
Linear Algebra and its Applications 366 (2003) 233–255
www.elsevier.com/locate/laa

A superfast solver for Sylvester’s resultant linear
systems generated by a stable and an anti-stable

polynomial
L. Gemignani

Dipartimento di Matematica, Università degli Studi di Pisa, Via Buonarroti 2, Pisa I-56127, Italy

Received 26 April 2001; accepted 4 September 2002

Submitted by G. Heinig

Abstract

We develop a superfast method for the solution of (n+m)× (n+m) Sylvester’s resultant
linear systems associated with two real polynomials a(z) and c(z) of degree n and m, respec-
tively, where a(z) is a stable polynomial, i.e., all its roots lie inside the unit circle, whereas
c(z) is an anti-stable polynomial, i.e, zmc(z−1) is stable. The proposed scheme proceeds by
iteratively constructing a sequence of increasing approximations of the solution. It is based on
a blend of ideas from structured numerical linear algebra, computational complex analysis and
linear operator theory. Each iterative step can be performed in O((n+ m) log(n+m)) arith-
metic operations by combining fast polynomial arithmetic based on FFT with displacement
rank theory for structured matrices. In addition, the resulting process is shown to be quad-
ratically convergent right from the start since the approximation error at the j th iteration is

O(r2j ), where r = (maxa(αi )=0 |αi |)/(minc(γi )=0 |γi |) denotes the separation ratio between
the spectrum of a(z) and c(z). Finally, we report and discuss the results of many numerical
experiments which confirm the effectiveness and the robustness of the proposed algorithm.
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1. Introduction

Let a(z) = ∑n
i=0 an−iz

i and c(z) = ∑m
i=0 cm−iz

i be two real polynomials of de-
gree n and m, respectively. The Sylvester’s resultant matrix [1] R of order n+m

associated with a(z) and c(z) is defined as R = [Tm[a]|Tn[c]]T, where for any given
polynomial p(z) = ∑r

i=0 pr−iz
i with coefficient vector p = [pr, . . . , p0]T we de-

note by Tj [p]T the following j × (j + r) triangular Toeplitz matrix

Tj [p]T =




pr pr−1 . . . . . . p0 0 . . . 0

0 pr pr−1 . . . . . . p0
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 pr pr−1 . . . . . . p0


 . (1)

Devising efficient methods for the solution of Sylvester’s resultant linear systems
is a relevant issue in many diverse fields like computer algebra, control theory, signal
processing and data modeling [1,12,16,19]. Over the years, several fast and superfast
algorithms have been proposed which are based on the recursive properties of the
triangular factorization of Sylvester’s resultant matrices [2,12,14,16]. In a polyno-
mial setting, all these recursive schemes reduces to Euclidean-type recursions and
thus, due to the exponential growth of the coefficients of Euclidean remainders, they
generally suffer from ill-conditioning problems and numerical instabilities. On the
contrary, in this paper we present a new superfast solver which, to our numerical ex-
perience, results to be quite robust and effective when it is applied in finite precision
arithmetic.

Our approach works under some auxiliary restrictions on the spectrum of the
polynomials associated with the initial coefficient matrix. In particular, if a(z) and
c(z) are such two polynomials, then we assume that a(z) is stable, i.e., all its roots
lie inside the unit circle in the complex plane, whereas c(z) is anti-stable, i.e., the
reversed polynomial zmc(z−1) is stable. Systems of this form often arise also in many
relevant applicative and industrial problems where the primary focus is on the study
of process dynamics by means of numerical procedures. These typically include time
series analysis, Wiener filtering, noise variance estimation, covariance matrix com-
putations and the study of multichannel systems (see [1,11,17,18,27,36]). In all these
applications, stable and anti-stable polynomials are naturally introduced as numer-
ators and/or denominators of the transfer functions of the considered input–output
models (see [26] and the references given therein on the stability investigations of
polynomials and linear discrete-time systems).

Under the stability condition, we show that the matrix problem of solving a Syl-
vester’s resultant linear system can be reduced to the functional problem of determin-
ing certain central coefficients of the Laurent series of the reciprocal of the Laurent
polynomial p(z) = zna(z−1)c(z−1) in a given annulus around the unit circle. It is
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quite remarkable to note that p(z) = zna(z−1)c(z−1) defines the spectral factoriza-
tion of p(z) and, therefore, our precise goal is to reciprocate a Laurent polynomial
given as product of its spectral factors.

To accomplish this task, we use again the interplay between polynomial and struc-
tured matrix computations. We observe that the coefficients of the Laurent series of
the reciprocal of p(z) are the entries of the central column of the inverse of the
bi-infinite Toeplitz matrix T whose symbol is p(z). Hence, these quantities can be
iteratively approximated within an arbitrarily small error ε by using any method
for the numerical solution of bi-infinite banded Toeplitz systems. In this paper we
consider the cyclic reduction process, originally introduced in [13] for the solution
of partial differential equations and, more recently, adjusted in [3–7] for solving
several diverse computational problems modeled by infinite and bi-infinite banded
Toeplitz-like linear systems. However, differently from the previously mentioned
papers where the cyclic reduction gives the computational kernel of the considered
algorithms, here this factorization technique is theoretically exploited in order to
devise approximation schemes whose properties are largely independent of those of
cyclic reduction.

To be more specific, notice that the available coefficients of the spectral factors
of p(z) define a (block) triangular factorization—known as the Wiener–Hopf
factorization—of the initial guess T (0) = T . Starting from T (0) = T suitably par-
titioned into a block tridiagonal form, the cyclic reduction process generates a se-
quence {T (s)}s∈N of invertible block Toeplitz matrices in block tridiagonal form
quadratically converging to a block diagonal matrix from which the sought entries
can be retrieved. We provide a modification of this scheme where a block triangular
factorization of T (s) = L(s)D(s)U(s) is iteratively constructed starting from that one
of T . The updating relations for the block entries of L(s), D(s), and U(s) involve
the powers of the Frobenius matrices associated with the spectral factors. Moreover,
if D(s)

0 denotes the block diagonal entry of D(s), then a matrix formula is stated by

showing that (D(s+1)
0 )−1 can be generated directly from (D

(s)
0 )−1 and certain powers

of the Frobenius matrices associated with the spectral factors. In this way, we find

a simple rule for the iterative generation of {(D(s)
0 )−1}s . Since D(s)

0

−1
quadratically

approaches the Toeplitz matrix X formed from the sought coefficients of 1/p(z),
such rule leads to a matrix iteration for the reciprocation of factored Laurent poly-
nomials. The convergence is quadratic depending on the separation ratio r between
the spectrum of a(z) and c(z), r = (maxa(αi )=0 |αi |)/(minc(γi )=0 |γi |). Moreover, the

iteration is well-defined whenever D(0)
0 is nonsingular and, by a continuity argument,

it converges to X even if the cyclic reduction process applied to T breaks down at
some early stage.

While similar iterative schemes have already appeared in the engineering
literature for the numerical treatment of Lyapunov matrix equations [25] (see also
[22] for relations between the solution of Sylvester’s resultant linear systems and
the properties of Lyapunov matrix equations), our approach provides a unified
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and, hence, clarified derivation by highlighting several new connections between
the computation of X and the solution of quadratic matrix equations. Moreover,
we are able to show that all the matrices generated by the proposed iterative
process are Toeplitz-like in the sense that their displacement rank is upper bounded
by a small constant independent of n and m. Hence, our algorithm can be
efficiently performed by combining fast polynomial arithmetic using FFTs with
displacement representations of structured matrices, with a dramatic reduction of
its computational cost. Finally, our numerical experience indicates that it has quite
good stability properties.

The paper is organized in the following way. In Section 2 we describe the basic
reductions of the original matrix problem to computations with Laurent polynomials.
In Section 3 we introduce and analyze our modification of the cyclic reduction pro-
cess in order to compute certain coefficients of the Laurent series of the reciprocal of
a Laurent polynomial given by its spectral factorization. In Section 4 it is shown how
such a variant can efficiently be implemented by using fast polynomial arithmetic
and displacement theory for Toeplitz-like matrices. Finally, in Section 5 we report the
results of the numerical experiments performed with MATLAB whereas conclusions
and further developments are drawn in Section 6.

2. Polynomial counterparts of solving Sylvester’s resultant linear systems

Let a(z) and c(z) be two real polynomials of degree n and m, respectively, such
that

a(z)= a0

n∏
i=1

(z − αi) =
n∑
i=0

an−iz
i , ai ∈ R, a0 /= 0, 0 � |αi | < 1,

(2)

c(z)= c0

m∏
i=1

(z − γi) =
m∑
i=0

cm−iz
i , ci ∈ R, c0 /= 0, |γi | > 1.

For the sake of notational convenience, assume that the zeros αi and γi of a(z)
and c(z) are ordered so that

0 � |α1| � |α2| � · · · � |αn| < 1, 1 < |γ1| � |γ2| � · · · � |γm|. (3)

In this paper we address the problem of efficiently computing the solution x ∈
Rm+n of the linear system

xT[Tm[a]|Tn[c]]T = bT, b ∈ Rm+n, (4)

where for any polynomial p(z) = ∑r
i=0 pr−iz

i with coefficient vector p = [pr,
pr−1, . . . , p0]T the associated (j + r) × j triangular Toeplitz matrix Tj [p] is given
by (1).
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Remark 1. The coefficient matrix of (4) is called the Sylvester resultant matrix
generated by a(z) and c(z) [1] and its determinant can be explicitly expressed in
terms of the zeros of its polynomial generators, namely, det[Tm[a]|Tn[c]] =
am0 c

n
0

∏n
i=1

∏m
j=1(αi − γj ) [1]. Hence, the assumption (3) immediately implies that

the coefficient matrix of (4) is nonsingular and, therefore, for any fixed known vector
b, the solution x of (4) is uniquely determined. Moreover, up to a suitable scal-
ing of this solution vector, it can always be assumed that a(z) and c(z) are monic
polynomials with a0 = c0 = 1.

It is well known that (4) reduces to the solution of a Bezout polynomial equa-
tion defined by a(z) and c(z) [1]. To see this, let us first introduce the polyno-
mials x(z) = ∑n+m

i=1 xiz
n+m−i = x+(z)+ x−(z), where x−(z) =∑n−1

i=0 xn+m−iz
i ,

and b(z) = ∑n+m
i=1 biz

n+m−i which are defined by the coefficients of the solution
vector x = [x1, . . . , xn+m]T and by the coefficients of the known vector b = [b1, . . . ,

bn+m]T, respectively. Since Tj [p]q is the coefficient vector of the polynomial
q(z)p(z), then from (4) we obtain

a(z)zn+m−1x+(z−1)+ c(z)zn−1x−(z−1) = zn+m−1b(z−1),

which, after some algebra, yields

(zna(z−1))x̂+(z)+ c(z−1)zx−(z) = b̂(z), (5)

where x̂+(z) = z1−n−mx+(z) ∈ L0
1−m, b̂(z) = z1−mb(z) ∈ Ln

1−m, and Lr
s is the

vector space of real Laurent polynomials of the form
∑r

i=s piz
i , s � r , s, r ∈ Z. The

recursive solution of (5) by means of the Euclidean algorithm leads to a fast but un-
stable algorithm for solving (4). Below we employ a different solution method based
on the properties of the zeros of a(z) and c(z). Observe that (5) can equivalently be
rewritten as

x̂+(z)
c(z−1)

+ zx−(z)
zna(z−1)

= b̂(z)

zna(z−1)c(z−1)
, (6)

where g−(z) = zx−(z)/zna(z−1) is analytic in the domain G− = {z ∈ C : |z| <
1/|αn|} whereas g+(z) = x̂+(z)/c(z−1) is analytic in the domain G+ = {z ∈ C :
|z| > 1/|γ1|}. Therefore one has g−(z) = ∑∞

i=1 g
(−)
i zi ∀z ∈ G−, and g+(z) =∑∞

i=0 g
(+)
i z−i ∀z ∈ G+. Then, by replacing these expansions into the Eq. (6) we

find

∞∑
i=0

g
(+)
i z−i +

∞∑
i=1

g
(−)
i zi = b̂(z)

zna(z−1)c(z−1)
, ∀z ∈ G = G+ ∩G−.

The function h(z) = 1/(zna(z−1)c(z−1)) also possesses a Laurent expansion in
G, namely,
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h(z) = 1

zna(z−1)c(z−1)
=
∑
i∈Z

hiz
i, ∀z ∈ G, (7)

and, obviously the same holds for b̂(z)/(zna(z−1)c(z−1)). From the uniqueness of
the Laurent series of an analytic function in a given annulus [23], we may therefore
conclude that



h0 h−1 . . . . . . . . . h1−n−m

h1 h0 h−1 h2−n−m

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

hn+m−2 . . . . . . h1 h0 h−1

hn+m−1 . . . . . . . . . h1 h0







bn+m

...

bn+1

bn
...

b1




=




g
(+)
m−1
...

g
(+)
0

g
(−)
1
...

g
(−)
n




(8)

The observation that the coefficients of x+(z) and x−(z) can be retrieved from
g
(+)
0 , . . . , g

(+)
m−1 and from g

(−)
1 , . . . , g

(−)
n , respectively, finally leads to the following

procedure SolveSRLS for the solution of the Sylvester resultant linear system (4).

Procedure SolveSRLS

(1) Evaluate the central coefficients h−m−n+1, . . ., hm+n−1 of the Laurent expansion
of the reciprocal of zna(z−1)c(z−1).

(2) Compute the first m coefficients of g+(z) and the first n coefficients of g−(z) by
means of (8). Set g̃+(z) = g+(z) (mod z−m) and g̃−(z) = g−(z) (mod zn+1).

(3) Determine the coefficients of x+(z) such that x̂+(z) = z1−n−mx+(z) =
c(z−1)g̃+(z) (mod z−m). Analogously, find the coefficients of x−(z) by
zx−(z) = zna(z−1) g̃−(z) (mod zn+1).

Remark 2. In view of the relations at step 3 of Procedure SolveSRLS, it can be
shown that the matrix (hi−j ), 1 � i, j � n +m, on the left-hand side of (8) is non-
singular. In fact, if we assume that the converse holds, then there should exist a
nonzero vector b belonging to the kernel of (hi−j ). Corresponding to this vector,
one finds g̃+(z) = g̃−(z) = 0 from which it follows that x+(z) = x−(z) = 0 and,
therefore, x = 0. Clearly, this is in contradiction with (4).

Since the steps 2 and 3 of SolveSRLS essentially amount to perform polynomial
multiplications, for which fast schemes based on FFTs can be applied at the cost
of O((m+ n) log(m+ n)) arithmetic operations, it is quite obvious that the most
expensive computation of SolveSRLS is to be carried out at the step 1. Roughly
speaking, this means that, from a computational point of view, the previous proce-
dure reduces the solution of (4) to the evaluation of certain central coefficients of
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the Laurent series of the reciprocal of zna(z−1)c(z−1). We state below the precise
formulation of this latter computational problem:

Problem 1 [Reciprocation of Laurent polynomials in factored form]. Given an odd
integer k and two real Laurent polynomials zna(z−1) ∈ Ln

0 and c(z−1) ∈ L0−m such

that zna(z−1) = 1 +∑n
i=1 aiz

i = ∏n
i=1(1 − αiz) and c(z−1) = ∑m−1

i=0 cm−iz
−i +

z−m = ∏m
i=1(z

−1 − γi), where αi and γi satisfy (3), then compute the k central co-
efficients h−(k−1)/2, . . . , h(k−1)/2 of the Laurent series of the reciprocal of p(z) =
zna(z−1)c(z−1) in the annulus G = {z ∈ C : |γ1|−1 < |z| < |αn|−1}.

This problem is a specific instance of the more general issue of finding the central
coefficients of the Laurent expansion of the reciprocal of a Laurent polynomial hav-
ing no zeros on the unit circle in the complex plane. Since the zeros of zna(z−1) and
c(z) have modulus greater than 1, then the factorization of Problem 1 is called spec-
tral factorization of the Laurent polynomial p(z) [35]. Factorizations where factors
have zeros with modulus greater than 1 are particularly meaningful in the solution of
Markov chains of the M/G/1 type that model queueing problems [3,4,32]. Moreover,
spectral factors play a key role in many diverse problems of data modeling, control
theory and digital signal processing (see [1,17–19,27,36]).

In Section 3 we will first introduce a matrix analogue of the problem of recipro-
cating Laurent polynomials based on manipulations with bi-infinite Toeplitz matri-
ces (operators). Then, we will show that the knowledge of the spectral factorization
of the given Laurent polynomial can be exploited to produce effective computa-
tional schemes for solving Problem 1. By complementing Procedure SolveSRLS
with these algorithms, we thus obtain a family of composite methods for the effi-
cient solution of resultant linear systems generated by a stable and an anti-stable
polynomial.

3. A matrix iteration for the reciprocation of factored Laurent polynomials

This section is concerned with the problem of the reciprocation of Laurent poly-
nomials. We first provide a solution of the general problem based on the cyclic reduc-
tion process and, then, we specialize it for the more specific case treated in Problem
1, where the spectral factorization of the input polynomial is assumed to be known.

In view of the Cauchy integral representation of the Laurent coefficients of a
meromorphic function f (z) [23], one has that such coefficients could be numerically
evaluated by sampling f (z) in sufficiently many equidistant points on a circle and
then by applying a discrete Fourier transform. This approach was considered in [33]
and applied in [29] for the fast evaluation of contour integrals of rational functions.
An implementation of this scheme needs the preliminary selection of the number of
points and of the radius of the integration circle. Both of them are crucial parameters
for the convergence and for the computational performance of the resulting quadrature



240 L. Gemignani / Linear Algebra and its Applications 366 (2003) 233–255

procedure. A large number of points slows down the computation whereas big and
small radii can lead to numerical instabilities.

The approach taken here proceeds in a very different way without requiring any
critical initialization. Let p(z) = ∑n

i=−m piz
i ∈ Ln−m, p−m = 1, be the real Laurent

polynomial defined as in Problem 1 by p(z) = zna(z−1)c(z−1), where a(z) and c(z)
satisfy (2) and (3). Consider the application which associates the Laurent polynomial
p(z) with the bi-infinite band Toeplitz matrix T [p(z)] of symbol p(z), T [p(z)] =
(pi−j ) with pk = 0 if k < −m or k > n. Since p(z) is a continuous function with no
zeros on the unit circle, it follows that T [p(z)] defines an invertible bounded linear
operator acting on the Hilbert space #2(Z) of real square summable sequences w with
norm ‖w‖2 = ∑

k∈Z w
2
k . Moreover, the inverse of T [p(z)] is the bi-infinite Toeplitz

matrix T [1/p(z)] = (hi−j ), i, j ∈ Z, where hi are the coefficients of the Laurent
expansion (7) of 1/p(z). Then, the spectral factorization of p(z) induces a trian-
gular factorization of the corresponding bi-infinite banded Toeplitz matrix T [p(z)];
specifically, we find that

T [p(z)] = T [zna(z−1)]T [c(z−1)] = T [c(z−1)]T [zna(z−1)]. (9)

This factorization is usually referred to as the Wiener–Hopf factorization [10]
of T [p(z)] and the triangular factors T [c(z−1)] and T [zna(z−1)] are themselves
invertible operators in #2(Z).

As an application of the preceding results, now consider the solution of the linear
system

T [p(z)]X = E, (10)

where X and E are bi-infinite vectors with n+m columns ∈ #2(Z), X,E : Z →
R(n+m)×(n+m), with E(0) = I and, otherwise, E(j) = 0 for j /= 0. Thus, it can
easily be seen that X(0) = (hi−j ), 1 � i, j � n+m, is the matrix on the left-hand
side of (8) and, therefore, the first and the last column of X(0) provide the sought
coefficients of the reciprocal of the Laurent polynomial p(z).

An efficient way of solving (10) is based upon the use of the cyclic reduction
scheme, originally introduced in [13] for the solution of partial differential equa-
tions and, more recently, adjusted in [5–7] for solving certain queueing problems.
By employing a convenient partitioning of T (0) = T [p(z)] into a block tridiagonal
matrix with a block Toeplitz structure, T (0) = (Pr−s), r , s ∈ Z, where Pk = P

(0)
k =

(pi−j+k(n+m)) for 1 � i, j � n +m, k ∈ Z, and pk = 0 if k < −m or k > n, then
(10) is reduced to a system of linear equations of the form

P
(0)
1 X(j − 1)+ P

(0)
0 X(j)+ P

(0)
−1X(j + 1) = E(j), j ∈ Z.

Now, for any h = 2l, l ∈ Z, consider equations of indexes j = h− 1, j = h and
j = h+ 1: if P (0)

0 is assumed to be nonsingular, by multiplying the first equation by

P
(0)
1 (P

(0)
0 )−1 and the last equation by P

(0)
−1 (P

(0)
0 )−1 and, then by subtracting them

from the second one, we obtain
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P
(1)
1 X(h− 2)+ P

(1)
0 X(h)+ P

(1)
−1X(h+ 2) = E(h), h = 2l, l ∈ Z,

where we set

P
(1)
1 = −P

(0)
1 (P

(0)
0 )−1P

(0)
1

P
(1)
0 = P

(0)
0 − P

(0)
1 (P

(0)
0 )−1P

(0)
−1 − P

(0)
−1 (P

(0)
0 )−1P

(0)
1

P
(1)
−1 = −P

(0)
−1 (P

(0)
0 )−1P

(0)
−1

. (11)

Hence, these formulas allow us to define a new bounded block tridiagonal op-
erator T (1) given by T (1) = (P

(1)
i−j )i,j∈Z, P (1)

i−j = 0 if |i − j | > 1, which satisfies

T (1)X(1) = E, where X(1)(k) = X(0)(2k) = X(2k), k ∈ Z.
The iterative application of formulas (11) defines the cyclic reduction process for

the approximation of X(0). The Toeplitz-like structure properties of the matrices
P
(i)
j generated by this process as well as its convergence behavior have been widely

investigated in the papers [6,7]. In what follows, we will consider a different look
at the cyclic reduction algorithm which is here used as a means for the iterative
construction of a block triangular factorization of T (s) = F (s)D(s)G(s) rather than
of its nonzero block entries P (s)

j , j = −1, 0, 1. This has the important advantage of

replacing (11) with a different set of formulas for the block entries of F (s), D(s)

and G(s) involving terms explicitly related to the given spectral factors zna(z−1) and
c(z−1) of p(z). In particular, if D(s)

0 denotes the block diagonal entry of D(s), then

we obtain a simple iterative scheme for generating the matrix sequence {D(s)
0

−1}s
which quadratically approaches X(0).

An initial guess for our process is provided by the Wiener–Hopf factorization
(9) of T (0). Suppose that T [c(z−1)] and T [zna(z−1)] are partitioned commensu-
rably with T [p(z)], that is, for r, s ∈ Z we set T [zna(z−1)] = (L

(0)
r−s) with L

(0)
k =

(ai−j+k(n+m)), and T [c(z−1)] = (U
(0)
r−s) with U

(0)
k = (ci−j+m+k(n+m)), where ai =

0 if i < 0 or i > n and, analogously, ci = 0 if i < 0 or i > m. Since the upper
triangular matrix U

(0)
0 and the lower triangular matrix L

(0)
0 are nonsingular, one

finds that the Wiener–Hopf factorization (9) of T (0) can be rewritten into a block
form as



. . .

. . . I

F
(0)
1

. . .

. . .







. . .

D
(0)
0

. . .






. . .
. . .

I G
(0)
−1

. . .
. . .




= F (0)D(0)G(0), (12)

where F (0)
1 = L

(0)
1 (L

(0)
0 )−1, D(0)

0 = L
(0)
0 U

(0)
0 , G(0)

−1 = (U
(0)
0 )−1U

(0)
−1 , and I denotes

the identity matrix of order n +m.
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Next result relates F (0)
1 and G

(0)
−1 with the Frobenius matrices of the spectral fac-

tors zna(z−1) and c(z−1) of p(z) [4]. Recall that, for a given real polynomial u(z) =∑n+m
i=0 un+m−iz

i of degree n +m, the associated Frobenius matrix C(u(z)) ∈
R(n+m)×(n+m) is defined by

C(u(z)) =




0 1
. . .

. . .

. . .
. . .

0 1

−un+m/u0 . . . . . . . . . −u1/u0



.

Theorem 3. The block entries of F (0) and G(0) of (12) are such that

F
(0)
1 = −(JC(zma(z))TJ )n+m, G

(0)
−1 = −(JC(zn+mc(z−1))J )n+m, (13)

where J denotes the permutation matrix of order n+m with unit anti-diagonal en-
tries. Hence, the bi-infinite triangular matrices F (0) andG(0) are invertible and their
inverses are given by: ((F (0))−1)i,j = ((JC(zma(z))TJ )m+n)i−j , i � j, i, j ∈ Z,

and ((G(0))−1)i,j = ((JC(zn+mc(z−1))J )m+n)j−i , j � i, j, i ∈ Z.

Theorem 3 was used in [4] to derive a Gohberg–Semencul type formula repre-
senting the inverse of the Toeplitz matrix X(0) = (hi−j ), 1 � i, j � n+m, of (8) in
terms of the coefficients of the spectral factors of p(z). Differently, here we consider
a fairly inverse viewpoint by showing that the a-priori knowledge of the spectral
factors makes possible to determine X(0) without performing any inversion of Toep-
litz-like matrices. Next result provides an iterative scheme for the construction of a
block triangular factorization of the linear operators T (s), generated by the cyclic
reduction process, starting from that one of T (0) = T [p(z)] factored as in (12).

Theorem 4. Let {T (s)}s∈N, T
(s) = (P

(s)
i,j )i,j∈Z, be the sequence of linear operators

generated by the cyclic reduction process starting from T (0) = T [p(z)] by means of
relations (11), where we assume that all the matrices to be inverted are nonsingular
and, therefore, the process does not break down at any step. We have that T (s),

s ∈ N, is a bi-infinite block Toeplitz matrix in block tridiagonal form and, moreover,
it has a block triangular factorization of the form

T (s) = F (s)D(s)G(s), (14)

where F (s) = (F
(s)
i−j )i,j∈Z is block lower bidiagonal, G(s) = (G

(s)
i−j )i,j∈Z is block

upper bidiagonal and D(s) = (D
(s)
i−j )i,j∈Z is block diagonal. In addition, for s =

1, 2, . . . , the factorization of T (s) can be constructed iteratively from the one of
T (s−1) according to the following rules:
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F
(s)
0 = I, F

(s)
1 = −(F

(s−1)
1 )2; G

(s)
0 = I, G

(s)
−1 = −(G

(s−1)
−1 )2;

D
(s)
0 = D

(s−1)
0 −D

(s−1)
0 G

(s−1)
−1 (D

(s−1)
0

+F
(s−1)
1 D

(s−1)
0 G

(s−1)
−1 )−1F

(s−1)
1 D

(s−1)
0 .

Proof. The proof follows from some straightforward calculations and, without loss
of generality, we may restrict ourselves to the case where s = 1. From the Wiener–
Hopf factorization of T (0) = T [p(z)], one has that

P
(0)
−1 = D

(0)
0 G

(0)
−1, P

(0)
0 = D

(0)
0 + F

(0)
1 D

(0)
0 G

(0)
−1, P

(0)
1 = F

(0)
1 D

(0)
0 , (15)

from which it follows that D(1)
0 is well defined if and only if P (0)

0 is nonsingular.

Hence, we are able to introduce the block Toeplitz matrix in block tridiagonal form T̂

defined by T̂ = (T̂i−j ) = F (1)D(1)G(1). The theorem is thus established by first re-
placing (15) into the formulas (11) and, then, by showing that T (1) = T̂ . For the sake
of notational simplicity we omit to indicate both the superscripts and the subscripts
whenever it is possible. In this way, we set F (0)

1 = F , G(0)
−1 = G and D

(0)
0 = D.

Then, we find that

T̂0 − P
(1)
0

= F 2{D −DG(D + FDG)−1FD}G2 − FDG + FD(D + FDG)−1DG

= F {FDG − FDG(D + FDG)−1FDG −D +D(D + FDG)−1D}G.
Since we have

FDG− FDG(D + FDG)−1FDG = D(D + FDG)−1FDG,

one gets that

T̂0 − P
(1)
0= F {D(D + FDG)−1FDG−D +D(D + FDG)−1D}G

= FD(D + FDG)−1{FDG − (D + FDG) +D}G = 0.

Analogously, by comparing the subdiagonal block entries, we obtain that

T̂1 − P
(1)
1 = −F 2{D −DG(D + FDG)−1FD} + FD(D + FDG)−1FD

= {−F + F 2DG(D + FDG)−1 + FD(D + FDG)−1}FD
= {−F(D + FDG) + F 2DG− FD}(D + FDG)−1FD = 0.

The equality of the superdiagonal block entries follows in exactly the same way
and this concludes the proof. �

Since the polynomials zma(z) and zm+nc(z−1) are stable, from Theorem 3 one
easily deduces that the F (0)

1 and G(0)
−1 have spectral radius less than 1 and, therefore,



244 L. Gemignani / Linear Algebra and its Applications 366 (2003) 233–255

in view of Theorem 4, the bi-infinite matrices F (s) and G(s) approach the identity
operator I∞ as s goes to +∞. Roughly speaking, this implies that the inverse of
D
(s)
0 should yield a good approximation of X(0) for s sufficiently large. A more

precise formulation of this claim is provided by the following theorem.

Theorem 5. Let us assume that the cyclic reduction algorithm applied to T (0) =
T [p(z)] does not break down at any step. Then, it generates a sequence of linear
operators {T (s)}s∈N acting on #2(Z) for which the following statements hold:

(1) For each s ∈ N, the matrix D(s) = I∞ ⊗D
(s)
0 of (14) is nonsingular and, more-

over, (D(s)
0 )−1 satisfies the following recurrence relation:

(D
(s)
0 )−1 = (D

(s−1)
0 )−1 +G

(s−1)
−1 (D

(s−1)
0 )−1F

(s−1)
1 , s ∈ N+. (16)

(2) As a consequence, it follows that each T (s) is a linear invertible operator and,
therefore, the bi-infinite block vector X(s), s ∈ N, defined by X(s)(k) =
X(s−1)(2k), k ∈ Z, with X(0) = X solution of (10), is the unique solution of
the linear system

T (s)X(s) = E, s ∈ N.

Further, for any σ with min{|αn|n+m, 1/|γ1|n+m} < σ < 1, there exists a posi-
tive constant C such that

‖X(0)− (D
(s)
0 )−1‖ � Cσ 2s , (17)

where X(0) = (hi−j ), 1 � i, j � n+m, is the matrix on the left-hand side of
(8).

Proof. The first part of the theorem is established by showing that the inverse of
D(s) can be explicitly constructed starting from the one of D(s−1). Again, as in the
proof of Theorem 4, for the sake of notational simplicity, we consider the case s = 1
and we omit to indicate superscripts and subscripts whenever it is possible. Note that
D
(0)
0 is invertible since it is given by the product of invertible triangular Toeplitz

matrices. Moreover, if the the cyclic reduction process is applicable, then D
(1)
0 =

D −DG(D + FDG)−1FD is well defined. Thus, the matrix W = D−1 +GD−1F

is our candidate to be the inverse of D(1)
0 . We have that:

D
(1)
0 W = I +DGD−1F −DG(D + FDG)−1(I + FDGD−1)F

= I +DG(D + FDG)−1{I +DDGD−1 − I − FDGD−1}F = I.

By induction, it can similarly be proved that relation (16) holds for any s > 0.
It is worth pointing out that this relation also implies that the matrices (D(s)

0 )−1 are
of uniformly bounded norm. In fact, from (16) it follows that there exists a suitable
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positive constant C1 such that ‖(D(s)
0 )−1‖ � (1 + C1σ

2s−1
)‖(D(s−1)

0 )−1‖, s ∈ N+.

The increasing sequence {dk} defined by dk = ∏k
i=0(1 + C1σ

2i ), k = 0, 1, . . . , can
be bounded from above as follows:

dk = exp(log(dk)) = exp

(
k∑

i=0

log
(

1 + C1σ
2i
))

� exp

(
C1

k∑
i=0

σ 2i
)

� L.

Hence, we easily obtain that ‖(D(s)
0 )−1‖ � L‖(D(0)

0 )−1‖, s � 1. By com-
bining this property with the results of Theorem 4, one deduces the conver-
gence of the sequence of inverse operators (T (s))−1 = (G(s))−1(D(s))−1 (F (s))−1.
In fact, analogously with Theorem 3, it is found that the bi-infinite triangular
matrices F (s) and G(s) are invertible and their inverses are given by: ((F (s))−1)i,j =
(JC(zma(z))TJ )2

s (m+n)(i−j), i � j, i, j ∈ Z, and ((G(s))−1)i,j = (JC(zn+m

c(z−1))J 2s (m+n)(j−i), j � i, j, i ∈ Z. From this, then it follows that ‖(T (s))−1 −
(D(s))−1‖ � C2σ

2s , where C2 is a given positive constant. On the other hand, for
any s ∈ N, the matrices (T (s))−1 have the same entries in the positions i, j with 1 � i,
j � n+m. Under our notations, X(0) is the (n+m)× (n+m) Toeplitz matrix
made up by these entries, where we recall that X(0) = X(s)(0) = (hi−j ), for s � 0,
and, moreover, that X(0) is nonsingular by virtue of Remark 2. Thus, we finally
obtain that the diagonal block (D

(s)
0 )−1 of (D(s))−1 approaches X(0) and the in-

equality ‖(D(s)
0 )−1 −X(0)‖ � Cσ 2s , s ∈ N, holds for a suitable positive constant

C. �

Theorem 5 says that the matrix iteration (16) is eligible for the task of approxi-
mating the Toeplitz matrix X(0) of (8) whose entries are the central coefficients of
the Laurent series of the reciprocal of p(z).

Remark 6. Observe that (16) is well-defined whenever D(0)
0 is invertible and this is

always the case as D(0)
0 = L

(0)
0 U

(0)
0 is the product of nonsingular triangular Toeplitz

matrices. Nevertheless, (17) is derived under the auxiliary assumption that the cyclic
reduction process applied to T [p(z)] has no premature termination. To overcome
this discrepancy, note that in view of the Szegö’s strong limit theorem [10] one de-
duces that (T [p(z)])k = (pi−j ) ∈ Rk×k is nonsingular for any sufficiently large k,
say k � 2s . By virtue of the results of [3] (Section 4), this implies that T (s+1) can be
straight determined from T (0) by a block elimination of the variables and, moreover,
that the cyclic reduction algorithm applied to T (s+1) goes on without the occurrence
of breakdowns. By a continuity argument, it can also be shown that T (s+1) satisfies
(14) and from this we finally conclude that (17) remains still valid in the general
case.

A plain implementation of the resulting iterative process can be organized as fol-
lows:
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Matrix iteration

• Initialization phase: Given the coefficients of the spectral factors zna(z) and c(z−1)

of p(z), form the matrices L(0)
0 , L(0)

1 , U(0)
0 and U

(0)
−1 and, then compute F

(0)
1 =

L
(0)
1 (L

(0)
0 )−1, D(0)

0 = L
(0)
0 U

(0)
0 , and G(0)

−1 = (U
(0)
0 )−1U

(0)
−1 .

• Iterative phase: For s = 1, 2, . . .,
(1) compute (D(s)

0 )−1 = (D
(s−1)
0 )−1 +G

(s−1)
−1 (D

(s−1)
0 )−1F

(s−1)
1 ;

(2) check the convergence of (D(s)
0 )−1;

(3) set F (s)
1 = −(F

(s−1)
1 )2 and G(s)

−1 = −(G
(s−1)
−1 )2.

A preliminary investigation of the properties of this scheme was led in [21] by
confirming its effectiveness and numerical stability. However, it is clear that the com-
putational cost of an unstructured implementation of the above algorithm is prohib-
itive since it grows as (n+m)3 arithmetic operations. In the next section it will be
shown that both the initialization and the iterative phase can be performed in a very
efficient way by exploiting the displacement structure of the matrices generated at
any step, with a substantial reduction of the asymptotic cost. More specifically, a
careful implementation of the Matrix iteration algorithm is devised which requires
O((n +m) log(n+m)) arithmetic operations per step.

4. Efficient implementation of the matrix iteration

In this section we make use of structured numerical linear algebra techniques in
order to derive a superfast implementation of the Matrix iteration algorithm. Let us
start by recalling some well known results which are particularly interesting for deal-
ing with our problem. Consider the displacement operator F1 : R(n+m)×(n+m) →
R(n+m)×(n+m) defined by F1(A) = A− (JC(zn+mc(z−1))J )A(JC(zma(z))TJ ).

This operator can immediately be related to the more classical displacement operator
F2(A) = A− ZAZT, where Z denotes the (n+m)× (n+m) down-shift matrix,
Z = [e2| . . . |en+m|0], and ei is the ith column of the identity matrix I of order
n+m. Specifically, one finds that

JC(zn+mc(z−1))J = Z − e1ĉT
Z, JC(zn+ma(z))J = Z − e1âT

Z, (18)

where â = [1, a1, . . . , an, 0, . . . , 0]T and ĉ = [1, cm−1/cm, . . . , c0/cm, 0, . . . , 0]T.
The rank of Fj (A), j = 1, 2, is called the j -displacement rank of A. The following
result is classical [28].

Theorem 7. Let us assume that the (m+ n)× (m+ n) matrix A has 2-displace-
ment rank l, that is, F2(A) = A− ZAZT = ∑l

i=1 xiyT
i . Then, we have that A =∑l

i=1 L(xi )U(yi ), where L(x) denotes the lower triangular Toeplitz matrix whose
first column is x and U(y) = L(y)T.
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Relation (18) implies that the 2-displacement rank of the permuted Frobenius
matrices JC(zn+mc(z−1))J and JC(zn+ma(z))J is 2 at most. Next result, which
follows from Barnett’s factorization of Bezoutians [1,30], says that the powers of a
Frobenius matrix also inherit a special displacement structure.

Theorem 8. For a given polynomial p(z) = ∑n+m
i=0 piz

i of degree n+m and for
any integer k, let us denote by q(k)(z) and r(k)(z), respectively, the quotient and
the remainder in the Euclidean division of zk by p(z), that is, zk = q(k)(z)p(z)+
r(k)(z), where the degree l(k) of r(k)(z) = ∑l(k)

i=0 r
(k)
i zi is less than n+m. Then, the

kth power (C(p(z)))k of the Frobenius matrix C(p(z)) of order n+m associated
with p(z) admits the following displacement representation:

(C(p(z)))k = r(k)(C(p(z))) = J (U(p̂))−1J
{
L(p̂)U(r(k))− L(r̂(k))U(p̃)

}
,

where p̃ = [p0, . . . , pn+m−1]T, r(k) = [r(k)0 , . . . , r
(k)
l(k), 0, . . . , 0]T, p̂ = [pn+m, . . . ,

p1]T, and r̂(k) = [0, . . . , 0, r(k)l(k), , . . . , r
(k)
1 ]T.

From Theorem 8 it follows that there exist two suitable symmetric matrices Ba

and Bc verifying

C(zma(z)) = J (L
(0)
0 )−TBa, C(zn+mc(z−1)) = J (U

(0)
0 )−1Bc. (19)

By combining these representation formulas with relation (18), we thus obtain
that each matrix (D

(s)
0 )−1, s � 0, has 1-displacement rank bounded from above by

2, that is, the rank of F1((D
(s)
0 )−1) is at most 2.

Theorem 9. We have that

F1((D
(0)
0 )−1)

= 1

cm
(e1eT

1 − (JC(zn+mc(z−1))J )n+me1eT
1 (JC(z

ma(z))TJ )n+m).

Proof. From (19) we obtain that

F1((D
(0)
0 )−1) = (U

(0)
0 )−1(I − C(zn+mc(z−1))TC(zma(z)))(L

(0)
0 )−1.

By replacing (18) into this formula, it follows that

F1((D
(0)
0 )−1)= (U

(0)
0 )−1(e1eT

1 − ZJ ĉâT
JZT)(L

(0)
0 )−1

= 1

cm
(e1eT

1 − (U
(0)
0 )−1U

(0)
−1 e1eT

1L
(0)
1 (L

(0)
0 )−1)

= 1

cm
(e1eT

1 −G
(0)
−1e1eT

1F
(0)
1 ),

where G(0)
−1 and F (0)

1 are defined as in Theorem 3. �
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Theorem 10. For any s � 0, we find that

F1((D
(s)
0 )−1) = 1

cm
(e1eT

1 − (JC(zn+mc(z−1))J )ls e1eT
1 (JC(z

ma(z))TJ )ls ),

where ls = 2s(n+m).

Proof. The proof is by induction on s. The case s = 0 is established by Theorem 9.
For s > 0, observe that F1((D

(s)
0 )−1) is equal to

F1((D
(s−1)
0 )−1)+ (JC(zn+mc(z−1))J )ls−1F1((D

(s−1)
0 )−1)

× (JC(zma(z))TJ )ls−1

= 1

cm
(e1eT

1 − (JC(zn+mc(z−1))J )ls e1eT
1 (JC(z

ma(z))TJ )ls ). �

As an immediate consequence of this result we find that the displacement rank
of the matrices (D

(s)
0 )−1, s � 0, w.r.t. the displacement operator F2 can also be

bounded from above by a small constant integer.

Theorem 11. For any s � 0, there are uniquely determined two vectors r(s) and t(s)

of size n+m, where the first entry of r(s) is equal to 0, such that F2((D
(s)
0 )−1) =

e1r(s)
T + t(s)eT

1 − c−1
m (JC(zn+mc(z−1))J )ls e1eT

1 (JC(z
ma(z))TJ )ls .

Proof. The proof of the existence of r(s) and t(s) follows by replacing (18) into the
displacement equation provided by Theorem 10. Concerning the uniqueness, from
Theorem 7 one finds that (D(s)

0 )−1 can be represented as

L(t(s))+ U(r(s))− 1

cm
L((JC(zn+mc(z−1))J )ls e1)U(JC(z

ma(z))J )ls e1).

This means that, for any s � 0, the (n+m)× (n+m) matrix

T̂ = (D
(s)
0 )−1 + c−1

m L((JC(zn+mc(z−1))J )ls e1)U((JC(z
ma(z))J )ls e1)

is Toeplitz and, hence, t(s) are r(s)
T

are determined by the entries on its first column
and its first row, respectively. �

By combining the previous result with the displacement representation of the
powers of Frobenius matrices stated by Theorem 8, it allows us to develop a very effi-
cient implementation of the Matrix iteration algorithm. Below, we give a description
of this resulting implementation.

Structured matrix iteration

• Initialization phase:

(1) Compute the first row r̃(0)
T

and the first column t̃(0) of (D(0)
0 )−1;

(2) determine r
(n+m)
a (z) = zn+m (mod zma(z)) and r

(n+m)
c (z) = zn+m

(mod zn+mc(z−1));
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(3) form the displacement representations of (JC(zma(z))J )n+m and
(JC(zn+mc(z−1))J )n+m shown in Theorem 8 and then compute the first col-
umn f = [f1, . . . , fn+m]T of (JC(zn+mc(z−1))J )n+m and the first column
g = [g1, . . . , gn+m]T of (JC(zma(z))J )n+m;

(4) set t(0) = t̃(0) + (g1/cm)f and r(0) = r̃(0) + (f1/cm)g, where the first entry of
r(0) is replaced by 0.

• Iterative phase: for s = 1, 2, . . .,

(1) compute the first row r̃(s)
T

and the first column t̃(s) of (D(s)
0 )−1 by using (16),

where (D(s−1)
0 )−1 is expressed by means of its displacement representation pro-

vided by Theorem 11;

(2) determine the coefficients of the remainders (r((n+m)2s−1)
a (z))2 (mod zm a(z)),

and (r((n+m)2s−1)
c (z))2 (mod zn+mc(z−1)).

(3) form the displacement representations of (JC(zma(z))J )(n+m)2s and
(JC(zn+mc(z−1))J )(n+m)2s and then compute the first column f and g of
(JC(zn+mc(z−1))J )(n+m)2s and (JC(zma(z))J )(n+m)2s , respectively;

(4) set t(s) = t̃(s) + (g1/cm)f and r(s) = r̃(s) + (f1/cm)g, where the first entry of
r(s) is replaced by 0;

(5) check the convergence of t(s) and r(s).

Since the matrix D
(0)
0 is the product of two triangular Toeplitz matrices whose

entries are explicitly given in terms of the coefficients of a(z) and c(z), it is easily
found that the initialization phase can be performed at the cost of O((n +m) log(n+
m)) arithmetic operations by means of the Sieveking–Kung algorithm [8]. Similarly,
steps 1 and 3 of the iterative phase essentially amount to a polynomial multiplication
and, therefore, they can be carried out at the cost of O((n +m) log(n+m)) arith-
metic operations by using FFTs. Concerning the step 2, observe that the required
Euclidean divisions can also be computed in a stable way by means of convolutions
at the cost of O((n+m) log(n+m)) arithmetic operations by using the algorithm
of [15]. Hence, the proposed iterative process can be implemented at the cost of
O((n +m) log(n+m)) arithmetic operations per step. In view of the quadratic con-
vergence of the sequences {r(s)} and {t(s)} stated by Theorem 5, we find that, for a
fixed precision ε, O(log(log ε−1)+ | log(log σ−1)|) steps are sufficient to determine
approximations r(s) and t(s) such that

‖t(s) −X(0)e1‖∞ � ε, ‖r(s)
T − eT

1 (X(0)− h0e1eT
1 )‖∞ � ε.

By Theorem 5, the parameter σ satisfies min{|αn|n+m, 1/|γ1|n+m} < σ < 1 and
it gives a measure of the separation between the spectrum of a(z) and c(z). Indeed,
it is easily seen that

(min{|αn|n+m, 1/|γ1|n+m})2 �
∣∣∣∣αnγ1

∣∣∣∣
n+m

= rn+m � min{|αn|n+m, 1/|γ1|n+m}.
Therefore we may conclude that the Structured matrix iteration algorithm pro-

vides numerical approximations of the sought 2(n+m)− 1 central coefficients
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h1−n−m, . . . , hn−m+1 of the Laurent series of the reciprocal of p(z) = zna(z−1)

c(z−1) within a fixed tolerance ε at the overall cost of O((n+m) log(n+m)

(log(log ε−1)+ | log(log r−1)|)) arithmetic operations.

5. Numerical experiments

To check the stability properties of our method numerically, we implemented the
Structured matrix iteration algorithm by using MATLAB and, then, we carried out
numerical experiments on a pentium 550 workstation with the Linux system.

The relevant computations of our program can basically be reduced to perform
two matrix operations: (a) multiplication of a triangular Toeplitz matrix L(x) by a
vector y and (b) inversion of the triangular Toeplitz matrices L(0)

0 = L(â) and U(0)
0 =

U(cmĉ). The first task is solved in a customary way by computing the coefficients
of the product of the polynomials x(z) and y(z) whose coefficients are determined
by x and y. In view of the convolution theorem, this can be done by means of two
FFTs and one IFFT of dimension N , where x and y are padded with zeros in such a
way that N is a power of two. In our program Fourier transforms are evaluated by
calling the corresponding internal functions of MATLAB which are based on a public
domain library named FFTW (http://www.fftw.org). Concerning the computations of
part (b), we have implemented a recursive version of the Sieveking–Kung algorithm
at the cost of O(N logN) arithmetic operations, where (n+m) � N � 2(n+m). It
is worth realizing that (L(0)

0 )−1 and (U(0)
0 )−1 are triangular Toeplitz matrices whose

entries are given by the coefficients of the Taylor series of the reciprocal of zna(z−1)

and c(z), respectively. Since all the zeros of these polynomials lie outside the unit
circle, then, from the Cauchy theorem [23], one obtains that the entries of (L(0)

0 )−1

and (U(0)
0 )−1 are exponentially decaying. Hence, L(0)

0 and U(0)
0 are well conditioned

and, therefore, the Sieveking–Kung algorithm applied for the inversion of these two
matrices can be shown to be forward stable.

The computation of Euclidean divisions at the step 2 of the Structured matrix
iteration algorithm is also performed in a stable way by means of the Cardinal’s
algorithm [15]. It relies upon the following remarkable fact: if ra(z) is expressed
with respect to the Horner polynomial basis associated with zna(z), then the coef-
ficients of the polynomial (ra(z))2 (mod zna(z)) w.r.t. the same Horner basis are
found by means of three convolutions of size N . The Horner basis associated with
zna(z) = a0z

n+m + · · · + anz
m is formed by the polynomials ai(z) = a0z

i + · · · +
ai+1, 0 � i � N − 1, ai = 0 if i > n, generated in the evaluation of zna(z) at a point
by means of the Ruffini–Horner rule. Hence, the computation of the coefficients of
a polynomial w.r.t the Horner basis associated with zna(z) given its coefficients in
the standard monomial basis is equivalent to solve a linear system whose coefficient
matrix is exactly L

(0)
0 . Obviously, similar conclusions also hold for the computation

of (rc(z))2 (mod zn+mc(z−1)) by replacing L(0)
0 with U(0)

0 .



L. Gemignani / Linear Algebra and its Applications 366 (2003) 233–255 251

The iterative phase is stopped when the conditions

‖t(s) − t(s−1)‖∞ � ε‖t(s)‖∞, ‖r(s) − r(s−1)‖∞ � ε‖r(s)‖∞, (20)

are fulfilled, where ε = 2−53 denotes the machine precision.
In our numerical experiments, we generated stable polynomials a(z) and zm c(z−1)

of degree n = m, n = 64, 128, 256, 512, 1024, 2048, by using the Kakeya–Eneström
theorem [23]. It says that all the zeros of the polynomial p(z) of degree n, p(z) =
zn + p1z

n−1 + · · · + pn lie inside the unit circle whenever its coefficients pi , 1 �
i � n, satisfy 1 > p1 > p2 > · · · > pn. For each pair (a(z), c(z)), we considered
the solution of the associated linear system (4) of order 2n with b = en + en+1. Our
program returns the absolute residual ‖Rx − b‖∞ produced by Gaussian elimination
with partial pivoting (backslash operator in MATLAB) and the absolute residual
‖Rx − b‖∞ of the approximate solution vector x found by our implementation of
the Structured matrix iteration algorithm.

As test suite, we considered polynomials with random coefficients which are gen-
erated according to the following rules by means of the internal MATLAB function
rand returning uniformly distributed random numbers in the interval (0,1).

(1) For i = 1, . . . , n, a0 = 1, ai = ai−1/(1 + rand), cn = 1, cn−i = cn−i+1/

(1 + rand). Sylvester’s resultant matrices generated by this rule are generally
well conditioned.

(2) For i = 1, . . . , n, a0 = 1, ai = ai−1/(1 + (rand)n), cn = 1, cn−i = cn−i+1/(1 +
(rand)n). Differently from the previous set, in this case the distribution of the
coefficients of a(z) and c(z) is quite nonuniform and this fact affects the con-
ditioning of the associated resultant linear system. In Fig. 1 we show a typical
plot obtained by evaluating the logarithm to base 10 of the spectral condition
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Fig. 1. Plot of the logarithm to base 10 of the conditioning of the leading principal submatrices of a
coefficient matrix generated by two polynomials with a nonuniform distribution of the coefficients.
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number of the leading principal submatrices of a Sylvester’s resultant matrix
of order 128 generated in this way. Observe that fast algorithms based on the
recursive properties of the triangular factorization can produce very inaccurate
results when applied to such coefficient matrices.

For any considered set of test polynomials, we generated 100 pairs (a(z), c(z))
and, then, we evaluated the arithmetic means of the computed residuals. Tables 1
and 2 report the results of our experiments by showing that our method is nearly
accurate as Gaussian elimination with partial pivoting. In each performed experiment
the number of iterations needed to satisfy (20) has never exceeded 8.

The stability properties of our method were also checked in the relevant case
where zna(z−1) = c(z) and p(z) = c(z)c(z−1) is a symmetric Laurent polynomial.
In [17] it was shown that the efficient solution of Jury linear systems can be re-
duced to that one of Sylvester’s resultant matrices generated by the spectral factors
of a symmetric Laurent polynomial. To be more specific, we define the (n+ 1)st
order Jury matrix J(a) associated with a(z) by J(a) = T (a)+H(a), where T (a)
denotes the lower triangular Toeplitz matrix whose first column is the coefficient
vector a of a(z) whereas H(a) is the upper triangular Hankel matrix with respect to
the main antidiagonal whose first row is aT. Jury linear systems are often encoun-
tered in problems of estimation of the transfer function of an input–output model by
means of statistical methods based on the properties of cross-covariance and cross-

Table 1
Residuals for the first class of test matrices

n ‖Rx − b‖∞
S. matrix iteration Gaussian elimination

64 4.8e−16 6.6e−16
128 7.5e−16 4.7e−16
256 9.1e−16 1.1e−16
512 6.7e−16 2.1e−16
1024 6.0e−16 2.0e−16
2048 6.5e−16 2.4e−16

Table 2
Residuals for the second class of test matrices

n ‖Rx − b‖∞
S. matrix iteration Gaussian elimination

64 9.1e−14 3.3e−16
128 1.1e−13 2.8e−16
256 1.5e−13 3.7e−16
512 4.3e−13 2.3e−15
1024 1.4e−12 5.8e−15
2048 7.5e−12 9.7e−15
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Table 3
Residuals for matrices generated by zna(z−1) = c(z) = (zn/(n+ 1))+ (2zn−1/(n+ 1))+ · · · + 1

n ‖Rx − b‖∞
S. matrix iteration Gaussian elimination

64 1.5e−14 2.0e−16
128 1.2e−14 3.4e−16
256 3.2e−14 4.7e−16
512 8.1e−14 3.0e−16
1024 1.4e−13 4.4e−16
2048 4.8e−13 7.9e−16

correlation functions [11]. It is remarkable to observe that the solution of the spectral
factorization problem can also lead to solving Jury linear systems. In fact, if we
apply the Newton–Raphson iteration to the quadratic equation p(z) = c(z)c(z−1),
the coefficients of the spectral factor being unknown, then we obtain a linear system
whose (Jacobian) matrix is a Jury matrix (see [36]).

Table 3 compares the performance of the Structured matrix iteration algorithm
with that one of Gaussian elimination with partial pivoting on the test polynomials

c(z) = zn

n+ 1
+ 2zn−1

n + 1
+ · · · + 1.

These polynomials were considered in [31] and provide particularly tough exam-
ples since the geometric average of the roots of c(z) becomes very close to 1 as n
grows.

Clearly, these results confirm again the robustness of the proposed approach.

6. Conclusions and further extensions

A novel approach to the efficient solution of Sylvester’s resultant linear systems
generated by a stable and an anti-stable polynomial has been presented. It is based
upon the close connections between the matrix problem, its polynomial formulation
and the problem of reciprocating Laurent polynomials in a given annulus in the com-
plex plane. Moreover, it is also related to the problem of factoring polynomials with
respect to the unit circle (spectral factorization problem). The resulting algorithm is
an iterative one which proceeds by generating a sequence of Toeplitz-like matrices.
By combining the displacement theory for structured matrices with fast polynomial
arithmetic methods based on FFT, it can be implemented in a superfast way using
linear storage. The experimental results produced by a MATLAB implementation of
the proposed solution algorithm are also reported by showing its effectiveness and
robustness.

A very interesting open question is whether or not a polynomial version of our
method exists. In [4,34] the polynomial Graeffe iteration is used to compute the
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coefficients of the reciprocal of a Laurent polynomial. In our opinion, the relations
between Graeffe’s process and our iterative scheme deserve further investigations.
In particular, it is not clear if Graeffe’s algorithm can be modified in such a way to
exploit the knowledge of the spectral factorization of the input Laurent polynomial.
An extension of the polynomial Schur–Cohn algorithm was pointed out in [31] in
order to efficiently perform a step of the iterative Wilson’s algorithm [36] for the
spectral factorization of symmetric Laurent polynomials. As we have recalled in the
previous section, Wilson’s method is based on Newton’s iteration for a nonlinear
(quadratic) equation, where at each step the generated Jacobian is a suitable Jury
matrix. Therefore, the exploitation of possible connections between the Schur-Cohn
algorithm and our procedure would also provide useful answers.

Finally, in this paper we have shown that spectral factorization methods can be
related to superfast algorithms for the numerical treatment of a certain class of struc-
tured linear systems. A continuous analogue of the spectral factorization problem
is the problem of factoring polynomials with respect to the imaginary axis in the
complex plane [20] (Hurwitz factorization problem) which plays a key role in the
synthesis of continuous quadratically optimal controllers [24]. The study of simi-
lar results and relations between Hurwitz factorization methods and the solution of
structured linear systems should be welcome.
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