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Abstract: Small mammals, and particularly rodents, are common inhabitants of farmlands, where
they play key roles in the ecosystem, but when overabundant, they can be major pests, able to
reduce crop production and farmers’ incomes, with tangible effects on the achievement of Sustainable
Development Goals no 2 (SDG2, Zero Hunger) of the United Nations. Farmers do not currently
have a standardized, accurate method of detecting the presence, abundance, and locations of rodents
in their fields, and hence do not have environmentally efficient methods of rodent control able to
promote sustainable agriculture oriented to reduce the environmental impacts of cultivation. New
developments in unmanned aerial system (UAS) platforms and sensor technology facilitate cost-
effective data collection through simultaneous multimodal data collection approaches at very high
spatial resolutions in environmental and agricultural contexts. Object detection from remote-sensing
images has been an active research topic over the last decade. With recent increases in computational
resources and data availability, deep learning-based object detection methods are beginning to play
an important role in advancing remote-sensing commercial and scientific applications. However,
the performance of current detectors on various UAS-based datasets, including multimodal spatial
and physical datasets, remains limited in terms of small object detection. In particular, the ability to
quickly detect small objects from a large observed scene (at field scale) is still an open question. In this
paper, we compare the efficiencies of applying one- and two-stage detector models to a single UAS-
based image and a processed (via Pix4D mapper photogrammetric program) UAS-based orthophoto
product to detect rodent burrows, for agriculture/environmental applications as to support farmer
activities in the achievements of SDG2. Our results indicate that the use of multimodal data from
low-cost UASs within a self-training YOLOv3 model can provide relatively accurate and robust
detection for small objects (mAP of 0.86 and an F1-score of 93.39%), and can deliver valuable insights
for field management with high spatial precision able to reduce the environmental costs of crop
production in the direction of precision agriculture management.

Keywords: small object detection; UAS; YOLOv3; Faster R-CNN; EfficientNet; RetinaNet

1. Introduction

Sustainable agriculture and farm resilience are the main objectives of this century.
United Nations and FAO, through Sustainable Development Goal 2 (SDG2—Zero Hunger)
and the Sustainable Crop Production Intensification (SCPI) Strategic Objective A of FAO
Strategic Framework 2010–2019 [1], underline the need to achieve food security under
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climate change through the improvement of farm resource use efficiency and at the same
time reducing the environmental impacts (e.g., plant biotic stress control).

In many productive agricultural contexts, small mammals, and particularly rodents
are common inhabitants of farmlands playing key roles in the ecosystem. However, when
overabundant they behave as pests, able to reduce crop production and farmers’ incomes
and requiring the phytosanitary treatments of the field which are environmental and farmer
costs [2,3]. Then an environmentally efficient method of rodent control able to promote
sustainable agriculture, reducing the number and entity of treatments, oriented to reduce
the environmental impacts of cultivation is not present.

Currently, no studies have been found to indicate a reference methodology to detect
the presence, abundance, and location of small rodent holes in the field. To address this,
the ability to detect small objects via optical remote sensing and deep learning approaches,
using very high-resolution imagery from unmanned aircraft systems (UASs) can be help-
ful [4], but the problem of backgrounds complexity of field images to estimate the exact
position, localization, and classification of an object must be faced and overcome.

Before the development of deep learning approaches, conventional object detection
schemes for remote-sensing applications (based on handcrafted features and shallow
machine learning models) were based on three main steps: (i) selecting the regions of
interest (ROIs) in which objects may appear; (ii) extracting the local characteristics; and
(iii) applying a supervised classifier to these features [5]. The main drawback was the
limited robustness due to restrictions on the representation of various backgrounds in
a given set of data, which created overfitting and required many calculations [6]. The
emerging development of deep neural networks, and specifically convolutional neural
networks (CNNs), brought a substantial paradigm change and significant improvements
in the generalization and robustness of automatic learning and extraction using features
from annotated training data [5,7]. In many recent applications, traditional object detection
models have been replaced by deep learning-based models, which are considered to be
more accurate [8].

The region-based CNN (R-CNN), proposed in 2014, was a major milestone in object
detection [9] together with other bounding box regression-based approaches such as Fast R-
CNN [10], Faster R-CNN [11], and R-FCN (region-based fully convolutional network) [12].
These image segmentation methods produce a relatively low detection rate in natural
settings [13,14]. To ensure good results, deep learning approaches need to include both
detection and classification stages. For example, Faster R-CNN uses a region proposal net-
work (RPN) method to classify bounding boxes, and fine-tuning is then applied to process
these bounding boxes [15,16]. An alternative approach is a one-pass regression based on
class probabilities and bounding box locations, as used in the single-shot multibox detector
(SSD) [17], deeply supervised object detector (DSOD) [18], RetinaNet [19], EfficientDet [20],
You Only Look Once (YOLO) [21,22], etc. These methods unite target classification and
localization into a regression analysis, do not require RPN, and directly perform regression
to detect targets in the image.

The success rate of CNN-based object detection methods is dependent on the network
architecture and the quality and annotation of the data. In terms of feature maps, most
deep high-level maps have low resolution, thus making the detection of small objects a
challenging task. Both one-stage and two-stage detector models have certain disadvan-
tages: one-stage models are less detailed, and therefore have difficulty detecting small
objects, whereas two-stage models have long process times. In comparison, the use of low-
resolution feature maps (coarse, deep features) can reduce the performance of high-quality
localization models due to the loss of detailed information and the long processing times for
two-stage models. Shallow, low-level feature maps can reduce the representative capacity
for recognition and classification. One possible alternative is an attention-based model,
which can effectively extract the features of objects and enhance the detection performance
through a complementary combination of both low- and high-level features [23].
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Over the past decade, one- and two-stage models have been used for object detection
using aerial, UAS, and satellite remote-sensing images [24]. However, computer vision
models cannot be directly transferred to remote-sensing applications, in particular, due
to the geospatial properties of the objects that appear in the scenes. As previously re-
ported [25], the objects of interest in remote-sensing data are heterogeneous in terms of
their size and shape and cover a wide range of spectral signatures depending on the sensor,
scanning geometry, lighting, weather conditions, etc. Furthermore, compared with natural
images (in which the focus is on the central foreground object of interest, the background
is blurred, and images are collected at close range), remote-sensing images in general and
UAS-based images, in particular, involve small objects (scanned from above from a given
flight altitude) and complex backgrounds (where the surface of the ground around the
object of interest does not have a specific focus or blurriness, and there is no prior identi-
fied or preferable foreground). Since the feature maps obtained by CNNs have gradually
been reduced over time due to the use of convolution and down-sampling operations,
the present study aims to investigate the accurate, detailed detection of small objects in
UAS-based remote-sensing images. The main objective of the study is to compare the
performance of selected one- and two-stage detector models on a single UAS-based image
and a processed (via Pix4D mapper photogrammetric program) UAS-based orthophoto
product for agriculture/environmental applications. We then assess and report on the use
of a multimodal dataset for small object detection.

2. Motivation

The 2030 SDG deadline is just a decade away, and the Commitments of SDG2 include
taking action to fight hunger and malnutrition and supporting sustainable agriculture,
including forestry, fisheries, and pastoralism. The agenda pledges to strengthen efforts
to enhance food security and nutrition. Therefore, it is impossible to skip the issue of
the modern agricultural landscapes that transformed natural habitats into large mosaics
of monoculture, containing scattered uncultivated regions of semi-natural habitats with
varying dimensions and shapes. This variety of agricultural environments has resulted in a
loss of habitat heterogeneity that affects biodiversity and ecosystem function [26]. Rodents
such as Microtus voles play a keystone functional role within ecological communities, as
they are the main food source for a variety of predators, and are also a major agricultural
pest in terms of damage to field crops, stored grain, and farm equipment each year [27,28].
For example, in Israel, populations of Levant voles (Microtus guentheri) can create thousands
of burrow openings per hectare [29] as a result of the voles’ very high reproductive output.
Levant voles reach reproductive age within the first month of being born, pregnancy lasts
only 21 days, and they raise five or six young per litter [30,31]. Vole populations can
therefore fluctuate rapidly, causing extensive agricultural loss [32].

To combat the problem of voles, farmers have used rodenticides. For example, in the
United States, approximately 30 million pounds of rodenticides and other conventional
pesticides are used in agricultural, suburban, and urban settings each year [33]. Although
rodent baits placed in agricultural settings can kill rodents very effectively [27], they pose
a potential threat to non-target wildlife through secondary poisoning [34] and there are
also fears of resistance [35,36]. The cost of controlling voles is high, not only due to the
damage caused but because rodenticides are expensive (in terms of the cost of purchasing
and distribution in the field).

Although integrated pest control methods for controlling voles have been suggested
that combine irrigation to flood fields and the introduction of natural predators [37,38],
these methods have not solved the problem completely, and rodenticide is still used. One
of the major problems with controlling voles is that farmers do not have methods for
determining the abundance and locations of voles in their fields. In general, farmers
only start to notice voles when the population is large since damage from voles creates
“bald” sections in the field that are visible. Farmers traditionally apply large amounts of
rodenticide as a form of prevention, before they even see the voles, and add even larger
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quantities when they see the damage. There is, therefore, a need to develop a method of
determining the locations of the voles in a field when the population numbers are small;
this would allow farmers to control only certain specific areas, therefore increasing the
efficiency of control and reducing the amounts of rodenticide required.

Precision agriculture (PA) is a method of managing crop fields that takes into con-
sideration spatial variation and local field requirements. PA involves data collection to
characterize the spatial variability of fields, mapping, decision making, and the imple-
mentation of management practices [39]. The development of UAS-borne remote-sensing
imagery has increased the number of precision agriculture applications, due to the ability
of UASs to carry out cost-effective, low-altitude flights in small fields and to produce
images with high spatial (i.e., centimeter) and temporal (i.e., daily) resolutions [40]. The
main motivation for the present study is to provide a framework for the precise detection
of vole holes that applies sensor, platform, and advanced data processing approaches
based on machine learning algorithms to monitor and analyze the vole population in an
agricultural setting. The study is carried out at the landscape scale, and focuses on detector
accuracy as a function of habitat composition (abundance of burrow systems), structural
landscape heterogeneity (e.g., crop or soil background), and the influence of UAS imagery
by comparing the performance of deep object detection models on an orthophoto product
versus individual/single UAS images. The following deep learning-based algorithms are
evaluated in this paper: Faster R-CNN, YOLOv3, YOLOv5, EfficientNet, and RetinaNet.
For each method, a detailed description of the model architecture, the parameter settings
used for training, and any additional stages such as pre-processing, multimodal data, and
post-processing, are provided.

3. Materials and Methods
3.1. Object Detection Models

This section presents a comprehensive description of the object detection methods
used: Faster R-CNN, YOLOv3, YOLOv5, and EfficientNet and RetinaNet, in the general
flowchart of the study (Figure 1).
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Figure 1. Overall flowchart.

Faster R-CNN [41] is a two-stage object detection model that generates a sparse set of
entrant objects using a region pooling network (RPN) based on feature maps and classifies
each object as foreground or background. After extracting the feature maps with a CNN, a
set of bounding boxes at the object locations is generated in the first stage via an RPN. The
size of each anchor is configured using hyperparameters. The region of interest pooling
layer (RoI pooling) generates sub-feature maps that are converted into dimensional vectors
and fed forward to fully connected layers. These layers are then used as a regression
network to predict the bounding box offsets, and a classification network is applied to
predict the class label for each bounding box. The attention network is used to avoid
misalignments between the RoI and the extracted features of the RoIAlign layer (introduced
in Mask R-CNN [41]). In this study, Faster R-CNN with a RoIAlign layer is applied within
ResNeXt101 [42], with a feature pyramid network (FPN) [43] feature extraction backbone.
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FPN provides lateral connections that can enhance the semantic characteristics of shallow
layers via a top-down pathway that promotes generic feature extraction.

The YOLO family of models [21] are end-to-end deep learning-based detection models
that determine the bounding boxes of the objects present in the image and classify them
in a single pass. This approach does not involve region proposal steps, unlike two-stage
detectors. The YOLO network first splits the input image into a grid of non-overlapping
cells and predicts three elements for each cell: (i) the probability of an object being present;
(ii) the coordinates of the box surrounding it (only if there is an object in this cell); and
(iii) the class to which the object belongs and the associated probability. YOLO is an
anchor-free algorithm and performs regression of the target position and category for
each pixel of the feature map. The development of YOLOv3 [22] improved the detection
accuracy, and in particular allowed the model to find objects of different sizes, as it offered
three detection levels rather than only one in the previous versions, thus supporting the
detection of smaller objects. YOLOv3 predicts three-box anchors for each cell, detects at
three different levels with the searching grids, and exploits a deeper backbone network
(Darknet-53) for feature map extraction. However, since YOLOv3 offers a deeper feature
extraction network with three-level prediction, it is also slower, as one-stage detectors are
generally characterized by rather lower accuracy in terms of detecting small objects from
remote-sensing images [44]. As the detection algorithm is required to detect only one type
of object, the complexity of the problem is reduced when only a single object is under
investigation. YOLOv5 is a high-precision, real-time detection network with a cross-stage
partial network (CSPNet) Darknet [45] feature extraction backbone, which reduces the
number of model parameters, thus not only ensuring the speed and accuracy of inference
but also reducing the size of the model.

YOLOv5 includes four models: the smallest is YOLOv5s, with 7.5 million parameters
(plain 7 MB, COCO pre-trained 14 MB) and 140 layers, and the largest is YOLOv5x,
with 89 million parameters and 284 layers (plain 85 MB, COCO pre-trained 170 MB).
In the approach proposed in this study, a pre-trained YOLOv5x model is used. This
model includes a two-stage detector consisting of a CSPNet [45] backbone trained on
MS-COCO [20], and a model head using a path aggregation network (PANet) [46] for
instance segmentation. Each bottleneck unit consists of two convolutional layers with 1 × 1
and 3 × 3 filters. The backbone incorporates a spatial pyramid pooling network (SSP) [47],
which allows for dynamically sized input images and is robust against object deformations.

EfficientNet is an anchor-based [20], efficient target detection algorithm. It consists of
three parts: (i) a pre-trained backbone network based on ImageNet; (ii) BiFPN, which cre-
ates top-down and bottom-up feature fusion by adopting a weighted feature fusion scheme
to obtain semantic information of different sizes in the model; and (iii) a classification and
detection box prediction network. Feature extraction in EfficientNet-B3 is based on the
idea that a small number of feature map parameters should provide rich information, thus
ensuring fast, accurate detection.

The RetinaNet model consists of three parts: (i) a residual network (ResNet) [42],
which is used to extract image features; (ii) an FPN for feature processing; and (iii) a
classification and return sub-network, which is used to output the final detection. The
number of layers is directly proportional to the abstraction degree of feature extraction
and adjustable parameters, where the higher the number, the better the fitting effect. Since
ResNet’s residual unit structure adds a connection to the convolution feedforward network,
a deeper neural network can be trained. After the image has been passed through the deep
ResNet, the features are first extracted and then fused by the FPN, and finally sent to the
classification and return sub-network.

3.2. Field Study

In this section, we present the details of the dataset used in this field study and then
describe the setup and the standard evaluation metrics.
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3.2.1. Dataset

Research area: This study took place in an alfalfa (Medicago sativa) field (~25 acres)
located in the Hula Valley in Israel (33.14868 N, 35.60398 E) in (Figure 2). Alfalfa is a
perennial plant variety that is mainly used for animal feed (e.g., for dairy cows, horses,
and sheep), and is grown for 2–6 years. During this time, the alfalfa is trimmed/harvested
monthly between April and October, but because the fields are not plowed, the burrows of
Levant voles are not destroyed, allowing the numbers of rodents and visible burrows to
increase. Alfalfa was selected as a crop due to many voles and burrows. In this study, the
burrows were counted regardless its status (active or inactive).
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Figure 2. Field study area, (a) the general location; (b) aerial orthophotograph (photographic scale 1:20,000) of the Alfalfa
fields (national database delivered by Ofek Aerial Photography LTD published on www.govmap.gov.il, accessed on
17 July 2021); (c) UAS-based orthophoto map of a selected area (30 × 40 m); (d) a selected plot area marked by four rectangle
ground targets in the corners; (e) the same plot as in c after marking burrows with white Styrofoam balls.

UAS platform and data collection—A DJI Phantom 4 Pro platform equipped with
an inbuilt three-axis gimbal-stabilized 20-megapixel camera was used for RGB image
acquisition. Pix4Dcapture software (Pix4D, Lausanne, Switzerland) was used to control the
flight and to capture the RGB images using pre-programmed flight plans applying a frontal
overlap of 90% and an adjusted side overlap (by an amount of flight). The image sequences
were collected in Pix4Dcapture software using the ‘double grid’ option of the autopilot
software and perpendicular flight lines. Each area of interest (24 × 40 m) was covered
by 82–86 single UAS images, wherein a total of 26 areas were scanned. The position and
orientation parameters for the camera were provided by the onboard inertial measurement
unit (IMU) and global positioning system (GPS). To ensure a ground sampling distance
(GDS) of ~0.82 cm/px, the UAS was flown at an altitude of 30 m. All the above parameters
were stored in the metadata of the images for later geo-referencing applications.

Preparation for data collection—A total of 26 plots of size 10 x 10 m were randomly
selected, each of which contained fixed objects that allowed us to return to the same
sampling area, to anchor the photogrammetric models, which were marked with ropes,
and to provide plot ID. Data collection took place on sunny days with no clouds. The UAS

www.govmap.gov.il
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data were collected during the growing seasons of 2019 and 2020, from the beginning of
July to August each year.

Description of vole burrows (Figure 3)—Entrances to the burrows (described here
as holes and/or burrow holes) are normally 2.5–7.5 cm in diameter (Figure 4). Voles are
social animals and create complex burrow systems with numerous entrances. Although
the burrow entrances are typically oval, some collapse over time, especially once they are
abandoned or empty after previous control measures, creating irregular shapes. Therefore,
the proposed detection method should be tolerant to these shapes and slight changes.
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Validation—Data collection was divided into two stages: (i) photographing the plots
for the first time; and (ii) photographing the plots for the second time, where all the vole
burrows were counted and marked (in total 1740 burrows) with white Styrofoam balls,
which were placed on the top of the burrows. This process was done to enable validation
at a later stage, and only visible burrows were counted and marked (Figure 5), no covered
burrows were taken into account. Moreover, to assure the exact location of the holes the
DGPS was collected and marked only if appeared in a model (digital surface model DSM
and orthophoto) created using Pix4D.

The absolute vertical and horizontal accuracy of the UAS-based products (DSM and
orthophoto) was comparable to that of the GPS device (several meters). This could be
significantly improved using the DGPS system in the field (to cm level). With this in mind,
a total of 10 ground control points (GCPs) were measured, which were well distributed
throughout the field and near-visible horizontally and vertically important objects (pillars,
weather station, etc.) [48].
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Processing of UAS imagery—The images were processed using the structure from
motion (SfM) method [49], implemented in Pix4D Mapper Pro (v. 4.3.31), which included
all the main steps of this method. An automatic image quality module (implemented
in MATLAB, using the horizontal and vertical components of the Sobel edge filter, and
applied before the data were input to the SfM workflow) [50] was used to identify and
remove all blurry images from the data folder [51] before the images were processed.

The common workflow for dense point cloud generation included posing estimation,
image alignment, generation of tie points, generation of dense point clouds using dense
stereo matching techniques such as the semi-global matching (SGM) algorithm [52], and
3D modeling [53]. The recommended parameters were used to generate dense point
clouds (e.g., the ‘high’ option for dense point cloud generation) produced high-resolution
orthophotos and DSMs with a spatial resolution of 1.5 cm. The point density option was
set to ‘optimal’, and the minimum number of matches was set to three, using a matching
window of size 9 × 9 pixels. Finally, the geometric accuracies of the generated point clouds
and DSMs were evaluated separately. The visual features were illustrated using quantile-
quantile plots [54], elevation profiles, and error classification maps [55]. The accuracy
of the DSM was 2 cm in the horizontal direction, and <3 cm in the vertical direction,
calculated based on five validation GPS points that were measured in the field (using an
Emlid ReachRS2 device) but were not used in the Pix4D model. In this study, we used the
“calibrated camera parameters file” and “calibrated external camera parameters” offered
by the Pix4D [48].

Thematic layers—The DSM was processed further to create two additional inputs for
the training of the CNN. The first product was a terrain ruggedness index (TRI) [50,56,57],
which represents the mean of the absolute differences in height between a focal cell and
its 3 × 3 neighboring cubes (ca. 4.5 cm3) and quantifies the total change. Smooth surfaces
have a value of zero, while rough surfaces have positive values. This simple index was
used as a normalization factor in further analysis, as it could categorize each surface using
a simple scoring system (positive values).

Next, we calculated the texture, which is a descriptive property of all the surfaces and
contains information regarding the structural arrangement of features and the relationship
with their surroundings. Our main approach to the quantification of scene texture involved
computation using a moving window with two-dimensional (2D) surface roughness as
an input. Please note that in the processing stage, the point cloud was extracted using a
3D gray level co-occurrence matrix (GLCM). The 2D GLCM is a matrix, where each input
datum has a gray level [58] examining the spatial relationship of objects. The 3D GLCM is
used to determine the distance and direction before the pixel pairs are counted, whereas
for the 2D GLCM, only horizontal distances and directions are determined before counting,
and vertical distances are computed during the counting process. The specific generation
process used in 3D GLCM [59] involves the following steps: (i) fix the image window
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size for a pixel and the level of intensity; (ii) define the horizontal distance and direction;
(iii) split the vertical direction into sections, and prepare the same number of matrices;
(iv) in the fixed window, find all pixel pairs that satisfy the condition in (ii); (v) compute the
vertical direction for each pixel pair in (iii), meaning that each pixel pair will be counted
in the corresponding matrix based on its vertical direction; (vi) generate the GLCM by
counting in the same planar direction but in different vertical directions; (vii) compute
Haralick features [60] to quantitatively describe the GLCM.

Evaluation metrics (Table 1)—The following four metrics were used to evaluate the
classification model: precision, recall, F1-score, and mean average precision (mAP). These
are defined based on four quantities: true positive (TP), which indicates that the predicted
and actual values are both positive; false positive (FP), which means that the predicted
value is positive, but the actual forecast is negative; false negative (FN), which means that
the actual value is positive but the predicted value is negative; true negative (TN), which
means that the predicted and actual values are both negative.

Table 1. Evaluation metrics.

Precision number of true detections
number of detected objects TP/(TP + FP)

Recall number of true detections
number of existing objects TP/(TP + FN)

F1 2 ∗ Precision − Recall
Precision + Recall 2TP/(2TP + FP + FN)

The intersection over union (IoU) measures the overlap ratio between the detected
object (marked by a bounding box) and the ground truth (an annotated bounding box that
is not included in the training dataset). The value of IoU varies between zero (no overlap)
and one (total overlap) and is used to determine whether the detected object is a real object
(according to a given threshold). The threshold in this study was very low (0.1), due to our
interest in small objects.

The mean average precision (mAP) is defined as the integral of the precision over the
recall interval [0, 1], i.e., the area under the precision-recall curve [61].

3.2.2. Training

The infrastructure used for training was a single NVIDIA®V10017 tensor core graphi-
cal processing unit (GPU) with 16 GB memory, as part of an NVIDIA®DGX-118 supercom-
puter for deep learning.

Faster R-CNN was pre-trained on MS-COCO [20] with a stochastic gradient descent
optimizer with a momentum of 0.9 and a weight decay set to 0.0001. The learning rate was
0.01 in the first 500 iterations and then multiplied by 0.1 at epochs 10, 30, and 100.

The training of YOLO has been carried out in two stages: an initial training phase
and a self-training phase. The initial stage used the original training data to train the
model, while the self-training stage, also called pseudo-labeling, extended the available
training data by inferring detections for images for which no original annotation data were
available [62]. This was realized using the model resulting from the initial training stage,
and the generated detections were then used as pseudo-annotated data.

Cross-validation was performed to approximate training optima using a default set of
hyperparameters performed in the single-class training mode. In the initial training stage,
a base model was trained on the training dataset for 100 epochs with a batch size of 30.
This base model was initialized with weights from the pre-trained MS-COCO model.

In the self-training phase, the base model was used to create an extended training
dataset. Pseudo-annotation data were inferred for the validation and test datasets using
the best-performing epoch (which was automatically saved by the model). At this stage,
the base model training was resumed from its latest epoch and was trained further on the
extended training dataset with a batch size of 10.
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The EfficientNet and RetinaNet models were trained on an NVIDIA Quadro RTX
8000 GPU with a batch size of 16, a stochastic gradient descent optimizer with a learning
rate of 0.00005, a momentum of 0.9, and 50 epochs.

Each image obtained by the UAS was manually annotated by drawing rectangles to
surround each object. A total of 6100 images of burrows were manually annotated for
the training and test datasets, from which 4200 training samples and 1900 test samples
were produced (~70% training, ~30% test). Furthermore, in total 1740 images were divided
into two (~50–50%) groups (Figure 6) labeled background 1 (bare soil) and background 2
(ground cover) and used as an external validation (test sites).
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4. Results

Tables 2 and 3 show the results of the internal test for 30% of the input data
(1900 test samples out of 6100 images in total) from various algorithms, focusing specifically
on the detection rate for an orthophoto versus a single UAS image. Table 2 lists the training
results for each method for a single UAS image. In terms of precision, recall, mAP, and
F1-score, the performance of the self-trained YOLOv3 model was superior to the other
six methods. Faster R-CNN, RetinaNet, YOLOv5 (self-trained and initially trained) and
EfficientNet achieved lower results (mAP = 32%, 58%, 60%, 61% and 66%) than the general
YOLOv3 model (mAP = 72%), and the self-trained YOLOv3 model (mAP = 82%). The re-
sults in Table 2 also confirm the good performance of YOLOv3 in terms of recall/precision
balance. The best F1-score of 0.93 was achieved by the self-trained YOLOv3 model; this
was significantly higher than the values for the other detectors, such as EfficientNet (0.80)
and YOLOv5 self-training (0.76), RetinaNet (0.75), and Faster R-CNN (0.52).

Table 2. Overall training evaluation metrics (best result in bold) for a single UAS image for 30% of
the input data (1900 test samples out of 6100 images in total).

Method Recall Precision Mean Average
Precision (mAP) F1-Score (%)

Faster R-CNN 0.4 0.78 0.32 52.88

RetinaNet 0.67 0.84 0.58 74.54

EfficientNet 0.72 0.89 0.66 79.60

YOLOv5 initially trained 0.68 0.85 0.6 75.56

YOLOv5 self-trained 0.69 0.88 0.61 77.35

YOLOv3 initially trained 0.77 0.91 0.72 83.42

YOLOv3 self-trained 0.85 0.96 0.82 90.17
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Table 3. Overall training evaluation metrics (best result in bold) for an orthophoto product for 30%
of the input data (1900 test samples out of 6100 images in total).

Method Recall Precision Mean Average
Precision (mAP) F1-Score (%)

Faster R-CNN 0.41 0.70 0.33 51.71

RetinaNet 0.53 0.78 0.47 63.11

EfficientNet 0.52 0.75 0.49 61.42

YOLOv5 initially trained 0.61 0.80 0.64 69.22

YOLOv5 self-trained 0.64 0.81 0.68 71.50

YOLOv3 initially trained 0.77 0.88 0.76 82.13

YOLOv3 self-trained 0.78 0.89 0.81 83.14

Table 3 presents the training results for each examined method for the orthophoto
products. In terms of precision, recall, mAP, and F1 score, once again the performance of
the self-trained YOLOv3 were superior to those of the other six methods, with a mAP of
0.81 and an F1-score of 84%, while the worst results were obtained by Faster R-CNN with a
mAP of 0.33 and an F1-score of 52%.

Based on the results in Tables 2 and 3, the following observations can be made: (i) the
YOLOv3 models achieved better performance than the other models, thus demonstrating
the advantage of the small target detector; (ii) the self-training model is beneficial to both
YOLOv3 (the F1-score improved from 84% to 91% for a single UAS image product and
83% to 84% for an orthophoto product) and YOLOv5 (the F1-score improved from 76% to
78% for a single UAS image product and from 70% to 72% for an orthophoto product); and
(iii) from a global perspective, the training results for all detectors were better for the single
UAS image, as all detectors achieved lower performance for the orthophoto product.

Table 4 shows the effect of using DSM-related layers (with multimodal data as input).
Following the approach suggested by Brook and Stober-Zisu (2020) for textural analysis,
three thematic/textural maps calculated using 3D GLCM were tested based on homogene-
ity, entropy, and correlation. The multimodal dataset with three layers at once allowed us to
train all the suggested models with the following input combinations: Dataset 1: grayscale
orthophoto product, TRI (roughness), and a homogeneity layer (3D GLCM textural maps);
Dataset 2: grayscale orthophoto product, TRI (roughness) layer and a correlation layer (3D
GLCM textural maps); Dataset 3: grayscale orthophoto product, TRI (roughness) layer and
an entropy layer (3D GLCM textural maps).

Table 4. Overall training evaluation metrics (best result in bold) on multimodal datasets for an orthophoto product for 30%
of the input data (1900 test samples out of 6100 images in total).

Method Input Dataset (1) Input Dataset (2) Input Dataset (3)

Mean Average
Precision (mAP) F1-Score (%) Mean Average

Precision (mAP) F1-Score (%) Mean Average
Precision (mAP) F1-Score (%)

Faster R-CNN 0.30 50.82 0.33 52.64 0.25 34.12

RetinaNet 0.39 52.62 0.4 53.12 0.33 53.18

EfficientNet 0.52 66.45 0.51 64.58 0.60 70.84

YOLOv5 initial training 0.63 68.89 0.67 70.62 0.68 72.45

YOLOv5 self-training 0.64 69.42 0.70 74.15 0.75 80.93

YOLOv3 initial training 0.69 73.15 0.79 83.15 0.81 83.84

YOLOv3 self-training 0.72 76.32 0.80 83.78 0.86 93.39
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Compared with the original orthophoto training results (in Table 3), the multimodal
input datasets achieved better results with Dataset 3. The results in Table 4 show that the
self-training YOLOv3 fed with Dataset 3 achieved a mAP of 0.86 and an F1-score of ~94%,
values that were significantly higher than those reported for a single UAS imagery product
(Table 2).

Effects of Different Backgrounds in the Validation Sets

The detection of small objects with various agricultural backgrounds is a key challenge
in many remote-sensing applications. To improve prediction accuracy, the training data
should be captured in various environments so that the network can distinguish between
the object of interest and background targets. An alternative approach is a model that
can generalize the characteristics of the scene without prior knowledge regardless of their
background/environment. The main aim here was to evaluate the ability of the initially
trained and self-trained YOLOv3 model to handle a range of agricultural backgrounds.
Two external validation areas (1740 samples in total) with new backgrounds (bare soil
and groundcover backgrounds) were selected. Table 5 presents the results for all the
products (i.e., a single UAS image, orthophoto, and multimodal dataset) on two different
validation sets.

Table 5. Overall external test evaluation metrics (best result in bold) on all available datasets for two validation sets
(1740 samples in total).

Method/Input Data Single UAS Image Orthophoto Multimodal

Mean Average
Precision (mAP)

F1-Score
(%)

Mean Average
Precision (mAP)

F1-Score
(%)

Mean Average
Precision (mAP)

F1-Score
(%)

Background 1: bare soil
YOLOv3 initially trained 0.65 65.57 0.66 67.06 0.72 72.43

YOLOv3 self-trained 0.68 69.07 0.76 78.56 0.83 90.80

Background 2:
groundcover

YOLOv3 initially trained 0.63 61.23 0.69 77.54 0.76 77.13

YOLOv3 self-trained 0.66 68.86 0.67 73.89 0.75 74.91

As shown in Table 5, the self-trained YOLOv3 achieved better results for all input
datasets (as shown in bold) on the first validation set (bare soil) than for the second
(groundcover). This can be explained by the level of similarity between the backgrounds in
the validation set and the training set. The groundcover (training set) was more similar to
the bare soil (validation set 1) than to the groundcover (validation set 2). When comparing
the results with those reported in Table 4, where the self-trained YOLOv3 achieved a mAP of
0.86 for the multimodal dataset, the performance for unseen backgrounds in the validation
set was lower (i.e., in 3% for the bare soil and 8% for the groundcover background).
Compared to the other input datasets, this model achieved the best performance (i.e., 6%
on the first background and 12% on the second background for the orthophoto product and
8% on the first background, and 9% on the second background for a single UAS image).

In (Figure 7) three examples of detection level for the external test sites are presented in
subsets. In Figure 7a the reported results achieved the best level of detection with F1-score
of 100%, in b the detection level is lower ~87% and in c the detection level is very low 33%.
These results representing the best, moderate, and worst results of the model.

The multimodal dataset (i.e., grayscale orthophoto product, TRI roughness index layer,
and the entropy layer calculated via 3D GLCM textural information) produced the most
accurate results. However, comparing between orthophoto product and single UAS image
data, the results in Tables 2 and 3 show that a single UAS image product is advantageous,
as it was able to detect vole burrows better than an orthophoto product. This may be due
to the spatial resolution and to the spatial/geometrical artifacts and general smoothness,
particularly at the edges, produced by the triangulation/interpolation processes in the
photogrammetric program. However, the multimodal dataset that included the orthophoto
product and was supported using two physical surface properties (i.e., the roughness and
texture randomness, calculated as surface entropy) derived from the DSM model yielded
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the best results. These findings illustrate the effectiveness and influence of multimodal
datasets on machine learning and the rate of detection of small objects from low-cost
UAS-based sensors.
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5. Discussion

The detection of small objects with various agricultural backgrounds is a key challenge
in many remote-sensing applications. Several methods and deep learning algorithms can be
addressed to detect objects, but not all of them can accurately detect small objects, especially
objects with various agricultural backgrounds [63] in UAS-based remote-sensing imagery.

On an operational level, the best time to collect the field data and capture detailed
information is immediately after the harvest, before the groundcover or small weeds start
growing around the burrows and change the background. This is a preferable time window
to assure significantly easier and more accurate target detection. Indeed, an important
influencing factor in the practical applications of remote-sensing means for small object
detection is reclined on testing different types of input datasets.

In this study were tested three different input datasets were: (i) single UAS images, (ii)
orthophotos, (iii) multimodal dataset (combining textural physical layers with orthophoto
data), on one- and two-stage algorithms such as YOLOv3 and Faster-RCNN respectively.

The YOLO v3 algorithm achieved better results than other examined methods. Evalu-
ated by metrics of precision, recall, mAP, and F1-score, the performance of the self-trained
YOLOv3 model was superior to the other six methods (Tables 2–4). This model demon-
strated an excellent ability of a one-stage algorithm to detect small (vary in shape) targets in
a complex agricultural background. The self-training model was beneficial to both YOLOv3
(the F1-score improved from 84% to 91% for a single UAS image product and 83% to 84%
for an orthophoto product) and YOLOv5 (the F1-score improved from 76% to 78% for a
single UAS image product and from 70% to 72% for an orthophoto product). The training
results for all detectors were better for the single UAS image, as all detectors achieved
lower performance for the orthophoto product (Tables 2 and 3). On the other hand, research
that tested the capability of YOLOv3 and YOLOv5 for apple picking robot [64], concluded
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that the average time for one apple detection is about 19 ms for YOLOv3. Both speed and
error fractions were less than in all known similar applications. YOLOv5 in this type of
application, detected apples precisely without any additional techniques [64]. Numerous
studies searched for a reason causing small object miss-detection and false detection [65].
Several studies compare YOLOv5 and YOLOv3, but only after improving the initial anchor
box size of the original YOLOv5network to avoid misrecognition of small objects [66].
However, in our study, the targets are small and probably not in contrast to YOLOv5,
therefore this model could not outperform the 3rd version of YOLO.

In addition, the average detection speeds per orthophoto (field area of 24 × 40 m
with 1.5 spatial resolution) is ~50 times longer than the detection process time for a single
UAS image [67]. This fact is important for practical applications and should be taken into
account in the case of emergency or under a normal agriculture schedule that every action
should be on time. The main benefit of a single UAS image detector based on YOLOv3 is
its computational time. The external test dataset reported the following detection speed:
(i) a single UAS image was processed around 0.05 s, which was very fast compared to
orthophoto or multimodal inputs (execution time); (ii) a single orthophoto was processed
around 3 min; and (iii) multimodal was processed around 3.5 min, this calculation is not
considering the data preparation time, i.e., Pix4D Mapper, 3D GLCM, etc.

The multimodal input datasets achieved the best results with the grayscale orthophoto
product, TRI (roughness) layer, and an entropy layer (3D GLCM textural maps) dataset
(Table 4) for the self-training YOLOv3 model (mAP of 0.86 and an F1-score of ~94%).
Its results were significantly higher than those reported for both multimodal grayscale
datasets and higher than a single UAS imagery dataset. Image texture and physical layers
provided valuable information on the spatial arrangement, and together with shade (in
our case grayscale) or intensities were selected as the most informative and suitable input
dataset, similarly to studies [68] reporting on the advantages of multimodal for small
object detection.

To improve prediction accuracy and more importantly to support a real-world ap-
plication, the model should be able to operate under various environments so that the
network can distinguish between the object of interest and background [69]. Our original
hypothesis that “the target objects on the bare soil backgrounds will be easier to detect” has
been tested. Indeed, according to Table 5, the self-trained YOLOv3 achieved better results
for all input datasets on the first validation set (bare soil) than for the second (groundcover).
This can be explained by the level of similarity between the backgrounds in the validation
set and the training set. The groundcover (training set) was more similar to the bare
soil (external test—validation set 1) than to the groundcover (external test—validation
set 2). When comparing the results with those reported in Table 4, where the self-trained
YOLOv3 achieved a mAP of 0.86 for the multimodal dataset, the performance for unseen
backgrounds in the validation set was lower (i.e., in 3% for the bare soil and 8% for the
groundcover background). Compared to the other input datasets, this model achieved
the best performance (i.e., 6% on the bare soil background and 12% on the groundcover
background for the orthophoto product and 8% on the first background, and 9% on the
second background for a single UAS image).

6. Conclusions

One and two-stage detector models usable to detect small targets in agricultural back-
grounds, from different input datasets, have been examined to identify an environmentally
efficient method of rodent control to support the achievement of SDG2 and to promote
sustainable agriculture. The focus of this study was on evaluating the performance of
the suggested models on a single UAS-based image, a UAS-based orthophoto product
processed with the Pix4D mapper photogrammetric program, and a multimodal product
for agriculture/environmental applications. The contribution of the multimodal dataset
to small object detection was assessed and reported. A study and analysis of a field-scale
(real-world) UAS dataset using Faster R-CNN, YOLOv3, YOLOv5, EfficientNet, and Reti-
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naNet showed that the highest mAP value and F1-score were achieved by the self-trained
YOLOv3 on multimodal data. The validation results demonstrated the superiority and
practicality of the multimodal dataset. The main conclusions of this work are as follows:

Superior results were obtained from high spatial resolution edge/contrast-preserving
data (single UAS-based imagery) than from an orthophoto produced by a photogrammetry
program. These data showed a relatively high detection rate of vole burrows (small
targets), but this method is not efficient at the field scale. Although its performance
was poorer, the orthophoto also showed potential as a detection method. The use of
physical/texture information showed great promise in terms of the detection of vole
burrows from a multimodal dataset, and achieved higher prediction accuracy when all the
spatial and physical features were included.

Multimodal data yielded superior performance in the detection of vole burrows
compared to single UAS image data, for all modeling methods.

A self-trained multimodal YOLOv3 model outperformed the other methods and
exhibited strong adaptability to different datasets with high detection accuracy, along with
robustness in terms of spatial dependency and variation.
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