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Abstract. Consider a planar drawing Γ of a planar graph G such
that the vertices are drawn as small circles and the edges are drawn
as thin strips. Consider a cycle c of G. Is it possible to draw c as a non-
intersecting closed curve inside Γ , following the circles that correspond in
Γ to the vertices of c and the strips that connect them? We show that this
test can be done in polynomial time and study this problem in the frame-
work of clustered planarity for highly non-connected clustered graphs.

1 Introduction

Let Γ be a planar drawing of a planar graph G and c be a cycle composed of
vertices and edges of G. We deal with the problem of testing if c can be drawn
on Γ without crossings.

Of course, if the vertices of G are drawn as points, the edges as simple curves,
and the drawing of c must coincide with the drawing of its vertices and edges,
then the problem is trivial. In this case c can be drawn without crossings if and
only if it is simple.

We consider the problem from a different point of view. Namely, we suppose
that the vertices of G are drawn in Γ as “small circles” and the edges as “thin
strips”. Hence, c can pass several times through a vertex or through an edge
without crossing itself. In this case even a non-simple cycle can have a chance
to be drawn without crossings.

The problem, in our opinion, is interesting in itself. However, we study it
because of its meaning in the field of clustered planarity [11, 10].

Clustered planarity is a classical Graph Drawing topic (see [4] for a survey).
A cluster of a graph is a non empty subset of its vertices. A clustered graph
C(G, T ) is a graph G plus a rooted tree T such that the leaves of T are the
vertices of G. Each node ν of T corresponds to the cluster V (ν) of G whose
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vertices are the leaves of the subtree rooted at ν. The subgraph of G induced by
V (ν) is denoted as G(ν). An edge e between a vertex of V (ν) and a vertex of
V − V (ν) is incident to ν. Graph G and tree T are called underlying graph and
inclusion tree, respectively. A clustered graph is connected if for each node ν of
T we have that G(ν) is connected.

In a drawing of a clustered graph vertices and edges of G are drawn as points
and curves as usual [8], and each node ν of T is a simple closed region R(ν) such
that: (i) R(ν) contains the drawing of G(ν); (ii) R(ν) contains a region R(µ) if
and only if µ is a descendant of ν in T ; and (iii) any two regions R(ν1) and R(ν2)
do not intersect if ν1 is not a descendant or an ancestor of ν2. Consider an edge
e and a node ν of T . If e is incident on ν and e crosses the boundary of R(ν)
more than once, we say that edge e and region R(ν) have an edge-region crossing.
Also, edge e and region R(ν) have an edge-region crossing if e is not incident
on ν and e crosses the boundary of R(ν). A drawing of a clustered graph is c-
planar if it does not have edge crossings and edge-region crossings. A clustered
graph is c-planar if it has a c-planar drawing. C-planarity testing algorithms for
connected clustered graphs are shown in [13, 11, 6]. A planarization algorithm
for connected clustered graph is shown in [7].

However, the complexity of the c-planarity testing for a non connected clus-
tered graph is still unknown. A contribution on this topic has been given by
Gutwenger et al. who presented a polynomial time algorithm for c-planarity
testing for almost connected clustered graphs [12].

Another contribution studying the interplay between c-planarity and connec-
tivity has been presented in [3] by Cornelsen and Wagner. They show that a
completely connected clustered graph is c-planar if and only if its underlying
graph is planar. A completely connected clustered graph is so that not only each
cluster is connected but also its complement is connected.

A clustered graph C(G, T ) is flat if all the leaves of T have distance two from
the root. This implies that all the non-root clusters have depth 1 in T . Hence, in
a flat clustered graph C(G, T ) a graph of the clusters G1(C) can be identified.
Vertices of G1(C) are the children of the root of T and an edge (µ, ν) exists if
and only if an edge of G exists incident to both µ and ν.

Flat clustered graphs offer a way to deepen our insight into the properties
of non-connected c-planar clustered graphs. In fact, by changing the families of
the graphs G and G1(C), c-planarity problems of increasing complexity can be
identified. The works in [2, 1] by Biedl, Kaufmann, and Mutzel can be interpreted
as a linear time c-planarity test for non connected flat clustered graphs with
exactly two clusters.

A clustered cycle is a flat clustered graph whose underlying graph is a cycle.
In [5] it is shown that for a clustered cycle C(G, T ) where G1(C) is also a cycle,
the c-planarity testing and embedding problem can be solved in linear time.

A rigid clustered cycle is a clustered cycle C in which G1(C) has a prescribed
planar embedding. In this paper we tackle the c-planarity testing and embedding
problem for rigid clustered cycles. Namely, consider again the problem stated at
the beginning of this section according to the above definitions. The cycle is
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the underlying graph of a flat clustered graph and the nodes of the graph are
the clusters. If you are able to find a drawing of the cycle without intersections
you are also able to find a c-planar embedding for the rigid clustered cycle and
vice versa.

In this paper we present the following results. We develop a new theory for
dealing with rigid clustered cycles, based on operations that preserve their c-
planarity (Section 3). We show that the c-planarity of a rigid clustered cycle
can be tested in polynomial time (Section 4). As a side effect we also solve
in polynomial time the cycle drawing problem stated at the beginning of the
section. If the rigid clustered cycle is c-planar we also show a simple method
for computing a planar embedding of it (Section 5). Section 2 contains basic
definitions, while conclusions and open problems are in Section 6.

2 Basic Definitions

We assume familiarity with connectivity and planarity of graphs [9, 8].
In the following we need a slightly wider definition of clustered cycle in which

G1(C) is allowed to have multiple edges between two nodes. We define a clustered
cycle C(G, G1, ΦV , ΦE), where G1 is a graph, possibly with multiple edges, G is
a cycle, ΦV maps each vertex of G to a vertex of G1, and ΦE maps each edge
of G between vertices v1 ∈ µ1 and v2 ∈ µ2, where µ1 �= µ2, to an edge of G1

between vertices µ1 and µ2.
In the following, to avoid ambiguities, we denote G1 as G1(C), its edges will

be called pipes while its vertices will be called nodes or clusters.
Given a cluster µ ∈ G1(C), we denote by deg(µ) the number of pipes that are

adjacent to µ in G1(C), where multiple pipes count for their multiplicity. The
size of a pipe of G1(C) is the number of edges of G it contains.

It is easy to see that a path in G whose vertices belong to the same cluster
can be collapsed into a single vertex without affecting the c-planarity property
of the clustered cycle. Hence, in the following we consider only clustered cycles
where consecutive vertices belong to distinct clusters. We call cusp a vertex v of
G whose incident edges e1 and e2 are such that ΦE(e1) = ΦE(e2).

Given a rigid clustered cycle C the embedding Λ of C is the specification, for
each pipe a in G1(C) and for each end node µ of a, of the total ordering λµ(a)
of the edges contained in a when turning around µ clockwise. An embedding of
a clustered cycle is c-planar if there exists a planar drawing of C that respects
such embedding. If an embedding is c-planar, for each pipe a = (µ, ν), we have
that λµ(a) = λν(a), where λν(a) denotes the reverse of λν(a).

3 Fountain Clusters

Consider a clustered cycle C and one of its clusters µ = {v1, . . . , vq}. For each
vi let wi and zi be its neighbors. Cluster µ is a fountain cluster if there exists a
cluster ν different from µ such that for each vi we have that wi ∈ ν or zi ∈ ν (see
Fig. 1 for an example). We call base of µ the pipe of G1(C) between µ and ν.
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Fig. 1. A fountain cluster

A fountain clustered cycle is a clustered cycle in which each cluster is a foun-
tain cluster.

Let µ be a fountain cluster and let b be a base of µ. The following properties
hold:

Property 1. Cluster µ has a second base b′ �= b if and only if deg(µ) = 2 and no
cusps belongs to µ. Otherwise µ has a single base.

Property 2. The edges incident to a cusp v of µ belong to b.

Property 3. Let a be a pipe incident to µ. If a is also a base for µ then size(a) =
size(b), otherwise size(a) < size(b).

3.1 Cluster Expansion

Given a cluster µ of C, we call cluster expansion of µ the following operation
(see Fig. 2), that produces the clustered cycle C′.

Let a1, . . . , ak be the pipes incident to µ, where k = deg(µ). Let v a vertex
belonging to µ, and let ei and ej be the edges incident to v, where ei ∈ ai and
ej ∈ aj , respectively. Note that if v is a cusp, then ai = aj.

Cluster µ is replaced in C′ with k new clusters µ1, . . . µk, each one incident
to pipes a1, . . . , ak, respectively. All the other clusters of C are unchanged in C′.
Each non-cusp vertex v in µ having edges ei ∈ ai and ej ∈ aj is represented in
C′ by two new vertices v′ and v′′, with ΦV (v′) = µi and ΦV (v′′) = µj . A new
pipe (µi, µj) is inserted (if not already present) and a new edge (v′, v′′) is added
such that ΦE(v′, v′′) = (µi, µj). Each cusp vertex v having its edges in pipe ai

stays unchanged in C′, and belongs to cluster µi.
Note that a cluster µi produced by the cluster expansion is a fountain cluster

with base ai. Hence, after one expansion the number of non-fountain clusters of
C′ is not greater than the number of non-fountain clusters of C. Also, before
applying the cluster expansion, µ could be the end node of multiple pipes. After
the cluster expansion these multiple pipes are eliminated.
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Fig. 2. An example of cluster expansion: (a) A non-fountain cluster µ. (b) The result
of the cluster expansion.

Up to now, the expansion operation has been defined whithout considering
the embedding of C and C′. If C is embedded (rigid) it is easy to extend the
definition of cluster expansion considering also embedding issues. Namely, we
embed the new pipes around the new nodes with the same order the old edges
had in C. Note that, even if the starting embedding is planar, the resulting
embedding may be not planar due to the new pipes inserted among the clusters
µ1, . . . µk.

Given a rigid clustered cycle C, a cluster expansion of one of its clusters µ is
feasible if the embedding induced on G1(C′) is planar, that is, if C′ is a rigid
clustered cycle.

Lemma 1. Given a rigid clustered cycle C, if a cluster expansion of one of its
clusters µ is not feasible, then C is not c-planar.

Proof. If the cluster expansion of µ is not feasible, then the induced embedding
on G1(C′) contains a crossing, that is, it contains two pipes (µi, µh) and (µj , µl),
with i < j < h < l. This implies that there exist two paths of G, one traversing
clusters νi, µ, νh and the other traversing νj , µ, νl. Since the embedding of µ is
fixed, this two paths cannot be drawn without intersections. ��

A cluster expansion operation on a clustered cycle C is done performing a
cluster expansion for each non-fountain cluster of C. A cluster expansion of a
rigid clustered cycle is feasible if all the required cluster expansions are feasible,
that is if the result is a rigid clustered cycle.

Property 4. The cluster expansion of a clustered cycle produces a fountain clus-
tered cycle.
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Lemma 2. Let C be a rigid clustered cycle and let µ be a cluster of C. Let C′

be the result of a feasible cluster expansion applied to µ. C is c-planar iff C′ is
c-planar.

Proof sketch. Suppose that C is c-planar, and let Γ be a c-planar embedding of C.
A c-planar embedding Γ ′ of C′ can be computed as follows. For each pipe that is
present both in C and in C′, including pipes a1, . . . , ak incident to µ, we assume
that the order of edges in Γ ′ is the same as in Γ . The order of the edges inside
the pipes added among nodes µ1, . . . , µk is determined by the their order in the
bases a1, . . . , ak. Hence, the c-planarity of Γ ′ follows from the c-planarity of Γ .

Suppose now that C′ is c-planar, and let Γ ′ be a c-planar embedding of C′.
A c-planar embedding Γ of C can directly obtained from Γ ′. Since all pipes of
C are also present in C′, the order of their edges can be assumed to be the same
as in Γ ′. Consider edge e of pipe (µi, µj) in Γ ′. The path ei, e, ej of Γ ′, where
ei ∈ ai and ej ∈ aj corresponds to path ei, ej in Γ . Hence, the c-planarity of Γ ′

implies the c-planarity of Γ . ��
By repeatedly applying Lemma 2 we have:

Lemma 3. Let C be a rigid clustered cycle and let C′ be a feasible cluster ex-
pansion of C. C is c-planar iff C′ is c-planar.

3.2 Pipe Contraction

We call a pipe b between two fountain clusters µ and ν contractible if (i) b is the
only pipe between µ and ν, (ii) b is a base for both µ and ν, and (iii) b is the
only base for one of them.

We define the pipe contraction operation on a contractible pipe b as follows.
The pipe contraction produces a clustered cycle C′ starting from a clustered
cycle C by replacing µ, ν, and b, with a new cluster µ′, which is adjacent to all
the clusters which µ and ν were adjacent to.

If µ and ν were adjacent to the same cluster ρ, µ′ is doubly adjacent to ρ;
that is, the pipe contraction may introduce multiple pipes incident to µ′.

Each edge ein entering µ or ν belongs to a path pC = ein, v, e1, v1, . . . , ek,
vk, eout, where eout is the first edge exiting µ or ν and ΦE(ei) = b, i = 1, . . . , k.
Since b is a base for both µ and ν, k ≥ 1. Path pC is replaced by pC′ =
ein, vµ′ , eout, with ΦV (vµ′) = µ′.

An example of pipe contraction is shown in Fig. 3. Note that the new cluster
µ′ is, in general, not a fountain cluster. If C has a prescribed embedding we
assume that the result has also a prescribed embedding in which the circular
order of the pipes around µ′ is the same as the circular order they have in C
around the subgraph composed of µ, ν, and b.

Lemma 4. Let C be a fountain clustered cycle and C′ be obtained from C by
applying a pipe contraction operation. C is c-planar iff C′ is c-planar.

Proof sketch. Suppose that C is c-planar, let Γ be a c-planar drawing of C, we
show how to build a c-planar drawing Γ ′ of C′ by slighly modifying Γ . Namely,
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Fig. 3. An example of pipe contraction: (a) pipe b before contraction; (b) The result
of the contraction of b

region R(µ′) is the union of R(µ), R(ν), and the stripe corresponding to b.
(Observe that R(µ′) is connected.) Each path pC = ein, v, e1, v1, . . . , ek, vk, eout

of C, with ΦE(ei) = b, is replaced by pC′ = ein, vµ′ , eout, where vµ′ replaces v,
and all vertices vi, with i = 1, . . . , k, are removed joining their incident edges. It
is easy to see that the obtained drawing is a c-planar drawing of C′.

Suppose now that C′ is c-planar, and let Γ ′ be a c-planar drawing of C′. We
provide a c-planar drawing Γ of C by suitably modifying Γ ′. We take region
R(µ) = R(µ′). Observe that in Γ ′ all the pipes that were incident to ν are
consecutively attached to the border of R(µ′). Hence, it is possible to add two
arbitrarily thin stripes, corresponding to b and R(ν), respectively, along the
border of R(µ′) in such a way to intersect those pipes only (see Fig 4.b).

Now, consider the edges entering R(µ′) that were incident to µ before contrac-
tion in counterclockwise order. Let ein be the current edge and pC′ = ein, vµ′ , eout

R(µ′)

p1
C′

peven
C′

podd
C′

R(µ)

R(ν)
��

b
��

p1
C

peven
C

podd
C

(a) (b)

Fig. 4. A drawing Γ ′ of C′ (a) and the corresponding drawing Γ of C (b)
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be the path of C′ that replaced pC = ein, v, e1, v1, . . . , ek, vk, eout. (Remember
that k ≥ 1.) If k = 1, it is easy to obtain a drawing of pC = ein, v, e1, v1, eout

starting from the drawing of pC′ = ein, vµ′ , eout by replacing vµ′ with v and
splitting eout with a vertex v1 in such a way that v1 is into R(µ) (see paths p1

C′

and p1
C of Fig 4 for an example).

Analogously, if k is odd (eout was incident to ν) it is possible to draw pC =
ein, v, e1, v1, . . . , ek, vk, eout in a thin stripe along the drawing of pC′ = ein, vµ′ ,
eout (see paths podd

C′ and podd
C of Fig 4 for an example). If k is even, then both ein

and eout were incident to µ in C. In this case the drawing of pC′ = ein, vµ′ , eout

does not immidiately provide a drawing of pC = ein, v, e1, v1, . . . , ek, vk, eout,
which can be built as follows. Vertex v is placed into R(µ) as edge ein crosses the
border of R(µ). Edge e1 follows clockwise the border of R(µ) till the previous edge
e′in entering R(µ) is found (or R(ν) is reached). Since edges ein are considered in
counterclockwise order and since b was a base for both µ and ν, path p′C , starting
with edge e′in, always has vertex v′ into R(µ) and v′1 into R(ν). Therefore, edge
e1 can be drawn arbitrarily near to path p′C and can be terminated with v1
placed into R(ν). Edges ei, with i = 2, . . . , k, can be drawn in an arbitrarily thin
stripe adjacent to e1, positioning vi alternately into R(µ) and R(ν). Finally, edge
eout can follow path pC′ to exit R(ν) (see paths peven

C′ and peven
C of Fig 4 for an

example). ��

4 C-Planarity Testing of Clustered Cycles

In this section we describe a c-planarity testing algorithm for rigid clustered cy-
cles. The following lemmas state properties of clustered cycles which are needed
to prove the correctness of the algorithm.

Lemma 5. Let C be a fountain clustered cycle such thatG1(C) is not a simple cycle
and has not multiple pipes. There exists at least one contractible pipe b∗ in G1(C).

Proof sketch. Consider a pipe b = (µ, ν) of maximum size. Since b is the pipe of
maximum size for both µ and ν, by Property 3, b is the base for both. If one
between µ and ν (say µ) has degree different from two then, by Property 1, µ
admits a single base and the statement holds with b∗ = b. Otherwise, suppose
that both µ and ν have degree two and that both have two bases. Let b1 be
the second base of µ. Due to Property 3, size(b1) = size(b). Therefore b1 is
also a base for its incident cluster µ1 �= µ. If b1 is the only base for µ1 then
the statement holds with b∗ = b1, otherwise µ1 has a second base b2 �= b1, with
size(b2) = size(b1), and we apply the same argument to b2. Since G1(C) is not
a simple cycle the current pipe bi is different from b and there exists at least a
j for which bj is the only base for µj . ��

We introduce a quantity that will be used to analyze the algorithm both in
terms of correctness and in terms of time complexity. Intuitively, it is an indicator
of the structural complexity of G1(C). We denote by E(C) the following quantity:
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E(C) =
∑

a∈{pipes of G1(C)}
(size(a))2.

We now concentrate on a pair of consecutive contraction-expansion operations
and show how E changes.

Lemma 6. Let C be a fountain clustered cycle and let b = (µ, ν) be a contractible
pipe which is the only base for µ. Let C∗ be the clustered cycle obtained by
applying a pipe contraction to b followed by a cluster expansion of the obtained
cluster µ′. We have that E(C∗) < E(C).

Proof. Let C′ be the clustered cycle generated by the pipe contraction applied
to b. C′ contains all the pipes of C with the exception of b, then E(C′) =
E(C) − (size(b))2. Clustered cycle C∗ has the same pipes of C′ plus a set of
new pipes a1, . . . , ak. If k = 0 then E(C∗) = E(C′) < E(C). If k = 1 then
deg(µ′) = deg(µ) = deg(ν) = 2. Since b is the only base for µ by Proper-
ties 1 and 2, b contains edges incident to cusps which are not present in a1.
Therefore E(C∗) < E(C). Suppose k > 2. We have that E(C∗) = E(C′) +∑k

j=1(size(aj))2 = E(C)−(size(b))2+
∑k

j=1(size(aj))2. Observe that each edge
contained in the pipes a1, . . . , ak is generated by the split of a vertex in µ′, and
that the number of vertices in µ′ is at most size(b). Then,

∑k
j=1 size(aj) ≤

size(b). Hence,
∑k

j=1(size(ak))2 < (size(b))2, and the statement follows. ��

Lemma 7. A clustered cycle C whose graph of the clusters G1(C) is a path is
c-planar.

Proof sketch. Let µ1, . . . , µm be the nodes of G1(C) in the order in which they
appear in the path. A planar embedding of C can be built as follows. Traverse the
cycle G starting from a vertex in µ1. Each edge e belonging to pipe a = (µi, µj)
is inserted at the last position of λµi(a) and at the first position of λµj (a). When
the path comes back to µ1 for the last time it can be connected to the starting
point preserving c-planarity. ��

We are now ready to introduce the c-planarity testing algorithm for a rigid
clustered cycle C. First, the algorithm performs a cluster expansion for each
non-fountain cluster. If one of such expansions is not feasible, then, according
to Lemma 1, C is not c-planar. If all the expansions are feasible, according to
Property 4, we obtain a fountain clustered cycle Cf , which is c-planar iff C is
c-planar. If the clusters of Cf form a cycle, then the c-planarity can be easily
tested using the results described in [5]. If G1(Cf ) is a path, then Lemma 7
states that Cf is c-planar. If the clusters of Cf form neither a cycle nor a path,
then Lemma 5 ensures that there exists a contractible pipe b∗ = (µ, ν). Perform a
contraction operation on b∗. Perform a cluster expansion on the resulting cluster.
These last two steps are performed until the clusters of the clustered cycle form
a cycle, or a path, or a cluster expansion fails. Note that a pipe contraction may
temporarily generate multiple pipes; however, the subsequent cluster expansion
produces a new clustered cycle which has no multiple pipes. The algorithm,
called ClusteredCyclePlanarityTesting, is formally described below.
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Algorithm ClusteredCyclePlanarityTesting

input A rigid clustered cycle C
output True if C is c-planar, false otherwise

for all non-fountain clusters µ in C do
perform a cluster expansion of µ
if the cluster expansion of µ is not feasible then

return false
end if

end for
{at this point C is a fountain clustered cycle}
while C is not a cycle or a path do

let b be a contractible pipe of C
apply a pipe contraction to b, obtaining cluster µ′.
perform a cluster expansion of µ′

if the cluster expansion of µ′ is not feasible then
return false

end if
end while
{at this point C is a cycle or a path}
if C is a cycle then

return the result of the c-planarity testing on C
else

return true
end if

Theorem 1. There exists a polynomial time algorithm to test if a rigid clustered
cycle is c-planar.

Proof. First, we prove that algorithm ClusteredCyclePlanarityTesting can be
always executed in a polynomial number of steps. Let C be a rigid clustered
cycle whose underlying cycle is G and be n the number of vertices of G. In the
first phase of the algorithm a cluster expansion is performed for all the non-
fountain clusters. Each cluster expansion can be performed in polynomial time.
At the end of this phase the number of vertices is at most 2n. Suppose that E
is the value of E(C) at the end of this phase. We have that E = O(n2).

By Lemma 6 each pair of pipe contraction and cluster expansion decreases
E(C) of at least one unit. Hence, the body of the while cycle is executed at
most E times. Also, a contractible pipe always exists (see Lemma 5) and can
be determined in constant time using a suitable data structure that contains
the candidate bases and that is updated after each operation. This proves that
algorithm ClusteredCyclePlanarityTesting terminates in polynomial time.

Second, we prove that algorithm ClusteredCyclePlanarityTesting gives the
correct result. Lemmas 2, 3, and 4 guarantee that the cluster expansion and
pipe contraction operations can be applied without modifying the c-planarity
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property of the graph, while if a cluster expansion is not feasible the graph is
not c-planar. If none of the cluster expansions fails, either the algorithm produces
a k-cluster cycle and applies the c-planarity testing algorithm shown in [5], or
produces a clustered path, which by Lemma 7 is always c-planar. Also, (see the
above discussion) the algorithm always terminates. ��

5 Computing C-Planar Embeddings of Clustered Cycles

In this section we show how to build an embedding for a c-planar rigid clustered
cycle. We assume that Algorithm ClusteredCyclePlanarityTesting, described in
Section 4, has been applied, and that each step of the algorithm has been
recorded. The clustered cycle Cend obtained at the last step of the execution
of that algorithm is such that G1(Cend) is a cycle or a path. A c-planar em-
bedding of Cend can be easily computed by using the results described in [5],
if G1(Cend) is a cycle, or by using the technique introduced in the proof of
Lemma 7, if G1(Cend) is a path.

The embedding of the input clustered cycle can be obtained by going through
the transformations operated by Algorithm ClusteredCyclePlanarityTesting in
reverse order starting from a c-planar embedding of Cend. Algorithm Clustered-
CyclePlanarityTesting performs two kind of operations: pipe contraction and
cluster expansion.

For each cluster expansion on a clustered cycle C, which produces a cluster
cycle C′, the embedding of C is directly obtained from the embedding of C′ as
described in the proof of Lemma 2 since all pipes in C′ are also in C and their
embedding do not change.

For each pipe contraction on a clustered cycle C, which produces a cluster
cycle C′, only part of the embedding of C can be directly obtained from the
embedding of C′ since C has one more pipe (the contracted one) with respect
to C′. The proof of Lemma 4 describes how to compute a c-planar embedding
of C starting from a c-planar embedding of C′.

From the above discussion and from the fact that ClusteredCyclePlanari-
tyTesting has a polynomial time complexity we can state the following result.

Theorem 2. Given a c-planar rigid clustered cycle, a c-planar embedding of it
can be computed in polynomial time.

6 Conclusions

In this paper we addressed the problem of drawing, without crossings, a cycle
in a planar embedded graph and have shown that the problem can be solved in
polynomial time.

If we interpret the problem and the result from the clustered planarity per-
spective it turns out that we have identified a new family of flat clustered graphs
that are highly non-connected and whose c-planarity can be tested in polynomial
time. This might be useful for deepening the insight into the general problem of
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testing the c-planarity of non-connected clustered graphs, whose computational
complexity is still unknown.

However, we point out that a trivial generalization of the result to flat clus-
tered graphs whose underlying graph is a general graph fails. In fact, it is easily
to find clustered graphs which are not c-planar while all cycles of their underlying
graphs are separately c-planar.
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