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Global Stabilization of Large-Scale

Hydraulic Networks Using Quantized

Proportional Control ⋆

Tom Nørgaard Jensen. ∗ Rafa l Wisniewski. ∗

∗ Department of Electronic Systems, Aalborg University, Fredrik Bajers
Vej 7C, 9220 Aalborg Denmark. (e-mail: {tnj,raf}@es.aau.dk).

Abstract: An industrial case study involving a hydraulic network underlying a district heating
system is investigated. The flexible structure of the network calls for control structure which
is able to handle changes in the network structure. For this purpose a set of decentralized
proportional controllers have been proposed. These controllers make use only of locally available
information, and in order to make implementation of the control laws possible, the control signals
are required to be communicated across the network. To accommodate this a quantized version
of the control laws are considered, and the results show that the designed closed loop system
maintains its stability properties despite the structural changes introduced in the system.

Keywords: nonlinear systems, robust control, decentralized control

1. INTRODUCTION

The work presented here considers the investigation of
an industrial case study. The case study involves a large-
scale hydraulic network which underlies a district heat-
ing system. Specifically, the case study regards a new
paradigm for the design of district heating systems. By
reducing the diameters of the pipes in the network the heat
dispersion can be reduced, making it possible to reduce
the heat losses in the system by 20 % to 50 % (Kallesøe,
2007). Furthermore, the new paradigm allows for a more
flexible network structure, which calls for a new control
structure which is able to handle structural changes in
the network, such as the addition or removal of end-users
(Kallesøe, 2007). The case study is part of the ongoing
research program Plug & Play Process Control (Stoustrup,
2009), which considers automatic reconfiguration of the
control system whenever components such as actuators or
sensors are added to or removed from the system. The case
study has been proposed by one of the industrial partners
involved in the program.

A set of decentralized proportional control actions are
proposed to meet the control objective in the system,
which is to maintain the pressure across the so-called end-
user valves at a piecewise constant reference point. The
controllers use only locally available information, which is
the pressure measurement at each end-user.

Reducing the pipe diameter in the district heating system,
has the consequence that the pressure losses across the
pipes are increased. This is compensated by distributing
a number of (boosting) pumps across the network in
order to meet pressure constraints (Kallesøe, 2007). This
means that the actuators are geographically separated
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from the controllers, making it necessary to communicate
the control signals over a communication network. In order
to accomplish this, the control signals are quantized in the
sense that they are piecewise constant taking value in a
finite set. This makes it possible to send them across a
finite bandwidth network.

The result presented here shows that, given a properly
designed quantizer, the closed loop system with the quan-
tized control actions is globally attracted to a compact
set, which can be made arbitrarily small by a proper
design of the controller gains and quantization parameters.
Furthermore, since the result is independent of the number
of end-users in the system, the closed loop system will
maintain these stability properties whenever end-users are
added to or removed from the system.

The model of the system is introduced in Section 2. In
Section 3, the control objective is introduced along with
the proposed controllers and the quantization map. In
Section 4, the stability properties of the closed loop system
are analysed. Section 5 presents the result of numerical
simulations performed on the closed loop system. Finally,
conclusions are drawn in Section 6.

1.1 Preliminaries

• Throughout the following, C1 denotes the set of
continuously differentiable functions.

• A continuous function (map) is said to be proper if
the inverse image of a compact set is compact.

• A function f : R → R is called monotonically
increasing if it is natural order preserving, i.e., for
all x and y such that x ≤ y then f(x) ≤ f(y).

• M(n,m;R) denotes the set of n × m matrices with
real entries and M(n;R) =M(n, n;R).

• A > 0 means that A is a positive definite matrix, i.e.,
A = A⊤ and x⊤Ax > 0, ∀x 6= 0.



• A = diag(xi) means that A has entries xi on the main
diagonal and zero elsewhere.

• For two vectors a, b ∈ R
n, 〈a, b〉 denotes the Euclidean

scalar product.
• Br(x) = {y ∈ R

n | |y − x| < r}.

2. SYSTEM MODEL

In this section, the model of the large-scale hydraulic
network will be recalled. The model is fully described in
(DePersis and Kallesøe, 2009).

2.1 Component Models

The hydraulic network is comprised of three types of two-
terminal components: valves, pipes and pumps as well as
a number of interconnections between these components.
These components are characterized by dual variables, the
first of which is the pressure drop ∆h across them

∆h = hi − hj , (1)

where i, j are nodes of the network; hi, hj are the relative
pressures at the nodes.

The other variable characterizing the components is the
fluid flow q through them. The components in the network
are governed by dynamic or algebraic equations describing
the relation between the two dual variables.

Valves A valve in the hydraulic network is described by
the following algebraic relation

hi − hj = µ(kv, q), (2)

where kv is the hydraulic resistance of the valve; µ(kv, ·) ∈
C1 is proper and for any constant value of kv is zero at
q = 0 and monotonically increasing.

Pipes A pipe is described by the dynamic equation

J q̇ = (hi − hj)− λ(kp, q) (3)

where J and kp are parameters of the pipe; λ(kp, ·) ∈ C1

have the same properties as µ(kv, ·).

Pumps A (centrifugal) pump is a component which is
able to maintain a desired pressure difference ∆h across
it regardless of the value of the fluid flow through it. This
means that the constitutive law of the pump is

hi − hj = −∆hp (4)

where ∆hp is a signal, which for the purpose of the present
exposition, is viewed as a control input.

Typically, exact values of the parameters kv and kp are
not known but will be assumed to be positive and to take
values in a known compact set. Furthermore, the functions
µ(kv, ·) and λ(kp, ·) are not precisely known. Only their
properties of being in C1, proper, monotonic increasing
and zero for q = 0 will be guaranteed.

The varying demand for heating at the end-users in
the hydraulic network is modelled by a (end-user) valve
for which the hydraulic resistance can be changed in a
piecewise constant way. Thus, a distinction is to be made
between the end-user valves and the remaining valves in
the network. Likewise, a distinction is made between end-
user pumps and booster pumps in the network. The later
are pumps placed in the network to meet constraints on

the relative pressures across the network. The former are
pumps located in the vicinity of the end-user valves and
are mainly used to meet the demands of the end-users.

2.2 Network Model

The model of the hydraulic network has been derived by
using tools from circuit theory (DePersis and Kallesøe,
2009). The network is comprised of m components and
n end-users, where m > n. To the network is associated a
graph G, where the nodes of G coincides with the terminals
of the components and the edges of G coincides with
the components themselves. A vector of independent flow
variables is identified as the flows through the chords of
G. These flow variables have the property that they can
be set independently of all other flow variables in the
network. To each chord in G (i.e. to each independent
flow variable) a fundamental flow loop is associated. Along
each of the fundamental flow loops Kirchhoff’s voltage law
holds, which can be expressed as

B∆h = 0, (5)

where B ∈ M(n,m;R) is called the fundamental loop
matrix; ∆h is a vector consisting of the pressure drops
across the components in the network. The fundamental
loop matrix B consists of −1, 0, 1, depending on the
structure of the network.

The class of hydraulic networks which are considered here
satisfy the following two assumptions:

Assumption 1. (DePersis and Kallesøe, 2009) Each end-
user valve is in series with a pipe and a pump, as seen in
Fig. 1. Furthermore, each chord in G corresponds to a pipe
in series with a user valve.

Assumption 2. (DePersis and Kallesøe, 2009) There exists
one and only one component called the heat source. It
corresponds to a valve 1 of the network, and it lies in all
the fundamental loops.

Remaining network

Pump

Valve

Pipe

q
i

Fig. 1. The series connection associated with each end-
user.

Proposition 3. (DePersis and Kallesøe, 2009) Any hy-
draulic network satisfying Assumption 1 admits the rep-
resentation:

Jq̇ = f(Kp,Kv, B
⊤q) + u (6)

yi(qi) = µi(kvi, qi) , i = 1, 2, . . . , n (7)

where q ∈ R
n is the vector of independent flows; u ∈

R
n is a vector of independent inputs, which is a linear

combination of the delivered pump pressures; yi is the

1 The valve models the pressure losses in the secondary side of the

heat exchanger of the heat source.



measured pressure drop across the ith end-user valve (see
(2)); J ∈ M(n;R) and J > 0; Kp,Kv are vectors of
system parameters; f(Kp,Kv, B

⊤q) ∈ C1; µi(kvi, qi) is
the constitutive law of the ith end-user valve. In (7), it
is assumed that the first n components coincide with the
end-user valves.

Under Assumption 1 and Assumption 2, it is possible to
select the orientation of the components in the network
such that the entries of the fundamental loop matrix B
are equal to 1 or 0.

A sketch of a simple district heating system with a heat
source and two apartment buildings is illustrated in Fig.
2. The corresponding hydraulic network is illustrated in
Fig. 3. The two end-users are represented by the series
connections {c12, c13, c14} and {c5, c6, c7}. The heat source
is represented by the valve {c10} which models the pressure
losses in the secondary side of the heat exchanger of the
heat source.
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Fig. 2. A sketch of a small district heating system.
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Fig. 3. The hydraulic network diagram.

3. PRESSURE REGULATION BY QUANTIZED
CONTROL ACTIONS

This section introduces the control objective for the system
in question along with a set of proposed control actions to
accommodate this objective. Furthermore, a quantization
map is introduced, which lets the control signals be piece-
wise constant taking values in a finite set.

3.1 Pressure Regulation Problem

It is desired to regulate the pressure (yi) across the ith
end-user valve to a given reference value (ri) with the use
of a feedback controller using locally available information

only. The vector r = (r1, . . . , rn) of reference values take
values in a known compact set R:

R = {r ∈ R
n | 0 < rm ≤ ri ≤ rM} (8)

For the purpose of practical output regulation, a set of
decentralized proportional controllers will be the focus of
the work presented here. The controllers considered will
be of the form:

ui = −γi(yi(qi)− ri) , i = 1, 2, . . . , n (9)

where γi > 0 is the controller gain.

The controllers are decentralized in the sense that the
individual controller use locally available information only.
Thus, the control for the ith end-user uses information ob-
tained only at the ith end-user, which is the measurement
of the pressure across the end-user valve.

3.2 Quantization Map

This section describes the quantizers which will be used.
To that end, let l be a positive integer, ψ0 a positive real
number, δ ∈ (0, 1), and ψk = ρkψ0 for k = 1, 2, . . . , l with
ρ = 1−δ

1+δ
(i.e. ψk = 1−δ

1+δ
ψk−1). The following quantizer is

then proposed (DePersis et al., 2010):

Let ψ : R → R be the map

ψ(ui) =































ψ0 ,
ψ0

1− δ
< ui

ψk ,
ψk

1 + δ
< ui ≤

ψk
1− δ

, 0 ≤ k ≤ l

0 , 0 ≤ ui ≤
ψl

1 + δ
−ψ(−ui) , ui < 0

(10)
The parameters l, ψ0 and δ of the map (quantizer) are to
be designed.

Define Ψ : Rn → R
n as Ψ(u) = (ψ(u1), . . . , ψ(un))

⊤, then
the closed loop system with the quantized version of the
proportional control actions is given as

Jq̇ = f(Kp,Kv, B
⊤q) + Ψ(u) (11)

The piecewise constant map ψ(·) changes value whenever
the continuous control signal ui crosses some boundary,
as defined in (10). The control signal ui is governed by
the expression (9), where ri and γi are constant param-
eters. Thus, the quantized version (ψ(ui)) of the control
signal can be replaced with an expression depending on a
quantized version of the system output (Υ(yi)) such that

ψ(−γi(yi(qi)− ri)) = −γi(Υ(yi)− ri). (12)

To this end, the following quantized version of the output
yi(qi) is considered.

Define ǫi = yi − ri and let Υ : R → R be the map

Υ(yi) = ri +











































ψ0

γi
, ǫi >

ψ0

(1− δ)γi
ψk
γi

,
ψk

(1− δ)γi
≥ ǫi >

ψk
(1 + δ)γi

,

0 ≤ k ≤ l

0 ,
ψl

(1 + δ)γi
≥ ǫi ≥ 0

ri −Υ(ri − ǫi) , ǫi ≤ 0

(13)



Define Y : Rn → R
n as Y (y) = (Υ(y1), . . . ,Υ(yn))

⊤, and
Γ = diag(γi), then the closed loop system (11) can be
rewritten to

Jq̇ = f(Kp,Kv, B
⊤q)− Γ(Y (y)− r) (14)

since the identity in (12) is fulfilled.

The closed loop system in (14) has a discontinuous right
hand side. Solutions to this system will here be considered
in the sense of Krasovskii solutions.

Definition 4. (Bacciotti, 2004; Bacciotti and Ceragioli,
2006) A map ϕ : I → R

n is a Krasovskii solution of
an autonomous system of ordinary differential equations
ẋ = G(x), where G : R

n → R
n, if it is absolutely

continuous and for almost every t ∈ I it satisfies the
differential inclusion ϕ̇(t) ∈ KG(ϕ(t)), where KG(x) =
⋂

δ>0
coG(Bδ(x)) and coG is the convex closure of the set

G.

Here, I is an interval of real numbers, possibly unbounded.
If G(x) is Lebesgue measurable and locally bounded, the
operators K associates to G(x) a set valued map which
is upper semi-continuous, compact and convex valued. In
particular, for each initial state x0 there exists at least one
Krasovskii solution of ẋ = G(x) (Bacciotti and Ceragioli,
2006).

The Krasovskii solutions of (14) are absolutely continuous
functions which satisfy the differential inclusion (Paden
and Sastry, 1987)

Jq̇ ∈ f(Kp,Kv, B
⊤q)− Γ(K(Y (y))− r), (15)

where K(Y (y)) ⊆ ×ni=1K(Υ(yi)) and K(Υ(yi)) is given by

K(Υ(yi)) = ri +



























































ψ0

γi
, ǫi >

ψ0

(1 − δ)γi
ψk
γi

,
ψk

(1− δ)γi
> ǫi >

ψk
(1 + δ)γi

,

0 ≤ k ≤ l

∆
ψk
γi

, ǫi =
ψk

(1 + δ)γi
, 0 ≤ k ≤ l

0 ,
ψl

(1 + δ)γi
> ǫi ≥ 0

ri −K(Υ(ri − ǫi)) , ǫ ≤ 0
(16)

for all ∆ ∈ { 1−λδ
1+λδ

, λ ∈ [0, 1]}.

4. STABILITY PROPERTIES OF CLOSED LOOP
SYSTEM

In this section, the stability properties of the closed loop
system introduced above will be examined. Subsequently,
fK(·) will be used to denote f(Kp,Kv, ·). Furthermore,
a more specific class of functions will be used in the
expressions of µ(kv, ·) and λ(kp, ·). This more specific
class is motivated by the presence of turbulent 2 flows in
the system (DePersis and Kallesøe, 2009). The class of
functions, which will be considered, is the following

µi(kvi, xi) = kvi|xi|xi (17)

λi(kpi, xi) = kpi|xi|xi (18)

2 Since the motivation for considering the new paradigm is reducing

the diameters of the pipes used in the network, the likelihood for

turbulent flows increases.

First, let the map F : Rn → R
n be given as

F (z) = y(z)− Γ−1fK(B⊤z). (19)

Proposition 5. (Jensen and Wisniewski, 2010) For the
class of functions defined in (17) and (18), the map F :
R
n → R

n defined in (19) is a homeomorphism.

As a consequence of Proposition 5, there exists a unique
vector q∗ ∈ R

n for each vector of reference values r ∈ R
n,

and the relation between r and q∗ is

r = y(q∗)− Γ−1fK(B⊤q∗). (20)

This means that the expression for the closed loop system
given in (14) can be replaced by

Jq̇ ∈ f̃K(q̃)− Γ(K(Y (y))− y(q∗)) (21)

where f̃K(q̃) = fK(B⊤q)− fK(B⊤q∗).

The following change of coordinates is made

q̃ = q − q∗, (22)

and the (Lyapunov) function V : Rn → R is defined as

V (q̃) =
1

2
〈q̃, J q̃〉 . (23)

The time derivative of V (q̃) is then given as

d

dt
V (q̃) = 〈q̃, J q̇〉 (24)

d

dt
V (q̃) ∈

〈

q̃, f̃K(q̃)− Γ(K(Y (y))− y(q∗))
〉

(25)

d

dt
V (q̃) ∈

〈

q̃, f̃K(q̃)
〉

− 〈q̃,Γ(K(Y (y))− y(q∗))〉 (26)

It can be shown that the following inequality holds (Jensen
and Wisniewski, 2010)

w(q̃) ≡
〈

q̃, f̃K(q̃)
〉

< 0 , ∀q̃ 6= 0. (27)

Now, the properties of the second term on the right hand
side of (26) are examined. To that end, the parameter ψ0

of the quantizer is first designed such that

ri −
ψ0

γi
≤ yi(q

∗

i ) ≤ ri +
ψ0

γi
, i = 1, 2, . . . , n (28)

Remark 6. Since the output functions are monotonic in-
creasing and zero in qi = 0, the following inequality holds:

(qi − q∗i )(yi(qi)− yi(q
∗

i )) > 0, i = 1, 2, . . . , n. (29)

Now, consider two different situations for yi(q
∗
i ) (the

output of the system when q = q∗):

1) yi(q
∗
i ) is exactly equal to one of the quantization

levels.
This is the case if the parameters γi, ψ0, δ and l

are designed such that yi(q
∗
i ) = ri or such that there

exist some k ∈ {0, 1, . . . , l} so either yi(q
∗
i ) = ri +

ψk

γi

if yi(q
∗
i ) > ri or yi(q

∗
i ) = ri −

ψk

γi
if yi(q

∗
i ) < ri.

2) yi(q
∗
i ) lies between two quantization levels.

This is the case if for yi(q
∗
i ) > ri, either ri <

yi(q
∗
i ) < ri+

ψl

γi
or there exist some k ∈ {1, . . . , l} such

that ri+
ψk

γi
< yi(q

∗
i ) < ri+

ψk−1

γi
. Or if for yi(q

∗
i ) < ri,

either ri −
ψl

γi
< yi(q

∗
i ) < ri or there exist some

k ∈ {1, . . . , l} such that ri−
ψk−1

γi
< yi(q

∗
i ) < ri−

ψk

γi
.



First, consider situation 1). In the range where Υ(yi) =
yi(q

∗
i ), the following is fulfilled

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) = 0 (30)

and outside the above mentioned range

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > 0. (31)

If situation 1) is fulfilled for every i = 1, 2, . . . , n, then

−〈q − q∗,Γ(υ − y(q∗))〉 ≤ 0, ∀υ ∈ K(Y (y)), (32)

since Γ > 0.

This shows q = q∗ is a globally asymptotically stable
equilibrium point of the closed loop system, since

d

dt
V (q̃) ≤ w(q̃) < 0, ∀q 6= q∗ (33)

where d
dt
V (q̃) is given in (26) and w(q̃) is as defined in

(27).

A more realistic situation is that there exist some p ∈
{1, 2, . . . , n} (of course with a proper rearrangement of q)
such that situation 2) is fulfilled for q∗1 , q

∗
2 , . . . , q

∗
p.

Now, consider situation 2) for q∗i . Denote the bounds in
2) αi, βi such that αi < yi(q

∗
i ) < βi. Whenever yi(qi) is

outside the range (αi, βi)

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > 0. (34)

For a subset of the range (αi, βi) the sign of the product
above changes.

Thus for the set S = {q ∈ R
n | yi(qi) /∈ (αi, βi) , i =

1, . . . , p}, it can be guaranteed that d
dt
V (q̃) < w(q̃) < 0.

Define S1 = R
n \ S. For a given point in the set S1, there

exists an index s ≤ p (with a proper rearrangement of q),
such that

yi(qi) ∈ (αi, βi), i = 1, 2, . . . , s (35)

Since yi(qi) is proper, monotonically increasing and zero
in qi = 0, it admits a continuous inverse. Thus, the bound
on yi(qi) means that qi is also bounded. Therefore, there
exist some finite m > 0 such that

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > −m (36)

and consequently, for each point q ∈ S1, there exist a finite
M > 0 such that

s
∑

i=1

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > −M. (37)

Let MS1
> 0 be the bound which fulfils

s
∑

i=1

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > −MS1
, ∀q ∈ S1, (38)

which exists, since αi < yi(qi) < βi for i = 1, . . . , s.

Let the set S2 ⊂ S1 denote the set for which the following
holds

p
∑

i=s+1

(qi − q∗i )(Υ(yi)− yi(q
∗

i )) > MS1
. (39)

Note that q∗i is constant and Υ(yi) is bounded, thus
there exists finite qi such that (39) is fulfilled, since qi
is unbounded for i = s+ 1, . . . , p.

Thus in the set S2, the following inequality holds

−〈q − q∗,Γ(υ − y(q∗))〉 ≤ 0, ∀υ ∈ K(Y (y)), (40)

since Γ > 0.

Consequently d
dt
V (q̃) < w(q̃) < 0 on the set S2.

From the analysis above it is concluded that there exists
some compact set Q ⊂ R

n, where S1 \ S2 ⊂ Q, with the
property that all trajectories of the system is attracted to
Q.

Furthermore, whenever the initial conditions of the closed
loop system belong to a compact set, say Q, it can be
shown by applying Lyapunov arguments that practical
output regulation of the system is achievable. That is: for
any arbitrarily small positive number ε, and for any value
of the quantization parameter δ ∈ (0, 1) there exist gains
γ∗i > 0 and parameters l and ψ0 of the quantizer such that
for all γi > γ∗i , for any r ∈ R, any Krasovskii solution
q(t) of the closed loop system with initial condition in Q
is attracted by the set {ǫ ∈ R

n | |ǫi| ≤ ε, i = 1, 2, . . . , n},
where ǫi = yi−ri. The proof is similar to the one presented
in (DePersis and Kallesøe, 2010) and is left out for brevity.

Since the result is global, the basin of attraction of the
set Q is the entire state space R

n. Furthermore, since
the result is independent on the number n of end-users,
it will be possible to add or remove end-users in the
system while maintaining stability in the sense that for the
newly obtained system a compact set Q which attracts the
system trajectories will exist, given that (28) is fulfilled.

4.1 Quantization with Hysteresis

Using the quantizers defined in (13) may result in sliding
modes arising along the switching surfaces, resulting in
chattering and consequently the requirement for a large
bandwidth. However, it is possible to replace the quantizer
in (10) with an alternative for which it can be guaranteed
that no sliding modes will arise (DePersis et al., 2010).

Due to space limitations no explicit proof of stability of
the closed loop system using this alternate quantizer will
be provided here. However, the proof can be done by a
proper redefinition of the bounds αi and βi in the previous
section.

5. NUMERICAL RESULTS

A numerical simulation of the system in Fig. 3 in closed
loop with the proposed control has been performed, and
the results are shown in Fig. 4. The proportional con-
trol actions defined in (9) and the quantizers including
hysteresis has been used. A scenario, where the end-user
connection consisting of {c12, c13, c14}, has been removed
from and later re-inserted into the system has been sim-
ulated. The Figure shows that the end-user connection is
removed at time 300 s and re-inserted again at time 600 s.
The parameters used in the simulation are; γ1 = γ2 = 2,
δ = 0.5, ψ0 = 1 and l = 2. The reference values are
r1 = r2 = 0.5 Bar, which is indicated by the solid line in
the middle two plots in Fig. 4. Contrary to the result with
the continuous proportional control actions (Jensen and
Wisniewski, 2010), it is evident from Fig. 4 that a single
unique equilibrium point can generally not be achieved
when the quantized version of the proportional control
actions are used. For instance a limit cycle-type behaviour
is achieved for the single end-user system between time
300 s and 600 s.
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Fig. 4. Result of a numerical simulation of the two end-user system in Fig. 3. The figure shows control inputs u1 and u2,
the controlled variable dp4 and dp5, and the flow through valve c6 and c13 obtained with the proportional feedback
control. At time 300 s, the end-user connection consisting of {c12, c13, c14} is removed from the system. At time
600 s the end-user connection is re-inserted into the system.

6. CONCLUSION

An industrial case study involving a large-scale hydraulic
network underlying a district heating system was inves-
tigated. The results show that the closed loop system
using a set of quantized proportional feedback control
actions is globally stable in the sense that there exists
a compact set Q which attracts all system trajectories.
Furthermore, it has been shown that this set can be made
arbitrarily small by choosing a proper set of parameters
for the feedback controller and quantizer. Specifically, for
the result to hold, the bounds in (28) has to be fulfilled.
Since the result is global and independent on the number of
end-users in the system, a set Q with the above mentioned
properties will also exist for the newly obtained system if
it should be necessary to add or remove end-users to/from
the system. This, along with the decentralized nature
of the control structure, will make it easy to implement
structural changes in the system, while maintaining closed
loop stability.

Future extensions of the results presented in this paper,
will consist of an investigation of quantized proportional
controllers, which are constrained to deliver only positive
control signals. This is important since the (centrifugal)
pumps used in the network are only able to deliver pos-
itive pressure inputs to the system. Furthermore, it will
be interesting to investigate closed loop stability using
proportional-integral control actions in order to accom-
modate for the output regulation error, which is present
with the proportional control actions.
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