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Abstract: Wastewater treatment (WWT) is a foremost challenge for maintaining the health of ecosys-
tems and human beings; the waste products of the water-treatment process can be a problem or an
opportunity. The sewage sludge (SS) produced during sewage treatment can be considered a waste to
be disposed of in a landfill or as a source for obtaining raw material to be used as a fertilizer, building
material, or alternative fuel source suitable for co-incineration in a high-temperature furnace. To this
concern, this study’s purpose consisted of developing a decision model, supported by an Artificial
Neural Network (ANN model), allowing us to identify the most effective sludge management strat-
egy in economic terms. Consistent with the aim of the work, the suitable SS treatment was identified,
selecting for each phase of the SS treatment, an alternative available on the market ensuring energy
and/or matter recovery, in line with the circular water value chain. Results show that the ANN
model identifies the suitable SS treatments on multiple factors, thus supporting the decision-making
and identifying the solution as per user requirements.

Keywords: waste-treatment process; sewage-sludge management; circular economy; decision sup-
port system; decision problem; artificial neural network

1. Introduction

Climate change is a global crisis that has forced a more sustainable development of
resources planning, analyses, and policymaking regarding the valorization of the limited
resources on earth. The sustainability of industrial activities has now become crucial for
many firms [1]. To this concern, increased awareness concerning greenhouse gas (GHG)
emissions evaluation, mainly carbon dioxide (CO2), methane (CH4), and nitrous oxide
(N2O), was observed in recent years. In this context, the wastewater (WW) sector plays a
crucial role in identifying needs, barriers, and new strategies to face the future’s expected
challenges [2]. According to Chai et al., the emissions due to the WWT are the sixth largest
contributors to methane (CH4) emissions and the third largest sources of nitrous oxide
(N2O) emissions, respectively [3]. Meanwhile, the management of the SS generated from
WWT is one of the most controversial issues of modern cities. If, on the one hand, the new
advanced WWT available on the market and the forced implementation of the European
Directive 91/271/EC ensure a higher quality of the effluent treated, then, on the other hand,
the amount of the SS produced in the process is significantly increasing. Recent studies
showed that, in the last fifteen years, the EU-12 annual production of the SS increased
by almost 50%, from 9.8 million tons in 2005 to over 13 million tons in 2020. The lack of
continuity among official reports and the relevant lack of data for the new Member States
further complicate the study of this topic [4].

The “Green Impact” was introduced to indicate all activities aiming at measuring and
minimizing the negative effects on the environment [5]; traditionally, SS has been disposed
of in landfills without prior treatment. The consequent impact on the environment of this
waste and the uncontrolled generation of pollution dangerous to human health led the
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authorities to adopt a sustainable growth policy. To address these problems, the European
Union has set the target to reduce the final waste disposal by 35% in 2016 (compared to
2000) in all Member States (EU Directive 99/31). Therefore, in recent years, the interest and
request for new and more efficient SS management methods have exponentially increased.

According to Smol et al., the traditional water value chain should be rethought, re-
thinking how to use resources to create a sustainable economy, which is “free” of waste and
emissions [6]. In other words, the authors consider as not sustainable a linear approach
on the WWT, where the SS is considered waste. The authors, on the contrary, promote
a “circular approach” (Figure 1), where the SSs produced are resources for agriculture,
pharmaceutical and personal care products, renewable energy production, and co-firing as
construction materials.
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In this scenario, promoting sustainability as operational strategy is considered a win-
win strategy [7]. Therefore, the choice regarding the SS treatments, made in the context
of a wastewater treatment plant (WWTP), has a significant impact. On the one hand, this
choice must be consistent with the objective of environmental sustainability and rethinking
of the wastewater value chain in a circular perspective, and, on the other hand, it must
be economically sustainable. It is estimated, indeed, that the costs associated with the
processing and the management of SS constitute 50% of the annual operating costs of a
WWTP [8]. Making a choice that is consistent with these two aspects, however, is highly
complex. According to Bertanza et al., indeed, SS decision problems can be defined as
“wicked” problems, i.e., problems involving multidisciplinary aspects, such as economic,
social, technical, and regulatory aspects, and a large number of stakeholders with often
conflicting interests, interacting with each other in a fragmented network that is not clearly
defined. As a result of this high degree of complexity and lack of clarity, the decision-makers
tend to simplify the problem and take wrong decisions which optimize none or only some
of the aspects to consider. Consequently, it is necessary to support the decision-makers
with the target to facilitate the decision-making process concerning the SS treatments, thus
allowing for a multi-objective optimization of the processes.

Consistent with the observations mentioned above, to fully investigate the research
problem, the following subsidiary research questions are raised:

• Which SS treatments are available on the market and which combination of these can
be considered more efficient in economic terms and consistent with a circular water
value chain?

• What are the key drivers that affect the SS treatment efficiency?
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• Does any tool exist to support decisions regarding SS treatment and to guarantee an
effective management of SS?

Hence, the purpose of the study consisted of developing a decision model, supported
by an Artificial Neural Network (ANN model), allowing us to identify the most effective
sludge management strategy in economic terms. Consistent with the aim of the work,
the suitable SS treatment was identified, selecting for each phase of the SS treatment an
alternative available on the market, ensuring energy and/or matter recovery in line with
the circular water value chain.

The rest of the paper is organized into the following sections: Section 2 details a
literature review on SS treatments and on the development of decision models for the
SS management. Section 3 describes the materials and methods adopted for the ANN
model development. The results and the discussions are given in Section 4. Implications to
practitioners, limitations, and future research directions are provided in Conclusions.

2. Literature Review

A systematic literature network analysis (SLNA) was adopted to identify the papers to
be investigated. All the search terms and their combinations were searched for in the title,
abstract, and keywords on Scopus, the largest scientific peer-reviewed literature database.
References [9,10] introduce the keywords used in the literature review. They are split into
three subsets:

• Subset 1: keywords related to SS treatment and its principal sub-processes (e.g., SS, SS
management, WWT, WW, etc.).

• Subset 2: keywords related to sustainability (e.g., circular economy, green, environ-
ment, greenhouse gas, etc.).

• Subset 3: keywords related to decision support systems (DSSs) in SS management
(e.g., decision theory, decision making, decision support techniques, etc.).

The keywords of Subset 1 and Subset 2 were combined with Subset 3 in the title,
abstract, or keywords.

No public year limitation was used, and all articles published in English were se-
lected from peer-reviewed journals indexed by Scopus; 24 papers were identified. Nine
manuscripts were collected, refining the research to consider only papers published
from 2014.

The authors’ keywords analysis of the collected papers allowed us to detect through
the co-occurrence network map (Figure 2) the scientific literature pattern covered by
available scientific studies. The keywords co-occurrence network map evaluation showed
that three clusters in published scientific studies could be identified. The first one is related
to SS treatments; the second one is focused on sustainability in WWT, as well as in SS
treatments; and the third one investigates the application of DSS to SSs management.

In the first cluster, Reference [11] introduced a new drying technology to reduce the
pollutants due to heavy metals in SS, allowing for the adoption of the same SS on the
agricultural lands as organic fertilizer rather than incineration or landfilling. An innovative
centralized SS management of the co-composting process with the purpose to reduce
the current economic and technological disadvantages of the individual treatment was
presented by Reference [12]; the authors proved the efficiency of the management solution
in terms of economically attractive physical–chemical characterization of SS treated, as
well as odor emissions.

The second cluster identified by the co-occurrence network map is related to sus-
tainability in WWT that SS treatment. An optimization problem solved by using a multi-
objective mixed-integer linear program that includes three possible options, namely co-
incineration, co-processing, and mono-incineration, was developed for the treatment of
the digested SS produced in the Canton of Zürich. The model combining material flow
analysis, process models, life cycle assessment (LCA), and mathematical optimization
techniques allowed for the improvement of the environmental impact of the selected
treatment. The sensitivity analysis results showed a reduction of environmental impact
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categories considered in the range of 2–6%, with a reduction of the energy consumption of
42% [9]. Life Cycle Assessment (LCA) is a widely used method for evaluating different
treatment alternatives, but it is focused on an environmental assessment, without consid-
ering other aspects (e.g., economic, technological, etc.). To this concern, Buonocore et al.
developed an LCA to compare the environmental performance of different alternatives
for the disposal of the WWT and the SS in a WWTP in Southern Italy. They considered
different scenarios with a progressively circular pattern, starting from the as-is scenario of
the WWTP considered, and observed, as expected, that the greater the circularity of the
strategy adopted, the lower the impact in different categories, such as the Global Warming
Potential, Freshwater Eutrophication Potential, and Human Toxicity Potential [13]. In
Reference [14], the LCA methodology was applied to identify the most environmentally
sustainable way to dispose of SS between fluidized bed incineration and a cement kiln
employing SS as a secondary fuel. Similarly, Wielgosinki et al. developed an LCA to
evaluate the environmental performance of SS incineration and to provide information for
improving the operating conditions of the treatment from an environmental sustainability
perspective [15]. Gourdet et al. applied the LCA methodology to evaluate the environmen-
tal impact of the technological parameters related to the SS treatments, considering the
thickening treatment, the anaerobic digestion with the cogeneration of heat and electricity,
the mechanical dewatering, and the spreading of the SS on agricultural land. They found
that the environmental performance of SS treatment could be improved by increasing
biogas production by reducing FeCl3 consumption for prior treatment to dewatering and
by identifying alternatives for handling SS return liquors [16].
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Concerning DSS in SSs management (i.e., third cluster), recently a process data analyt-
ics platform for adopting the soft sensors in waste-to-energy (WTE) plant was developed.
The platform uses machine learning methods coupled with big-data processing tools and
cloud computing technologies. The platform’s application allowed them to monitor the
process parameters to maximize the performance of the WTE plant [17]. A similar ap-
proach was adopted for the management of the healthcare waste disposal system. In this
context, a decision-making trial and an evaluation laboratory (DEMATEL) method were
developed to digitally connected healthcare centers, waste disposal firms, and pollution
control board. In this way, efficient monitoring of the entire waste supply chain improves
the performance under the environmental perspective [18]. A comprehensive decision
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model, including technical, environmental, economic, and social factors for the evaluation
of SS treatment strategies, was proposed by Reference [19]. The model was tested on a case
study of 500,000 inhabitants; the authors proved the model’s significant added value if it is
properly employed. Consistent with this aspect, the main limitations of the decision model
introduced were related to the user’s strong dependency. In other words, the user plays a
fundamental role in phases such as the data-collection process and result interpretation;
therefore, inexperienced users could yield meaningless outcomes even if using the tool in
a formally correct way. An et al. applied a Logarithmic Fuzzy Preference Programming
based Fuzzy Analytic Hierarchy Process (LFPPFAHP) and Extension theory to assess the
sustainability of three ways of SS management (i.e., composting, incineration, and resource
utilization). As a result, composting was defined as “Moderately Sustainable”, incineration
as “Not Sustainable”, and resource utilization as “highly sustainable” [20]. The adoption
of SS for energy production was faced in 2018, by Naqvi et al., in the study conducted;
an ANN model was employed to predict the thermal decomposition of high-ash sewage
sludge. The results achieved showed a good agreement between the experimental values
and predicted values [21]. The same method was adopted to predict the daily sewage
sludge quantity in WWTP; in this case, different ANN architecture was evaluated to in-
crease the prediction reliability. The minimum value of the root mean square error (RMSE)
and mean absolute error (MAE) was identified by adopting the six mother wavelet (W)
functions as preprocessor [22]. An ANN trained with back-propagation (BP) algorithm
and a generalized regression neural network model (GRNN) were compared to predict the
thin-layer drying behavior in municipal sewage sludge during hot-air forced convection.
The research proved a better performance of the BP model to predict the moisture content
of the sludge thin layer than the GRNN model [23].

The papers considered can be classified according to dimension evaluated (i.e., tech-
nological and economic), features of the method adopted, and possible application of
multiple-criteria decision-making (MCDM). A summary of the researches identified is
provided below (Table 1).

Table 1. Summary of the scientific research identified, classified according to dimension evaluated, features of the method
adopted, and possible application of multiple-criteria decision-making.

Reference Dimension MCDM Method Features

Tec. Ec. Env. Soc.

Vadenbo et al. [9] × ×
√

× ×
multi-objective
mixed-integer
linear program

Harder et al. [24] × ×
√

× × LCA-QMRA

Bertanza, Baroni and Canato [19]
√ √ √ √ √ Home-made solution

D-sight (PROMETHEE and GAIA)

An et al. [20]
√ √ √ √ √

LFPPFAHP and Ex-tension theory

Buonocore et al. [13] × ×
√

× × LCA

Gourdet et al. [16] × ×
√

× × LCA

Abuşoğlu et al. [14] × ×
√

× × LCA

Turunen, Sorvari and Mikola [10]
√ √ √ √ √

MAVT

Wielgosiński et al. [15] × ×
√

× × LCA

Durdević, Trstenjak and Hulenić [25]
√ √ √ √ √

AHP

Naqvi et al. [21]
√ √ √

× × ANN

Zeinolabedini and Najafzadeh [22]
√ √

× × × ANN

Huang and Chen [23] ×
√ √

× × BP-ANN
GRNN
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Table 1. Cont.

Reference Dimension MCDM Method Features

Tec. Ec. Env. Soc.

Laura et al. [26]
√ √ √ √ √

Multi-attribute analysis

Kacprzak et al. [8]
√ √ √ √ √

Multi-attribute analysis

Ren et al. [27]
√ √ √ √ √

DEMATEL

Note: technological (Tec.), economic (Ec.), environmental (Env.), and social (Soc.).

3. Materials and Methods

The SS treatment is mainly carried out to reduce the sludge weight and volume, and
to stabilize its biological part, leading to reduced disposal cost, environmental impact, and
risk of human health problems. The main phases of a SS treatment system (SSTS) can be
summarized in six steps (Figure 3).
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Figure 3. Summary of the unit operations for each phase of the SSTS. The ANN model neglects the
alternatives available to carry out the phases included in the boxes with the dashed line.

Many strengths and limitations are included for each alternative; the literature review
provides an interesting indication of the range of values possibly associated with each
unit process. In this section, only a synthetic overview of each alternative’s benefits and
limits is shown. If, on the one hand, multiple elements can lead the decision-maker to
a particular solution, then, on the other hand, the studies provide for different cases a
clear indication of the most effective sludge management strategy under the economic and
environmental perspective. The strengths and the limitations of alternatives considered are
independent of specific conditions related to the place where the plants are located. The
research conducted mainly focuses on the decision recommended by studies rather than
on the specific aspects that affected the decision-maker’s choice.
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The first one is thickening (Thi), which consists of increasing the solids concentration
of the SS. The most commonly used thickening processes include sedimentation (Th1) or
gravity thickening (Th2) or dissolved air flotation (Th3) or hybrid, i.e., Th2 and gravity
belt thickening (Th4) for primary and secondary sludge, respectively. The strengths and
limitations of each alternative are shown in Table 2.

Table 2. Strengths and limitations of all considered alternatives to carry out the thickening treatments of the modeled SSTS.

Phase Treatment Strengths Limitations

Phase 1
Thickening

(Thi)
Thickening in sedimentation (Th1) Low investment costs. Water treatment interruption due

to sludge removal.

Gravity thickening (Th2)

Moderate investment and
management costs.

Simple management of the process.
Storage capacity.

Long detention times.
It captures only

sedimentable solids.

Dissolved air flotation (Th3)
Reduced detention times.

Good reduction of
suspended substances.

Considerable investment and
management costs.

Gravity thickening for primary
sludge and gravity belt thickening for

secondary sludge (Th4)

The best treatment for both primary
and secondary sludge.

Good solids content in the sludge.
Storage capacity.

Hard management.

Once the sludge is thickened, four options are identified for the stabilization, allowing
us to reduce pathogens, eliminate odor, reduce organic matters, and prevent or inhibit
future decomposition. The possible operations considered by the proposed model are lime
stabilization (Sb1), aerobic digestion (Sb2), anaerobic digestion (Sb3), or hybrid (i.e., Sb3
for primary and Sb2 secondary sludge), Sb4. Below are summarized the strengths and
limitations of each described alternative (Table 3)

Table 3. Strengths and limitations of all considered alternatives to carry out the stabilization treatments of the modeled SSTS.

Phase Treatment Strengths Limitations

Phase 2
Stabilization

(Sbi)
Lime stabilization (Sb1)

Simple management.
Low sensitivity to toxic discharges.

Good removal of heavy metals.

High operating costs due to the
use of chemical reagents.

Production of high volumes
of sludge.

Aerobic digestion (Sb2)

Low investment and management costs.
Low sensitivity to external factors.
Low sensitivity to toxic discharges.

No production of bad odors.

Intake of oxygen from the
external environment is required.

Sensitivity to climatic changes.

Anaerobic digestion (Sb3)

Intake of oxygen from the external
environment is not required.

Low energy consumption.
Low production of stabilized sludge.
High reduction of the pathogens in

the sludge.
Energy recovery.

Very high investment and
management costs.

Hard process management.

Anaerobic digestion for primary
sludge and aerobic digestion for

secondary sludge (Sb4)

Lower energy costs.
Only primary sludge is subjected to

anaerobic digestion.

Complex management of
the processes.

The third step of the SS treatment consists of sludge dewatering through facilities such
as drying beds (Dw1), filter press (Dw2), or belt press (Dw3), or through centrifugation
(Dw4). The proposed ANN model does not consider the existing technologies related to
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compositing (Co) and thermal drying (Td) (i.e., Phases 4 and 5) of the SS treatment. The
strengths and limitations of each alternative considered for dewatering, compositing, and
thermal drying are summarized in Tables 4 and 5, respectively.

Table 4. Strengths and limitations of all considered alternatives to carry out the dewatering treatments of the modeled SSTS.

Phase Treatment Strengths Limitations

Phase 3
Dewatering

(Dwi)

Drying beds dewatering
(Dw1)

Low investment costs.
Low employment of highly

specialized workers.
Low energy and chemical

reagents consumption.
Low sensitivity to sludge characteristics.

High usage of area of land.
The sludge must be previously stabilized.
Climatic factors must be considered for

the sizing of the system.

Belt press dewatering
(Dw2)

Low energy consumption.
Low investment and management costs.

Simplicity of construction
and maintenance.

Good dry content of the treated sludge.

Production of bad odors.
High sensitivity to sludge characteristics.

Automatic management is not
recommended.

Dimensional reduction of the
influent sludge.

Filter press dewatering
(Dw3)

High dry content of the treated sludge.
Moderate solid concentration in

the filtered.

Discontinuous functioning.
High investment and management costs.
Special support structures are required.

High usage of space.
Highly specialized workers are required.

Centrifugation
(Dw4)

Good containment of bad odor emissions.
Quick start and stop.

High dry content of the
dewatered sludge.

Specific maintenance required.
Sand removal and sludge size

reduction required.
Need for highly qualified workers.

High investment costs for
medium-small plants.

Table 5. Strengths and limitations of all considered alternatives to carry out the composting and thermal drying treatments
of the modeled SSTS.

Phase Treatment Strengths Limitations

Phase 4
Composting

(Co)

Good correction and fertilization capacity of
the compost.

Good level of stabilization.
Compost can be stored better than sludge.

Material recovery.

Need to use a filler.
In some cases, high management costs.

Production of bad odors.

Phase 5
Thermal drying

(Td)

Very high dry content of the sludge.
Very high reduction of volume and weight of

sludge.
Need to dewater sludge before treating it.

The ANN model provides information about the necessity to perform (yes) or not
perform (no) the operations included in these phases.

Finally, a set of three alternative operations was evaluated for the disposal of the
treated sludges; the firsts two alternatives consist of spreading of the not-dewatered
(Dp1) or dewatered (Dp2) sludge on the agricultural land. The third possible alternative,
evaluated by the ANN model, consists of the incineration of the treated SS (Table 6).

The input parameters of the ANN model are plant capacity (PC), typology of sec-
ondary treatment (St) of the WWT, and the configuration of the SS treatment plant (CSp).
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Table 6. Strengths and limitations of all considered alternatives to carry out the disposal treatments of the modeled SSTS.

Phase Treatment Strengths Limitations

Phase 6
Disposal

(Dpi)

Spreading of not dewatered
sludge on agricultural land (Dp1)

Low investment costs.
Material recovery.

Soil correction and fertilization.
High transport and storage costs.

Spreading of dewatered sludge
on agricultural land (Dp2)

Low transport and storage costs.
Material recovery.

Soil correction and fertilization.
High investment costs.

Incineration (Dp3)

Almost complete elimination of water.
Almost complete stabilization.

Suitable also for the treatment of
fresh sludge.

Energy recovery.

Very high investment and
management costs.

Very hard management.
Need to strongly dewater the

sludge before treating it.
Need to manage fumes.

The PC is an input that mainly evaluates the economic feasibility of treatment for a
specific plant. For small–medium plants, the choice of treatments with high management
and investment costs is not economically sustainable; thus, a more convenient solution is
provided. The St parameter allows us to consider the chemical–physical characteristics
of the SS. The type of secondary treatment of the WW in the water line determines the
features of the sludge produced that will be subjected to treatment. If St = 1, the SS derives
from activated sludge secondary treatment and has physic–chemical characteristics that
make it suitable for biological treatments. On the contrary, if St = 0, the SS derives from
secondary chemical treatment, which uses lime as the primary reagent, and it is not suitable
for biological treatments. Consistent with CSp parameters, two kinds of configurations of
the treatment plant were evaluated: the first one was on a “single line”, which means that
the primary and the secondary SS were processed together on the same plant. The second
one was identified as “separated line”; in this case, two different plants were adapted to
treat the primary and secondary SS. Similarly, this parameter allows us to consider the
different chemical–physical characteristics of the primary and secondary sludge mixed and
separated, thus allowing us to identify the most suitable treatment.

In Table 7 are shown the typology and the range evaluated for each parameter. The
ANN model output parameter consists of providing for each phase (i.e., Thi, Sbi, Dwi, Co,
Td, and Dpi) the most effective strategy in economic terms.

Table 7. List of the input parameters of the ANN model.

Input Parameter Unit of Measurement Range Typology

PC (PE)

#1: [0, 5E3]
#2: [5E3, 10E3]

#3: [10E3, 20E3]
#4: [20E3, 100E3]
#5: [100E3, +∞]

Class

St (#) 0: chemical treatment
1: activated sludge Binary

CSp (#) 0: single line
1: separated line Binary

The output of the ANN model consists in an array “R” (Equation (1)), including six
variables (ri) defined in Equations (2)–(7).

R = {r1, r2, r3, r4, r5, r6} (1)
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where we have the following:

r1 : {Th1, Th2, Th3, Th4} (2)

r2 : {0, Sb1, Sb2, Sb3, Sb4} (3)

r3 : {0, Dw1, Dw2, Dw3, Dw4} (4)

r4 : {0, 1} (5)

r5 : {0, 1} (6)

r6 : {Dp1, Dp2, Dp3} (7)

Each variable of the R-array represents a suitable alternative to adopt for each phase
of the SSTS. The value “zero”, in the case of r2 and r3, means that one or both treatments
(i.e., stabilization and dewatering, respectively) could be not needed.

The ANN was adopted to support the model to provide, given a set of input pa-
rameters, the suitable alternative for each treatment step (output). A framework of the
ANN model developed is provided in Figure 4. A sample of 300 data composed of input
and output parameters was collected for the ANN design. The sample includes scien-
tific researches and full-case studies, where, for each work conducted, the most effective
strategy was suggested to manage the SS. In other words, the sample collects a set of
input–output couples that “teach” the ANN how to reproduce, given a specific input set,
the correct output.
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Figure 4. Framework of the ANN model adapted from Reference [28].

The sample adopted for the ANN training was extracted from the literature, validated,
and integrated with other cases (around 10% of the sample size) collected by considering the
experts’ opinion. The set was split into training, validation, and test subsets, corresponding
to the sizes of 210, 63, and 27 data, respectively. No extracted date were rejected by the
experts. The approach developed is consistent with recurrent neural networks (RNN).
A supervised learning algorithm based on the backpropagation (BP) was adopted, and
a gradient-based optimization algorithm was used to update the network’s weights to
decrease the loss. The sigmoid and rectified linear unit (ReLU) activation functions were
tested; the first provided more reliable predictions. However, it required data preprocessing
based on the “along channel normalization” to improve the performance of the activation
function. The trial-and-error approach was used to identify the ANN’s proper architecture;
the best fitness score was obtained by adopting an ANN with one hidden layer with
27 neurons, as outlined in Figure 5. Table 8 summarizes the main characteristics of the
designed ANN.
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hidden layer (hi) with 27 nodes, and one output layer (yi) with six output nodes (i.e., r1, r2, r3, r4,
r5, and r6) (adapted by Fernández-Cabán et al., “Predicting Roof Pressures on a Low-Rise Structure
from Freestream Turbulence Using Artificial Neural Networks”).

Table 8. Summary of the ANN characteristics.

Characteristic Value

Dataset (Training, Validation, Testing) 210-63-27

Architecture (Input/Hidden/Output) 3-27-6

Structure RNN

Activations Sigmoid

Gradient update rules Stochastic gradient descent

The ANN was designed and trained by adopting TensorFlow library in Python. ANN’s
learning process was performed on a MacBook equipped with a 1.6 GHz Intel Core i5
CPU and 4 GB RAM by using a plug-in of Microsoft Excel (i.e., Neuraltools). The average
computational runtime was about 4 h and 58 min; around 1.25E8 epochs was required to
minimize the loss.

The values assumed by PC affect the decision on the threshold of economic conve-
nience with referring to aerobic and anaerobic digestion.

The results obtained considering all the constraints for each phase and the related
considerations are shown in the next section.

4. Results and Discussions

The developed ANN model was tested on 20 possible scenarios, identified considering
out-of-sample data. In other words, no data, already adopted to train, validate, and test the
ANN was considered in this phase. The scenarios considered are generated on different
combinations of the input values (i.e., PC, St, and Csp), while experts suggested the actual
output values (i.e., r1, r2, r3, r4, r5, and r6). The values assumed from the predicted values
of r1 (Thi), r2 (Sbi) and r3 (Dwi), given r6 = 1 (Dp1), excluding compositing and thermal
drying treatment (r4 = r5 = 0), were compared with actual values corresponding to the
recommended strategies for SS management. The graphs showed a good consistency of
predicted values by ANN, as shown in Figure 6; in most cases, the ANN allows us to
identify the same alternatives suggested by “experts” for each phase.
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Figure 6. Comparison between predicted values (a) of output parameters (r1, r2, r3) and actual values
(b) of same parameters, evaluated in case of spreading r6 = 0 (not-dewatered sludge on agricultural
land) and r4 = r5 = 0.

The reliability of the designed ANN was tested on the same dataset, evaluating all
output parameters obtained by considering different features. Most representative error
parameters (i.e., Mean error (ME), Mean Absolute Deviation (MAD), Means Squared
Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)),
showed a good performance of the ANN to predict the target variables (Table 9). In all
cases, the error is lower than twenty percent. The trend of ME and MAD showed that the
ANN is not affected by systematic errors. Although the MSE and MAE are generally good
(the average value is around 0.3), the performance decrees for the Dpi prediction. Probably,
the ANN has trouble identifying this value, since, in many cases, the same values of Dpi
are given for a different combination of the other features.

Table 9. Summary of the errors evaluated adopting the ANN on 20 cases identified by considering
out-of-sample data.

Target ME MAD MSE MAE MAPE (%)

Thi 0.143 0.286 0.429 0.286 13.69

Sbi 0.071 0.357 0.357 0.357 17.26

Dwi 0.214 0.214 0.214 0.214 9.52

Co −0.071 0.214 0.214 0.214 17.86

Td 0.071 0.214 0.214 0.214 14.29

Dpi 0.357 0.500 0.643 0.500 16.67

Average 0.131 0.298 0.345 0.298 14.88

It is possible to claim that the average errors identified can exclude an overfitting
problem. On the contrary, it should be better to evaluate the accuracy of the ANN adapting
a Multi-Layer Perceptron (MLP) architecture. If, on the one hand, this could lead to an
exponential increase in the running time, then, on the other hand, the performance could
be drastically improved.

The introduced ANN model was interfaced with a query developed by Microsoft
Office Visual Basic for Applications (VBA) version 7.1. Purely by way of example, two
numerical cases were tested to validate the tool’s effectiveness. The tool, as appears in
the screenshots shown below (Figures 7 and 8), is handy, and a user-friendly query was
designed. Only the information strictly required to query the ANN is included. In the first
case, the ANN model to identify the more efficient SS treatment in a plant with PC of 12E3
PE was questioned, with a single line’s configuration and providing a chemical treatment
as secondary treatment. The screenshot shown below provides the representation of the
input query of the tool (Figure 7).
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At the end of the elaboration process, the ANN model suggests a suitable alternative
for each phase of SSTS (Figure 8). The ANN model suggests the following phases: dissolved
air flotation (Phase 1), lime stabilization (Phase 2), filter press dewatering (Phase 3), no
composting (Phase 4), no thermal drying (Phase 5), and finally, spreading of dewatered
sludge on agriculture land for disposal (Phase 6).

In the second case, the SS treatment referred to a big plant (PC of 120E3 PE) with a
single line’s configuration, and providing an activated sludge as a secondary treatment
to ANN model is required. Consistent with this case, the ANN model leads to different
outputs. For this scenario, the ANN model suggests a gravity thickening, a stabilization
by anaerobic digestion, a filter press dewatering, thermal drying, and incineration. This
output is consistent with the results; indeed, anaerobic digestion and incineration, ensuring
high energy recovery, are suggested.

Among the theoretical possible alternatives given by different combinations of the
ri-elements, the ANN model has been tested on 20 feasible scenarios, considering a set of
input variables that stress the ANN model, evaluating cases very different from each other.

It is noted that, generally, for PC values included in the range of Class #1, the ANN
model suggests carrying out thickening in sedimentation, stabilization, and disposal by
spreading of not-dewatered SS on agricultural land. These suggestions are consistent with
the WWTP dimensions considered where high investment costs are not recommended.
Therefore, a stabilization treatment is suggested to ensure the SS’s safe handling and
disposal from an economic perspective. Generally, for PC included in the range of Classes
#2 and #3, the ANN model suggests a thickening treatment in dedicated systems, followed
by stabilization treatment, dewatering through natural systems, composting (in most
cases), and disposal of dewatered SS in agricultural land. In these cases, the mechanical
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dewatering systems or anaerobic digestion systems are excluded by the ANN model, since
they are considered not recommendable by experts. For PC included in the range of Class
#4, stabilization by anaerobic digestion, if applicable, is recommended. Indeed, if, on the
one hand, the anaerobic digestion treatment ensures high-performance in energy recovery,
then, on the other hand, the investment and the running cost are very high. Finally, for PC
included in the range of Class #5, the ANN model, in most cases, led to the adoption of
dewatering treatment, followed by thermal drying and incineration.

5. Conclusions

The work conducted consisted of developing an ANN model that aims to identify the
suitable SS treatment, based on a framework consisting of six steps and a predefined series
of alternatives for each step, to suggest a most effective sludge-management strategy in
economic terms. The developed ANN model was tested on 20 possible scenarios, identified
considering out-of-sample data. The results showed the ANN model’s effectiveness in
supporting the decision-makers in identifying the SS treatment to be adopted. As it can
be observed in Table 9, indeed, the application of the ANN to the 20 scenarios considered
presents an average ME of 0.131 and a MAPE of 14.88%. The alternatives considered for
each phase of the SS treatment are sustainable in economic terms. They are consistent
with a circular economy approach, where the SS should be considered a resource more
than a waste. The cases extracted from the literature review and the experts’ opinion
collected constituted a solid dataset to train the ANN to provide, by varying the input
parameters, the most effective sludge management strategy in economic terms. Most of
alternatives considered by ANN model allow for energy and/or matter recovery in line
with the circular water value chain.

The tool allowing the implementation of the ANN model is user friendly and is
free. The approach adopted lead to standardizing the decision-making process of the
management of the SS. The management of which is generally considered too complex and
with conflicting objectives and interests.

However, the ANN model requires a validation test on a full-real case study, as well
as an upgrading of the possible alternatives included for each phase. Consistently whit this
improvement, identifying the specific key performance indicators (KPIs) would quantify
the performance of the solutions proposed for each scenario, under an economic and
environmental perspective.

The results showed a good starting point to simplify the issues due to decision
problems in this research field. In this context, the Industry 4.0 technologies could support
the ANN model, providing a sensors network that improves the communication between
stakeholders and plant manager to have continuous monitoring of the process status and
by promoting a dynamical decision-making approach. In this case, the information on the
transport and storage phases should be considered, with the aim to provide an exhaustive
picture of the WWTP such as to ensure a minimal impact on the entire water value chain.

Considering the technical issues related to ANN model implementation, an improve-
ment of the current works could consist of integrating VBA with a database in HTML5;
thus, multiple applications could be used to support the ANN model.

Moreover, in this study are not considered aspects according to the concept of Triple
Bottom Line (TBL), meaning the balance of economic, environmental, and social factors
in corporate decision-making [29]. This represents a limit that could be challenged in
future studies. Similarly, more alternatives for each phase concerning disposal should be
considered to improve the effectiveness of the strategies proposed by the model.
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Abbreviations
Below a list of the abbreviations used in the manuscript is provided:

ANN Artificial neural network
BP Back-propagation
CH4 Methane
Co Composting
CO2 Carbon dioxide
Csp Configuration of the sewage sludge treatment plant
DEMATEL Decision-making trial and an evaluation laboratory
Dp1 Spreading of not dewatered sludge on agricultural land
Dp2 Spreading of dewatered sludge on agricultural land
Dp3 Incineration
Dpi Disposal
DSS Decision support system
Dw1 Drying beds dewatering
Dw2 Belt press dewatering
Dw3 Filter press dewatering
Dw4 Centrifugation
Dwi Dewatering
GHG Greenhouse gas
GRNN Generalized regression neural network model
KPI Key performance indicator
LCA Life cycle assessment
LFPPFAHP Logarithmic fuzzy preference programming based fuzzy analytic hierarchy process
MAD Mean Absolute Deviation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCDM Multiple-criteria decision-making
ME Mean Error
MSE Mean Squared Error
N2O Nitrous oxide
PC Plant capacity
PE Population equivalent
RMSE Root mean square error
Sb1 Lime stabilization
Sb2 Aerobic digestion
Sb3 Anaerobic digestion
Sb4 Anaerobic digestion for primary sludge and aerobic digestion for secondary sludge
Sbi Stabilization
SLNA Systematic literature network analysis
SS Sewage sludge
SSTS Sewage sludge treatment system
St Secondary treatment
Td Thermal drying
Th1 Thickening in sedimentation
Th2 Gravity thickening
Th3 Dissolved air flotation
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Th4
Gravity thickening for primary sludge and gravity belt thickening for
secondary sludge

Thi Thickening
VBA Visual Basic for Applications
W Wavelet
WTE Waste-to-energy
WW Wastewater
WWT Wastewater treatment
WWTP Wastewater treatment plant
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