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Abstract. On the basis of least squares support vector machine regression 
(LSSVR), an adaptive and iterative support vector machine regression algorithm 
based on chunking incremental learning (CISVR) is presented in this paper. 
CISVR is an iterative algorithm and the samples are added to the working set in 
batches. The inverse of the matrix of coefficients from previous iteration is used 
to calculate the regression parameters. Therefore, the proposed approach permits 
to avoid the calculation of the inverse of a large-scale matrix and improves the 
learning speed of the algorithm. Support vectors are selected adaptively in the it-
eration to maintain the sparseness. Experimental results show that the learning 
speed of CISVR is improved greatly compared with LSSVR for the similar train-
ing accuracy. At the same time the number of the support vectors obtained by the 
presented algorithm is less than that obtained by LSSVR greatly. 

1   Introduction 

The support vector machine (SVM) is a novel learning method that is constructed 
based on statistical learning theory. The support vector machine has been studied 
widely since it was presented in 1995. It has been applied to pattern recognition 
broadly and its excellent performance has been shown in function regression prob-
lems. Training a standard support vector machine requires the solution of a large-scale 
quadratic programming problem. This is a difficult problem when the number of the 
samples exceeds a few thousands. Many algorithms for training the SVM have been 
studied. Osuua [1] proposed a decomposition algorithm and the quadratic program-
ming problem for standard SVM is divided into a serial small-scale quadratic pro-
gramming sub-problem. Focusing on the problem of the working set selection, 
Joachims [2] presented a SVMLight algorithm to implement the decomposition  
algorithm in [1] efficiently. A sequential minimal optimization algorithm (SMO) was 
proposed by Patt [3]. It transformed the quadratic programming problem for standard 
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SVM to the minimization quadratic programming problem that could be solved ana-
lytically. Suykens [4] suggested a least squares support vector machine (LSSVM) in 
which the inequality constrains were replaced by equality constrains. By this way, 
solving a quadratic programming was converted into solving linear equations. The 
efficiency of training SVM is improved greatly and the difficulty of training SVM is 
cut down. Suykens [5] studied the LSSVM for function regression further. Hao [6] 
proposed a chunking incremental learning algorithm for LSSVM to deal with classifi-
cation problem. In this paper, an adaptive and iterative support vector machine regres-
sion algorithm based on chunking incremental learning (CISVR) is presented. The 
support vectors are selected adaptively in the iteration to maintain the sparseness and 
the samples are added to working set in batches.  

2   Least Squares Support Vector Machine for Regression (LSSVR) 

According to [5], let us consider a given training set of l  samples l
iii yx 1},{ =  with the 

ith input datum n
i Rx ∈  and the ith output datum Ryi ∈ . The aim of support vector 

machine model is to construct the decision function that  takes the form: 

bxwwxf T += )(),( ϕ  (1) 

where the nonlinear mapping )(⋅ϕ  maps the input data into a higher dimensional 

feature space. In least squares support machine for function regression the following 
optimization problem is formulated 
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subject to the equality constraints 
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This corresponds to a form of ridge regression. The Lagrangian is given by 
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with Lagrange multipliers kα . The conditions for the optimality are 
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for li ,...,1= . After eliminating 
ie  and w , we could have the solution by the follow-

ing linear equations 
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where T
l

TT
lyyy ],...,[,]1,...,1[1,],...,[ 11 ααα === and the Mercer condition 

ljkxxxx jkj
T

kkj ,...,1,),()()( ===Ω ψϕϕ  (7) 

is applied. Set IA 1−+Ω= γ . If A is a symmetric and positive-definite matrix, A-1 

exists. Solving the linear equations (6) we obtain the solution  
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Substituting w in Eq. (1) with the first equation of Eqs. (5) and using Eq. (7) we have  
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where 
iα and b are the solution to Eqs. (6). The kernel function )(⋅ψ  can be chosen 

as linear function xxxx T
ii =),(ψ , polynomial function dT

ii xxxx )1(),( +=ψ or 

radial basis function }/exp{),( 22
2

σψ ii xxxx −−= . 

3   Adaptive and Iterative Least Squares Support Vector Machine 
Regression Algorithm Based on Chunking Incremental 
Learning   

3.1   Chunking Increment Procedure 

According to Eq. (6), set 

IAN
1−+Ω= γ      αα =N

    yy N =  (10) 

where N is the number of samples in current working set. Eq. (8) can be rewritten as 
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T)1,...,1(1= .When K new coming samples ),(),...,,(),,( 2211 KNKNNNNN yxyxyx ++++++ are added 

to the current working set, we could calculate the parameters according to Eq. (12) 
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where T)1,...,1(1 = , ),...,,( 1 KNNNKN +++ = αααα , ),...,,( 1 KNNNKN yyyy +++ = , 
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According to the algorithm in [6], the matrix 1−
+KNA in Eq. (12) could be calculated 

from matrix 1−
NA  and the inverse of a small KK×  matrix, that is  
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where 0 is a matrix whose elements are all zero. I is a unit matrix with K rows and K 
columns. In this way the calculation for the inverse of a large-scale matrix could be 
avoided. 

3.2   Decrement Procedure 

The number of support vectors will increase with the chunking increment procedure. 
To maintain the sparseness of support vectors, a decrement procedure is implemented 
after the chunking increment procedure. A support vector is omitted in this procedure. 
Meanwhile, a trained sample in the working set corresponding to the discarded sup-
port vector is also omitted. Form [7], ( )

kjiijl aA
≠

−
− =

,

1
1 ˆ can be calculated from ( )ijl aA ~1 =− , 

( )ijl aA =  and ( )
kjiijl aA

≠− =
,1

 in the decrement procedure, that is  
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where 1−lA  is a matrix obtained from 
lA  by omitting the kth row and the kth column. 

3.3   Steps of CISVR Algorithm 

Set the training sample set { }liRyRxyxssT i
n

iiiii ,,2,1,,),,(| =∈∈== . The 

form of the regression function is  
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where α and b are the regression parameters, W  is named working set whose ele-
ments are the training samples selected to calculate the regression parameters, and W~  
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is the regression parameters set which is decided by working set W . Set θ  is the 
precision in training and testing, the precision in stop criterion isε . 

Steps of CISVR algorithm are as follows: 

Initialization: set )},(),...,,{( 11 NN yxyxW =  and calculate 1−A analytically. Calculate 

W
~
 and 

W
xf ~|)( from Eqs. (8) and (9). Set k=0. 

for lNi ,...,1+=  do 

      adaptive learning 
1. read a sample ),( iii yxs =  

2. if  θ>− iWi yxf ~|)(  and Wsi ∉  then 

3.       }{ isWW ∪= ,  k=k+1 

4. end if 
5. if  k=K  then 

6.       calculate W
~

by chunking increment procedure 
7.       find the minimization support vector }{min* i

si
i

αα
W∈

=  

8.       *
ˆ \{ }

i
W W s=     //Ŵ is temporary working set 

9.       calculate )
~ˆ(W and temporary regression function

W
xf ˆ|)(  

// )
~ˆ(W is the temporary regression parameters set corresponding to the  

// temporary working setŴ  

10.       read a sample 1+is  

11.       if  θ≤− ++ 1)
~ˆ(1 |)( iWi yxf   then 

12.              WW ˆ=      )
~ˆ(

~
WW =  

13.       end if 
14.       k=0 
15. end if 

end for 
while the stop criterion is false do 

   for li ,...,1=  do 
     adaptive learning 
  end for 

end while 

The stop criterion is related to the objective value. The formulation of the objective 

function is 21
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when the relative error of objective values in the two adjacent iterations is smaller 
than a given precisionε . In the decrement procedure, the minimization support vector 
is omitted because it has least effect on the performance of the regression function. 

The matrix 1−A  in the current iteration is obtained from that in the previous iteration 
in both chunking increment and decrement procedure. In this way, it is possible on 
one hand to avoid calculating the inverse for a large-scale matrix and on the other 
hand to improve the learning speed of the procedure.  

4   Numerical Experiments 

In order to examine the efficiency of CISVR algorithm and compare CISVR with 
LSSVR algorithm, numerical experiments are performed using two kinds of data sets. 
One kind of data set is composed of the simply elementary functions which include 

)sin()( xxf =  and 2)( xxf = . These functions are used to test the regression ability for 

the known function. The other kind of data set is composed of Mackey-Glass (MG) 
system and simple function )(sin)( xcxf = . The MG system is a blood cell regulation 

model established in 1977 by Mackey and Glass. It is a chaos system 
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)400,0(∈t . The embedded dimensions are 8,6,4=n  respectively. The sample function 
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employed in these two algorithms. The parameters γ and σ are showed in Tab.1. The 

other parameters are as follows: 01.0,01.0 == εθ . The comparison between LSSVR  

 

Table 1. Parameters used in algorithm 

 sin square sinc MG 
system4 

MG 
system6 

MG 
system8 

γ  50000 30000 5000 50000 50000 50000 
LSSVR 1.0 1.0 2.0 2.0 2.0 2.0 σ  
CISVR 1.0 1.0 1.0 1.0 1.0 1.0 

and CISVR are showed in Tab.2, where the third column is the number of support 
vectors, the forth column is the seconds for training, and the fifth and seventh col-
umns are the regression accuracy for training and testing, respectively. The regression 
accuracy is a ratio that is the number of samples whose relative error is smaller than 
θ  to the number of samples in the working set (testing set). The sixth and eighth 
columns are the mean square error for training and testing, respectively. It can be seen 
from Tab.2 that the learning speed of CISVR is much faster than LSSVR. Moreover,  
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Table 2. Comparison between CISVR algorithm and standard LSSVR 

Dataset 

nl ×  
Algorithm 

name 
# of SVs 

Train time 
(CPU s) 

Accuracy 
(train%) 

MSE 
(train) 

Accuracy 
(test%) 

MSE 
(test) 

LSSVR 3000 1465.05 99.93 3.58e-009 99.87 4.19e-009 sin 
3000× 1 CISVR 56 4.44 99.96 9.31e-007 99.70 1.04e-006 

LSSVR 3000 1463.44 99.97 2.62e-005 99.97 2.49e-005 square 
3000× 1 CISVR 132 10.65 97.76 3.29e-003 97.73 2.85e-003 

LSSVR 3000 1448.28 99.93 8.23e-011 99.80 1.14e-010 sinc 
3000× 1 CISVR 53 4.984 99.83 2.87e-008 99.56 3.18e-008 

LSSVR 6000 11048.69 100 1.44e-008 100 1.49e-008 MG system4 
6000× 4 CISVR 16 52.35 100 6.65e-007 100 6.91e-007 

LSSVR 6000 12954.34 100 8.06e-009 100 8.48e-009 MG system6 
6000× 6 CISVR 14 55.64 100 9.67e-007 100 1.02e-006 

LSSVR 6000 13104.99 100 3.30e-009 100 3.28e-009 MG system8 
6000× 8 CISVR 10 54.92 100 1.08e-006 100 1.13e-006 

the number of support vectors is less than that obtained by LSSVR for the similar 
regression accuracy.  

5   Discussion and Conclusion 

In this paper we propose an adaptive and iterative support vector machine regression 
algorithm based on the chunking incremental learning and the least square support 
vector machine regression algorithm. The samples are added to the working set in 
batches. The support vectors are selected adaptively in the iteration and the sparseness 
of support vectors is maintained. Meanwhile, the inverse of matrix A in the previous 
iteration is used to calculate the regression parameters. Therefore, the proposed ap-
proach can avoid calculating the inverse of a large-scale matrix, and at the same time, 
substantially improve the learning speed compared to that of LSSVR for the similar 
regression accuracy.  
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