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This paper is based mainly on the relevant work [1]. In that paper the authors studied
the problem of clustering of different shapes using Information Geometry tools including,
among others, the Fisher Information and the resulting distance. Here we are using the same
methods but for the geodesics of the alpha connection for three different values of the alpha
parameter.
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1. The alpha connection and the
equations of the alpha geodesics

We are considering the 2D normal
distribution:
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Let ξ = (µ1, µ2, σ1, σ2). Then, if ∂i ≡ ∂
∂ξi

, the
Fisher metric is given by the formula [2] gij =
E(∂il∂jl) where l = l(x, y, µ1, µ2, σ1, σ2)
= log p(x, y, µ1, µ2, σ1, σ2) and the mean value
has been computed for the above 2D normal
distribution. We have found that

g = diag
[

1

σ21
,

1

σ22
,

2

σ21
,

2

σ22

]
. (2)

Next we have calculated the coefficients of the
alpha-connection from the following formula
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, (3)
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and consequently

Γ
(α)d
ab = gcdΓ

(α)
ab,c , (4)

where gcd are the corresponding elements of the
inverse matrix g−1. Then the equations of the
alpha geodesics ci = ci(t) are

d2ci
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+ Γ
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jk
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dck

dt
= 0 (5)

and the distance from one point
ξ = (µ1, µ2, σ1, σ2) to ξ′ = (µ′1, µ

′
2, σ
′
1, σ
′
2) along a

geodesic is given by the formula
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∫
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where c(t) = ξ and c(t′) = ξ′.

2. Finding the geodesics
numerically

In order to find the geodesic c = ci(t)
from the point ξ = (µ1, µ2, σ1, σ2) to the point
ξ′ = (µ′1, µ

′
2, σ
′
1, σ
′
2), we suppose
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for i = 1, 2, 3, 4. I.e. we assume the Taylor
expansion of ci for up to the second order.

From the equations of geodesics we have
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so the above expansion takes the form
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with c(0) = ξ.

In order to have an approximate expression
for the geodesic ci we want to know the first order
derivatives at t = 0. These can be computed if we
demand

ci(1) = ξ′ = (µ′1, µ
′
2, σ
′
1, σ
′
2) , (10)

so we have a non-linear system of four equations
with four unknowns which we solve numerically.
Finally,
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∫ 1
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3. Numerical study

The use of Information geometry tools for
clustering shapes has already been considered in
several papers [3, 4] However, so far only the
Fisher Information and the Wasserstein distance
has been evaluated. In order to evaluate the
cluster recovery and to test our algorithms
using the alpha-geodesic and the corresponding
distance defined on the statistical manifold, we
consider a modified Gaussian perturbation model
where the jth configuration is obtained as follows:

Xj = (µgj + Ej)Γj + 18γ
T
j , (12)

where j = 1, . . . , 40 and

• µgj = µ1 for j = 1, . . . , 20 , µgj = µ2
for j = 21, . . . , 40 are mean values from
the data of the rat calvarial data set
[5], corresponding to the skull midsagittal
section of 21 rats collected at ages of 7(µ1)
and 14(µ2) days;

• Ej are 8x2 random error matrices simulated
from the multivariate Normal distribution
with mean value zero and covariance
structure ΣE ;

• Γj is an orthogonal rotation matrix with
angle θj = j 2π40 ;

• 18 = (1, 1, 1, 1, 1, 1, 1, 1)T ;

• γTj = (γ1j , γ2j) with γ1j , γ2j real numbers
uniformly produced in the range [−2, 2].

Three types of covariance matrix ΣE are
considered as described in [1]:

• Isotropic with ΣE = σI8
⊗
σI2;

• Heteroscedastic with
ΣE = diag(σ1, . . . , σ8)

⊗
σI2;

• Anisotropic with ΣE = σI8
⊗

diag(σx, σy)
with σx 6= σy.

The two types of algorithms (type I and
type II) are described in [1] in details. In
type 0 algorithm we have considered constant
covariances (equal to 13) for the calculation of
alpha distances. For each covariant structure we
simulated only 5 samples and, for each sample, we
computed the adjusted rand index.

In Figures 1, 2, 3 we can see the
adjusted rand index for three different clustering
algorithms, an index close to 1 for the best
clustering results or to 0 otherwise. In the so-
called round case we have the same constant
covariance when measuring the length of the
alpha geodesic. In type I and type II we allow the
variances to vary during the clustering procedure.
We see that the best clustering method is for type
I algorithm [1], in which the covariance over the
rat data is taken into account and for the values
0.7 and 0.8 of alpha. The picture is similar for all
cases, that is, for the isotropic, the heteroscedastic
and the anisotropic case.
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4. Further extensions of this work

This is a preliminary study. Obviously, to
have better results, we need a bigger number
of samples. Besides, a better Taylor expansion
probably would help. Finally we have to study
the behaviour of the above geodesics and the
related distance under similarity transformations.
All these will be an object of a future work.
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