of the GGA scheme in order to properly model uni-
formly pressure driven demand along pipes in a WDN. In particular, a new approximation
of the head loss equation, based on solving high order polynomial equation, is formulated
as well an additional step in the iterative Newton-Rapson scheme is introduced. In addi-
tion, the new uniformly pressure driven scheme is tested with reference solution to prove
its performance and accuracy. Furthermore applications to two WDNs illustrate some com-
parisons between the uniformly pressure driven scheme and the standard uniformly demand
driven scheme. These simulations underline that these two schemes, pressure and demand
driven, lead to the same results in case of sufficient pressure in a WDN. On the contrary,
the uniformly pressure driven scheme results into a higher nodal pressure and simultane-
ously a lower withdrawn water where the pressure is not sufficient to deliver all the demand
water.

The presented results make the new distributed pressure driven demand head-loss equa-
tion formulation within the GGA scheme an essential tool to properly simulate flow and
pressure in a WDN in pressure deficit conditions.
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Appendix A

The unknown wij,l coefficients of the approximated withdrawal are the analytical solution
of the following linear System:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

xnd−1
1 · · · · · · 1

...
. . .

... 1
... xnd−1

l

... 1
...

. . .
... 1

xnd−1
nd · · · · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

w̃ij,i

...
w̃ij,l

...
w̃ij,nd

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

wij (hij (x1))
...

wij (hij (xk))
...

wij (hij )xnd))

⎤

⎥⎥⎥⎥⎥⎥⎦
; (27)

where, according to pipe ij -th notations, x1 = 0 and xk = Lij . Specifically, considering
a second order approximation, the pressure driven water withdrawal function in the ij -th
pipe reads as:

w̃ij (x) = w̃ij,1x
2 + w̃ij,2x + w̃ij,3; (28)

which reduces the linear System (27) to:
⎡

⎢⎢⎢⎣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎣

w̃ij,1

w̃ij,2

w̃ij,3

⎤

⎥⎥⎦ =
⎡

⎢⎣
wij (hij (x1))

wij (hij (x2))

wij (hij (x3))

⎤

⎥⎦ ; (29)

and where (x1, x2, x3)
T = (0, Lij /2, Lij /2)T . The final coefficients are therefore:

w̃ij,1 = wij (hij (0)) + wij (hij (Lij )) − 2wij (hij (
Lij

2 ))

L2
ij

; (30)

w̃ij,2 = 3wij (hij (0)) + wij (hij (Lij )) − 4wij (hij (
Lij

2 ))

Lij

; (31)

w̃ij,3 = wij (hij (Lij )). (32)

http://creativecommons.org/licenses/by/4.0/
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Appendix B

Considering second order approximation, the pressure driven water withdrawal function in
the ij -th pipe reads as:

w̃ij (x) = w̃ij,1x
2 + w̃ij,2x + w̃ij,3; (33)

hence the water flow in ij -th pipe results as:

Qij (x) = Qij −
(
1

3
w̃ij,1x

3 + 1

2
w̃ij,2x

2 + w̃ij,3x

)
; (34)

According to the Darcy-Weisbach and under the hypothesis of fully turbolente hydraulic
regime, the hydraulic head loss between the i-th and the j -th node connected by the ij -th
reads as:

Δhij =
∫ Lij

0
rijQij (x)2dx;

=
∫ Lij

0
rij

(
Qij − 1

3
w̃ij,1x

3 − 1

2
w̃ij,2x

2 − w̃ij,3x

)2

dx;

= rij w̃
2
ij,1L

7
ij

63
+ rij w̃ij,1w̃ij,2L

6
ij

18
+ rijL

5
ij

5

(
w̃ij,3w̃ij,2

3
+ w̃2

k,2

4

)

+ rijL
4
ij

4

(
−2Qij w̃ij,1

3
+ w̃ij,2w̃ij,3

)
+ rijL

3
ij

3

(
−2Qij w̃ij,2 + w̃2

ij,3

)

−rij w̃ij,3QijL
2
ij − rijQ

2
ijLij ; (35)

Moreover, computing the water flow in the j -th node of the ij -th pipe according to Eq. 34
as:

Qji = Qij −
(
1

3
w̃ij,1L

3
ij + 1

2
w̃ij,2L

2
ij + w̃ij,3Lij

)
; (36)

the amount of the total withdrawal Wij,tot in the ij -th is:

Wij,tot =
(
1

3
w̃ij,1L

3
ij + 1

2
w̃ij,2L

2
ij + w̃ij,3Lij

)
. (37)

At this point, in order to simplify the annotation, we introduce the following definition:

Wij,d =
(
1

3
w̃ij,1L

2
ij + 1

2
w̃ij,2Lij + w̃ij,3

)
. (38)

and re-write Lij as:

Lij = Qij − Qji

Wij,tot

(39)
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Substituting Eqs. 36, 37 and 39 into 35 and taking into account the sign of the flows Qij

and Qji is possible to get the general formulation for the head loss in the ij -th pipe as:

Δhij = rij (|Qij |−|Wij,tot−Qij |)5
5Wij,d

(
2w̃ij,3w̃ij,1

3 + w̃2
ij,2
4

)
+

+ rij (|Qij |−|Wij,tot−Qij |)4
4W 4

ij,d

(
w̃ij,3w̃ij,2 − 2Qij w̃ij,1

3

) |Qij |−|Wij,tot−Qij |
||Qij |−|Wij,tot−Qij ||

+ rij (|Qij |−|Wij,tot−Qij |)4
(
w̃2

ij,3−Qij w̃ij,2

)

3W 3
ij,d

+
+ rij (|Wij,tot−Qij |−|Qij |)6(w̃ij,1w̃ij,2)

18W 6
ij,d

|Qij |−|Wij,tot−Qij |
||Qij |−|Wij,tot−Qij ||+

− rij (|Wij,tot−Qij |−|Qij |)7w̃2
ij,1

63W 7
ij,d

+
− rij |Qij |(|Wij,tot−Qij |−|Qij |)2w̃ij,3

W 2
ij,d

+ rij Q2
ij (|Qij |−|Wij,tot−Qij |)

Wij,d
.

(40)

According to the Taylor series discussed in Section 3, is it possible to derived the Eq. 40
with respect to the flow Qij , which resulting as:

d

dQij

Δhij =
(

rij
(|Qij | − |Wij,tot − Qij |

)4

W 5
ij,d

(
2w̃ij,3w̃ij,1

3
+ w̃2

ij,2

4

)

+ rij
(|Qij | − |Wij,tot − Qij |

)3

W 5
ij,d

(
w̃ij,3w̃ij,2 − 2Qij w̃ij,1

3

)

|Qij | − |Wij,tot − Qij |∣∣|Qij | − |Wij,tot − Qij |
∣∣

)(
Qij

|Qij | + Wij,tot − Qij

|Wij,tot − Qij |
)

−
(

rij
(|Qij | − |Wij,tot − Qij |

)4
w̃ij,1

6W 4
ij,tot

)
|Qij | − |Wij,tot − Qij |∣∣|Qij | − |Wij,tot − Qij |

∣∣

+
(

Rij

(|Qij | − |Wij,tot − Qij |
)4

w̃ij,1

4W 4
ij

)(
w̃ij,3w̃ij,2 − 2Qij w̃ij,1

3

)

(
Qij

|Qij | − Wij,tot − Qij

|Wij,tot − Qij |
)

+

Rij

(|Qij |−|Wij,tot −Qij |
)2(

w̃2
ij,3 − Qij w̃ij,2

)

W 3
ij,d

(
|Qij |−|Wij,tot −Qij |∣∣|Qij |−|Wij,tot −Qij |

∣∣

)

− rij
(|Qij |−|Wij,tot −Qij |

)3
w̃ij,2

3Wij,d

+ rij
(−|Qij |+|Wij,tot −Qij |

)6
w̃2

ij,1

9W 7
ij,d(

|Qij | + |Wij,tot − Qij |∣∣|Qij | + |Wij,tot − Qij |
∣∣

)
+ rijQij

|Qij |W 2
ij,d

(|Wij,tot − Qij | − |Qij |
)2

w̃ij,3

− 2rijQij

|Qij |W 2
ij,d

(|Wij,tot −Qij |−|Qij |
)
w̃ij,3

(
|Qij | + |Wij,tot −Qij |∣∣|Qij | + |Wij,tot −Qij |

∣∣

)
; (41)

whose inverse is the coefficient aij .
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