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Abstract: Manganese ores, especially the oxyhydroxides in their different forms, are the dominant 
Mn-bearing minerals that occur in marine and terrestrial environments, where they are typically 
found as poorly crystalline and intermixed phases. Mn oxyhydroxides have a huge range of 
industrial applications and are able to exert a strong control on the mobility of trace metals. This 
paper reports the results of a detailed study on the Mn oxyhydroxides occurring in the 
manganiferous deposit outcropping in the Messinian sediments from Serra D'Aiello (Southern 
Italy). Nine Mn samples were characterized in detail using X-ray powder diffraction (XRPD), 
differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron microscopy 
combined with energy dispersive spectrometry (TEM/EDS), and X-ray fluorescence (XRF). The 
results indicated that the Mn deposit included the oxyhydroxide mineral species birnessite, 
todorokite, and rancièite. The size, morphology, and chemical composition of Mn oxyhydroxide 
samples were investigated in order to define their impact on the environment and human health. 
Todorokite displayed asbestiform shapes and could disperse fibers of breathable size in the air. 
Furthermore, since in-depth characterization of minerals within Mn deposits may be the first step 
toward understanding the genetic processes of manganese deposits, hypotheses about the genesis 
of the Mn oxyhydroxide deposits were discussed. 
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1. Introduction 

Manganese (Mn) deposits occur in both marine and terrestrial environments as a mix of Mn 
oxyhydroxides. It is within the marine environment, independent of deep and oxygenated 
conditions, that the most important Mn deposits are formed. Considering their formation and 
composition, Mn oxyhydroxide deposits can be classified as hydrogenous, diagenetic, and/or 
hydrothermal [1]. In both hydrothermal and diagenetic occurrences, Mn oxyhydroxides may exhibit 
different crystal habits (lamellar, needle-like, fibrous, and asbestiform) [2–8].  

Generally, hydrogenous Mn deposits are slowly precipitated from seawater, diagenetic Mn 
oxyhydroxides are formed by the diagenesis of Mn-rich protolith, and hydrothermal Mn 
oxyhydroxides are directly precipitated from geothermal solutions around hot springs [9].  

Mn oxyhydroxide minerals are a potential economic resource [10]. In particular, todorokite 
[(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12·3-4H2O] has many potential industrial applications, such as 
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sorbents, sensors, heterogeneous catalysts, and rechargeable batteries [11]. Regarding birnessite 
[(Na,Ca)0.5(Mn)2O4·1.5H2O], it has been used in previous works as a catalyst in soot combustion 
processes and in methylene blue degradation, showing appreciable catalytic activity compared to 
traditional catalysts [12]. Ranciéite [(Ca,Mn2+)Mn4+4O9·3H2O] is known to be an efficient adsorbent of 
toxic metals, such as plutonium [13]. Despite their economic use, Mn oxyhydroxide deposits could 
pose an environment problem, as they could contaminate the air, soils, sediments, surface water, and 
groundwater [14]. Some studies have reported associations between Mn exposure and adverse health 
effects [15–18], while other studies suggest that Mn-rich water can be neurotoxic for both adults and 
for children [19–22].  

Another aspect to consider is that some Mn oxyhydroxides, such as todorokite and manjiroite, 
can crystallize, exhibiting an asbestiform morphology [5–7]. It is worth mentioning that asbestiform 
minerals (e.g., erionite, ferrierite, and fluor-edenite) are sometimes more dangerous than the six 
regulated asbestos fibers (chrysotile, amosite, crocidolite, anthophyllite, tremolite, and actinolite) 
[23,24]. Indeed, non-regulated fibers, such as erionite, ferrierite, and fluor-edenite, are considered to 
be positive carcinogen minerals [25–27]. As such, the US National Institute for Occupational Safety 
and Health (NIOSH) [28] has recently proposed to extend the definition of asbestos to all elongated 
mineral particles (EMPs) [29]. 

The issue is even more complicated as minerals with fibrous and lamellar habits are often found 
together within the same deposits and the same rocks [29–32], and these minerals must be 
discriminated correctly from a morphological point of view. In this regard, NIOSH highlights the 
difficulty in ascertaining the source of exposure in the case of mixed exposures (i.e., asbestos, 
asbestiform minerals, lamellar minerals) for some mining operations. A large amount of Mn 
oxyhydroxides with fibrous-asbestiform habits are observed in deposits that can eventually be mined 
and used for industrial applications [5,7]. Disturbance (i.e., erosion, excavation, road construction, 
agricultural activities) of these outcrops can generate airborne fibers with a similar size to asbestos 
fibers, thus increasing the hazard to people who live near these deposits. 

As a matter of fact, only sporadic studies were devoted to Mn deposit outcroppings in the 
Messinian sediments from the Serra D’Aiello area [33–35]. In this contest, we have collected and 
studied in detail nine Mn-rich samples occurring in the manganiferous deposit outcropping in the 
Messinian sediments from Serra D'Aiello (Southern Italy) by combining X-ray powder diffraction 
(XRPD), differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron 
microscopy combined with energy dispersive spectrometry (TEM/EDS), and X-ray fluorescence 
(XRF) in order to: (i) inspect their possible mineralogical hazardous nature, (ii) evaluate their 
potential for releasing contaminant elements into soils or waters, and (iii) identify their 
environmental formation. 

2. Geological Setting 

The studied Mn deposit outcrop in the Serra D’Aiello area in the southern boundary of the 
Amantea Basin sedimentary sequence in Southern Italy is shown in Figure 1. 
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Figure 1. Simplified geological map of the investigated area (modified after CASMEZ [36]). 

The basin is characterized by two main sedimentation cycles: a Tortonian-Messinian cycle (TMC) 
and a Messinian-Lower Pliocene cycle (MLPC), which are divided by a compressive tectonic 
intramessinian event [37–39]. The TMC formed during a transgressive phase that progressively 
affected the entire basin and consists of conglomerates and sandy-silty terrains, indicating a transition 
from a continental (coastal alluvial plain) to a marine environment [40], as recognized using the 
following terrains in the TMC: (i) red conglomerates, (ii) sandstone, (iii) cinerites, (iv) fossiliferous 
conglomerates, (v) arenaceous calcarenites, (vi) clays, and (vii) diatomites at the top of the sequence 
(deep sea conditions). The Mn deposit outcrops in correspondence to the cyclical arenaceous-clayey 
alternations, whose total thickness is just under 30 meters, overlies the gray fossiliferous clays (Figure 
2) and is laterally observed (in the outcrop) for about 150 m, providing a detailed lithostratigraphic 
description of the Mn outcrop and highlighting the presence of mineralization made up by 
autogenous minerals, such as Mn hydrated oxides.  
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Figure 2. Distant view of the alternation of gray silty layers and manganese (black) layers from Serra 
D'Aiello (Southern Italy). 

The first cycle is interrupted by the Messinian tectonic phase, which has a compressive character 
in the Amantea basin, as evidenced by the shortening of the original basin. After this tectonic phase, 
sedimentation resumed (cycle II—MLPC) and the terrains were deposited in discordance over the 
previous cycle, and in some places, directly on the crystalline-metamorphic basement. The 
recognized succession is constituted by: (i) polygenic conglomerates; (ii) evaporitic limestones and 
limestones; and (iii) sandstones, clay, and silty clay [40]. 

3. Materials and Methods  

Nine Mn-rich samples were collected and studied using different analytical techniques to obtain 
a detailed mineralogical and geochemical characterization [41,42]. The collected samples were all 
black in color and showed a massive appearance. The samples were preliminarily inspected under 
reflected light using a Zeiss Axioskop 40 microscope (Zeiss, Jena, Germany) in order to choose 
representative single nodules (i.e., free from alterations) to be studied using X-ray powder diffraction 
analysis (XRPD), differential scanning calorimetry (DSC), and thermogravimetry (TG).  

The bulk geochemical composition of major (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, 
K2O, P2O5) and trace (Ni, Cr, V, Co, Ba, Sr, Cu, Zn, Pb) elements were obtained using X-ray 
fluorescence (XRF). Chemical elements were analyzed with a rhodium tube with a 40 kW intensity 
using a Bruker S8 Tiger (Bruker, Karlsruhe, Germany) X-ray fluorescence device (Tables 3 and 4). 
Chemical data were processed according to the Aitchison model in order to calculate the centered-
log-ratio (clr) transformations. 

XRPD patterns were obtained on a Bruker D8 Advance X-ray diffractometer (Bruker, Karlsruhe, 
Germany) with CuKα radiation, monochromated with a graphite sample monochromator at 40 kV 
and 40 mA. Scans were collected in the range of 3–66° 2θ, with a step interval of 0.02° 2θ and step-
counting time of 3 seconds. EVA software (DIFFRACplus EVA version 11.0. rev. 0) was used to 
identify the mineral phases in each X-ray powder pattern with experimental peaks being compared 
with 2005 PDF2 reference patterns. Differential scanning calorimetry (DSC) and thermogravimetry 
(TG) were performed in an alumina crucible under a constant nitrogen flow of 30 cm3 min−1 with a 
Netzsch STA 449 C Jupiter (Netzsch-Gerätebau GmbH, Selb, Germany) in a 25–1000 °C temperature 
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range and a heating rate of 10 °C/min. Derivative thermogravimetry (DTG), derivative differential 
scanning calorimetry (DDSC) and endothermic peaks were obtained using Netzsch Proteus thermal 
analysis software, version 4.7.0 . The instrumental precision was checked via repeated collections on 
a kaolinite reference sample (six collections), revealing a good reproducibility (instrumental 
theoretical T precision of ±1.2 °C) and a theoretical weight sensitivity of 0.10 μg. For DSC/TG and 
XRPD investigations, samples were ground in an agate mortar. The size, crystallinity, structural 
features, and chemical composition of single particles were determined using a Jeol JEM 1400 Plus 
(120 kV) transmission electron microscope (TEM; Jeol, Tokyo, Japan) equipped with a double tilt 
holder to obtain structural data using selected area electron diffraction (SAED) and with a Jeollarge-
area silicon drift detector SDD-EDS (Jeol Tokyo, Japan) for microanalyses. For TEM investigations, 
the sample was put in isopropyl alcohol and then sonicated. Two drops of the obtained suspension 
were deposited on a Formvar carbon-coated copper grid. In order to describe the size (length and 
diameter) of the fibers, several dozen TEM micrographs were recorded and six single fibers of 
todorokite for each sample were measured. 

4. Results and Discussion 

4.1. Field Observation 

Serra D'Aiello's Mn deposits were localized in correspondence with the cyclical arenaceous-
clayey alternations (Figure 2). The deposits were stratified showing layers with thicknesses varying 
from a few mm up to 30 cm and were also oriented parallel to the direction of the silty layers (Figure 
3a-d). Within the layers, the Mn oxyhydroxides were deposited in laminae or nodules of variable 
dimensions. The latter were constituted by a shell of hydroxides of Mn that enclosed a core of silt 
(Figure 3e). Their shape was ellipsoidal with a larger diameter ranging from 2–3 cm up to 22 cm and 
were oriented with the largest diameter parallel to the direction of the layers.  

The larger nodules contained smaller nodules and had a thin shell, whereas those that were 
smaller in size did not contain nodules and had a thicker shell. Within the silty layers, there were also 
some levels (at least three) with iron oxides (Figure 3f). These were sometimes constituted by nodules 
and dimensions of less than 3 cm, whereas in others, they formed laminae with a thickness of about 
1 cm. Both the layers and the iron oxide nodules were oriented parallel to the direction of the silty 
layers. The mineralized layers had been affected by a series of faults, bringing them to different 
heights and constructing a stepped structure. 
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Figure 3. Typical morphology of the Mn oxyhydroxide deposits at the mesoscale, (a–d) alternation of 
gray silty layers and black manganese layers, (e) ellipsoidal black manganese nodule, and (f) iron 
oxide nodules inside the black manganese layers. 

4.2. XRPD and DSC/TG Characterization 

The minerals detected in the studied samples are listed in Table 1. The evaluation of the XRPD 
patterns showed that Mn oxyhydroxides were the main phases identified in all samples. The 
diffraction peaks were found to match with the standard, provided by the International Centre for 
Diffraction Data (ICDD) [43], of birnessite (ICDD 23-1046), todorokite (ICDD 19-83 and ICDD 21-553) 
and ranciéite (ICDD 22-718). Quartz, calcite, plagioclase, K-feldspar, rhodochrosite, and muscovite 
were also detected in varying amounts but not in all samples.  

The XRPD patterns of birnessite and ranciéite generally showed broad reflections 
(Supplementary Materials Figure S1), suggesting that poorly crystalline phases were present in the 
samples. On the other hand, the XRPD pattern of todorokite was characterized by less broad peaks, 
indicating a moderate level of crystallinity. The mixed Mn oxyhydroxides (i.e., todorokite, birnessite, 
and ranciéite) were also proven using a thermal analysis collapse temperature in agreement with the 
literature data [44–46]. In particularly, the DSC curves showed an endothermic effect at around 200 
°C (Figure 4; Table 2) due to the breakdown of birnessite [44]. The DSC curve of ranciéite exhibited 
one endothermic effect in the range 640-680 °C (Figure 4; Table 2) [45]. Finally, the DSC curve of 
todorokite showed one shoulder effect at about 460 °C (Figure 4; Table 2), which was clearly recorded 
on the DDSC curve, related to its structural collapse [46]. The very weak endothermic effect in the 
range 575–597 °C (Figure 4; Table 2) was due to the structural α → β transition of quartz [47], while 
the endothermic peak at 806 °C (sample 3S) corresponded to the breakdown of muscovite in 
agreement with Földvári [47]. The endothermic peak at 570 °C (sample 7S) and in the range 743–798 
°C (samples 3S, 4S, and 8S) on the DSC curve, which were also clearly recorded on the DTG curve 
(not shown), were due to the decarbonation of rhodochrosite [47] and calcite [47], respectively. The 
endothermic peaks on the DSC curves below 110 °C (Figure 4) were attributed to the release of water 
adsorbed on the samples’ surfaces.  
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Figure 4. Comparison between DSC curves of the Mn oxyhydroxides samples. 

Table 1. Location of each collected sample (geo-referenced using Universal Transverse of Mercator 
(UTM) coordinates system and World Geodetic System 1984 (WGS84) as ellipsoid), and their semi-
quantitative mineralogical assemblage in order of decreasing abundance as detected using XRPD, 
DSC/TG, and TEM/EDS. Ranc = ranciéite, Birn = birnessite, Todor = todorokite, Qtz = quartz, Plag = 
plagioclase, Ms = muscovite, K-feld = K-feldspar, Cal = calcite, Rod = rhodochrosite. 

Samples 
X Y 

Phases UTM 
(WGS84) 

UTM 
(WGS84) 

1S 597057.462 4327544.556 Ranc> Birn>Todor>K-feld 
2S 597169.537 4327610.483 Ranc> Birn>Todor>Qtz>Plag>K-feld 
3S 597288.205 4327528.075 Birn>Ranc>Cal>Todor>Qtz>Plag>K-feld>Ms 
4S 597166.241 4327330.295 Birn>Ranc>Todor>Cal>Qtz>Plag>K-feld 
5S 597301.39 4327294.035 Ranc>Birn>Todor>Qtz>Plag>K-feld 
6S 597413.465 4327244.59 Ranc>Birn>Qtz 
7S 597113.499 4327162.182 Todor>Ranc>Rod>Qtz 
8S 597228.871 4327076.478 Birn>Ranc>Qtz>Cal>Plag 
9S 597331.057 4327063.293 Ranc>Birn>Qtz 

Table 2. Peak temperatures (°C) in DSC curves; w—weak, s—strong, sh—shoulder, endo—
endothermic. Exothermic peaks have not been reported. 

DSC (°C) 

Phases 1S 2S 3S 4S 5S 6S 7S 8S 9S 

          

Water/humidity 92 endo s 80 endo s 80 endo s 93 endo s 80 endo s 97 endo s 70 endo s 80 endo s 108 endo s 

Birnessite 214 endo s 190 endo w 197 endo s 216 endo s 210 endo s 206 endo - 204 endo 208 endo 

Todorokite 472 sh 460 sh 423 sh 443 sh 480 sh - 474 endo w - - 

Quartz - 575 endo 575 endo 576 endo 576 endo 597 endo - 577 endo 598 endo 

Rhodochrosite - - - - - - 570 endo - - 

Ranciéite 661 endo s 650 endo s 670 sh 681 endo 663 endo s 677 endo s 643 endo s 678 endo 678 endo s 

Calcite   743 endo s 751 endo s    798 endo  
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Muscovite     806 endo             

          

4.4. TEM/EDS Characterization 

The identification of mineral components and the characterization of the morphologies using 
scanning electron microscopy (SEM) were not undertaken due to the colloidal texture and 
nanometer-scale sizes of the Mn oxyhydroxides. Indeed, both secondary and backscattered electron 
images did not show any detailed features of the Mn oxyhydroxides. In light of this, as well as the 
characteristics and regarding the nanometric dimensions of the Mn oxyhydroxides layers, TEM was 
used due to its high magnification power.  

A representative set of TEM micrographs showing the morphology of Mn oxyhydroxides 
observed in the various samples are given in Figures 5,6. In accordance with literature data [48], TEM 
observations of birnessite showed crumpled sheet morphologies (Figure 5a), all characterized by 
rather poor crystallinity (Figure 5a). The surface of the birnessite seemed to peel off in many plate-
like layers typical of phyllomanganate Mn oxyhydroxides [48]. These layers were partially wrapped, 
and in some places, it was possible to observe the interlayer of its structure (Figure 5b). Rancièite 
were found to be elongated platelets (Figure 5c) from fractions of a few nanometers to micrometers 
in length (Figure 5d). The particles of ranciéite in all samples were found to be irregularly shaped 
platelets similar to those of birnessite under TEM (Figure 5). Under TEM, todorokite showed a strain-
shaped morphology with parallel sides and regular termination, and occasionally, the longitudinal 
splitting of such fibers into thinner fibrils was observed (Figure 6). In some cases, todorokite fibers 
showed tight extremities assuming a conical morphology (Figure 6b). The fibrous todorokite was 
found in all samples, and always in conjunction with lamellar birnessite and/or ranciéite. It is worth 
remembering that todorokite fibers grow via the crack-and-seal mechanism [7]. Similar crack-and-
seal structures are characteristic for the occurrences of chrysotile (asbestos) and asbestiform 
amphiboles in weakly metamorphosed formations [30–32]. Regarding the particle sizes detected 
using TEM, the todorokite fiber lengths in all samples ranged from a few nanometers to 10 μm, and 
from about 10 nm to 500 nm in width. In all the samples, most of the fibers measured were generally 
longer than 5 μm, with a width of < 3 μm and with aspect ratios > 3:1, and were therefore classified 
as asbestiform fibers [49,50].  

The semi-quantitative chemical composition of several particles, as determined using TEM/EDS 
analyses, was in line with the general chemical composition of birnessite (Na,Ca)0.5(Mn)2O4·1.5H2O, 
todorokite (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12·3-4H2O, and ranciéite (Ca,Mn)0.2(Mn)O2·0.6H2O. The 
variation of the calcium percentage in the ranciéite and birnessite particles was used in order to 
discriminate between the two minerals, in agreement with Chukhrov et al. [51]. 

The chemical composition of the respective Mn oxyhydroxides hosted many major, minor, and 
trace elements. For example, todorokite had a variable composition where elements such as Zn, Mg, 
Ba, Sr, Ca, Na, K, Cu, Pb, and Ni could be detected in variable amounts. Calcium and alkali contents 
in birnessite fluctuated, and other elements, such as Mg, Ba, Zn, Cu, Co, Li, Al, and Fe, were also 
detected. These elements were often embedded in a sandwich–like manner as hydroxides in the form 
of disordered interlayers between well-ordered Mn oxyhydroxides or as Mn substitutes in the 
octahedral sites [45,48]. In ranciéite, variable amounts of Ca and Fe, and minor amounts of Mg, Al, 
Na, K, Si, P, and Cu were detected. As a matter of fact, variations in the chemical composition are 
linked with complex structure of Mn oxyhydroxides and can be explained easily by the manifold 
substitutions of the cations [45]. In this regard, Mn oxyhydroxides’ high reactive surface area particles 
play innumerable roles in the transformation and cycling of major and trace elements in 
hydrogenetic, diagenetic, and hydrothermal environments [52,53]. 
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Figure 5. Representative TEM micrograph: (a) aggregates of sheet-like birnessite in sample 4S (the 
SAED pattern is shown in the inset); (b) detail of (a) where the interlayer of the birnessite structure is 
indicated by the black arrow; (c) rancièite occurence as elongated platelets (sample 5S), and (d) detail 
of (c) where the interlayer spacing of rancièite structure of ≈ 8 Å is indicated by the white arrow. 
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Figure 6. Representative TEM micrograph of the samples examined: (a) fibrous todorokite (sample 
1S); (b) thin fibers of todorokite (sample 3S); (c) fibrous todorokite (note the curvature flexibility; 
sample 7S); (d) fibrous todorokite (cleavage fragment, note the irregular sides; sample 4S); (e) fibrous 
todorokite (sample 9S); and (f) bundle of todorokite fibers (sample 2S). 

4.5. XRF Characterization 

Through the X-ray fluorescence analytical technique, the following major and trace elements 
were found in the samples of manganese mineralization from Serra D’Aiello: MgO, Al2O3, SiO2, P2O5, 
K2O, CaO, TiO2, MnO, Fe2O3, Na2O, Rb, Sr, Cr, V, Ba, Ni, Co, Zn, Pb, and Cu. Tables 3 and 4 report 
the content of the oxides (in wt%) and trace elements (in ppm) for each sample. 

As expected, MnO was the main component in all samples with mean values of 53.7 ± 8 wt% 
followed by SiO2 and CaO (13 and 6 wt%, respectively).  

The relatively high values of SiO2, Al2O3, and K2O were explained by the occurrence of minor 
amounts of silicate minerals, such as quartz, K-feldspar, plagioclase, and muscovite (Table 1).  

Generally, a strong correlation did not exist between MnO and any other major elements (Table 
3). 

It is noteworthy to mention, however, that the mineralized beds contained some iron oxide 
abundances, which were separated by the manganiferous layers, suggesting that the solution from 
which the Mn precipitated also contained a fair amount of iron. It is good to note that in submarine 
hydrothermal Mn deposits, a common geochemical feature is the fractionation of Fe from Mn.  

The initial precipitation of Fe-bearing phases is due to their higher precipitation rates with 
respect to Mn ones [54–58].  

Concerning trace elements (Table 4), samples showed mutually comparable Sr, Cr, V, Zn, and 
Cu concentrations, whereas different distributions have been recognized for the remaining trace 
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constituents (Ba, Ni, Co, and Pb). The high barium value in samples 5S and 9S was probably linked 
to the high content of rancéite detected, in which often the calcium present in its structure is replaced 
by barium [56] 

In detail, samples 1S, 2S, 3S, 4S, and 5S showed anomalous Ni concentrations, close to or slightly 
below 500 ppm, which was different to what was highlighted in the remaining samples (below 150 
ppm). Furthermore, samples 3S and 9S, and 4S and 6S, were characterized by high concentrations of 
Pb and Co, respectively (Table 3). High concentrations in these trace elements made them potentially 
available for subsequent accumulations in soils, water, and air with consequent negative effects on 
human health.  

Table 3. Major element concentrations (in oxides wt%) obtained using XRF analysis. (LOI.: loss on 
ignition). Fe2O3 stands for total Fe. 

ID LOI MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 Na2O Tot 
  wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% 

1S 14.21 3.50 5.33 15.32 0.34 1.13 9.20 0.34 47.58 2.72 0.32 100 
2S 16.32 2.56 3.48 10.04 0.22 0.79 6.77 0.18 57.53 1.86 0.25 100 
3S 15.57 3.34 3.19 9.62 0.09 0.46 4.17 0.13 61.76 1.53 0.13 100 
4S 17.02 3.54 3.90 10.88 0.14 0.66 8.07 0.20 53.34 2.03 0.21 100 
5S 16.09 2.18 2.44 7.52 0.14 0.45 4.10 0.25 65.38 1.44 0.15 100 
6S 14.52 2.16 3.50 11.24 0.21 0.95 7.04 0.11 57.65 2.32 0.31 100 
7S 14.59 2.52 4.55 13.27 0.27 0.81 7.46 0.20 53.64 2.27 0.40 100 
8S 19.70 4.09 4.85 15.34 0.19 0.91 6.34 0.22 45.67 2.37 0.30 100 
9S 13.83 6.40 6.69 23.24 0.12 1.06 4.29 0.28 40.92 2.87 0.30 100 

Table 4. Trace element concentrations (in ppm) obtained using XRF analysis.  

ID Sr Cr V Ba Ni Co Zn Pb Cu 
  ppm ppm ppm ppm ppm ppm ppm ppm ppm 

1S 159 23 58 135 555 115 0 172 57 
2S 153 14 28 114 511 38 0 75 57 
3S 157 24 52 158 472 32 0 309 49 
4S 160 24 27 132 509 566 0 169 65 
5S 261 21 43 578 379 101 0 101 38 
6S 254 11 22 112 94 298 37 92 56 
7S 241 25 40 164 57 57 0 95 38 
8S 219 24 55 125 151 94 0 0 57 
9S 243 39 90 1086 127 109 54 746 73 

Indeed, nickel compounds can cause a variety of adverse effects on human health, such as a 
nickel allergy in the form of contact dermatitis, lung fibrosis, cardiovascular and kidney diseases, and 
cancer of the respiratory tract [59–61]. In the same way, an excessive amount of cobalt exposure could 
cause a complex clinical syndrome with a varying set of neurological, cardiovascular, and endocrine 
deficits that are directly related to the uptake of Co ions in the tissue and in blood circulation [62]. 
Moreover, lead is also an extremely harmful environmental pollutant. If it is adsorbed, it can cause 
several negative affects to the respiratory and digestive body systems [63]. The threshold values of 
potential hazardous elements in each environmental matrix (soil, water, and air) are reported in Table 
S1 (Supplementary Materials). As such, defining the concentration of these compounds (minerals, 
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elements) in these geological settings is the first step to limiting the exposure and consequently the 
problems that they can cause to those who live within the surrounding areas. 

4.6. Origin of the Mn-rich Mineralizing Fluid 

The geochemical characterization is an indispensable tool for understanding the genesis of Mn 
deposits. Using geochemical parameters, marine Mn deposits can be classified into three main types 
[1]: (i) hydrothermal, (ii) hydrogenetic, and (iii) diagenetic deposits, as well as through a combination 
of these processes [57]. 

A (Cu + Ni + Co) × 10 – Fe – Mn diagram is usually used to identify the possible origin of Mn 
ores [64–65]. Figure 7 shows that the studied samples fell within the hydrothermal field. The high 
Mn/Fe ratio recorded suggests a typical deposit of a distal environment [9,66], which was also 
reflected by the lack of Fe phases in the selected Mn deposits. 

Geochemical features of marine siliceous sediments, in particular the abundances of quartz 
and/or of its polymorphs common in deep-ocean floor sediments and in ophiolite sequences [67,68], 
have been studied to obtain information about their sources and depositional environments [69,70].  

In response to this, the Al/(Al+Fe+Mn) and MnO/TiO2 ratios were used to evaluate the relative 
contributions of the terrigenous and hydrothermal input of marine sediments, with Al and Ti being 
representative of a terrigenous source and Mn and Fe of a hydrothermal one, as reported by Kato et 
al. [71]. For the Serra D’Aiello samples, very low Al/(Al+Fe+Mn) values (lower than 0.04) and very 
high MnO/TiO2 values (≈218) were detected. These ratios allowed us to exclude the option of a 
terrigenous input, suggesting that silica in the studied mineralizations may be indicative of further 
evidence of a hydrothermal origin (Figure 8). 

Based on obtained data, and considering the geological setting of the studied area, this could 
suggest that hydrothermal processes have driven the deposition of the Mn-bearing minerals in the 
Serra D’Aiello sedimentary basin. The obtained results agree with those shown by Sinisi et al. [9], 
who have studied Mn-rich mineralization in the metasedimentary succession from the Calabria 
region (Italy). 

 
Figure 7. Triangular plot for the genesis discrimination of the Mn deposits. 
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Figure 8. (a) Al/(Al + Fe + Mn) and (b) MnO/TiO2 ratios for each sample. 

5. Conclusions 

A multidisciplinary approach based on mineralogical and geochemical analyses was used in 
order to characterize the Mn deposits from Serra D'Aiello (Southern Italy). The results obtained using 
XRPD, DSC/TG, TEM/EDS, and XRF showed that birnessite, todorokite, and ranciéite occurred as Mn 
oxyhydroxides phases in the analyzed samples. The Mn oxyhydroxides were poorly crystallized, and 
their morphology could only be recognized under TEM/EDS.  

The release of Mn in the groundwater/soils, as well as other heavy metals from the Mn 
oxyhydroxide deposit, was regulated by a multitude of variables; therefore, the mineralogical and 
geochemical characterization of Mn oxyhydroxides minerals is important in order to define the 
potential environmental contamination in soils and groundwaters in areas where Mn oxyhydroxides 
occur. This investigation highlighted that ranciéite and birnessite with platy morphology occurred in 
all the analyzed samples, whereas the asbestiform todorokite was detected in seven samples.  

Todorokite occurred in large amounts as microcrystalline fibrous–asbestiform phases in 
diagenetic rocks with fibers of breathable sizes (particles with length ≥ 5 μm, width ≤ 3 μm, 
length/width ratio ≥ 3:1). It is important to note that, in addition to the minerals regulated as asbestos 
by law, asbestiform minerals, such as fibrous todorokite, could also potentially be dangerous if 
inhaled.  

In the Amantea basin, a complete separation between Fe and Mn geochemistry during 
deposition and subsequent alteration was observed. This could be explained by an early segregation, 
with a release of a much greater abundance of Mn in comparison to Fe. From a geochemical point of 
view, some samples showed anomalous concentrations of Ni, Co, and Pb. The accumulations of these 
compounds in soils, water, and air can cause negative effects on human health, causing mild 
pathologies. Consequently, the widespread nature of both trace metals and asbestiform todorokite 
into the environment may be a cause of serious health problems for people who live near the 
sampling sites. For these reasons, an environmental monitoring plan in these potential contaminated 
sites is needed.  

Finally, based on mineralogical and geochemical data, as well as considering the geological 
setting of the studied area, it was ascertained that hydrothermal processes have driven the Mn-
bearing mineral deposition in the Serra D’Aiello sedimentary basin according to similar evidence 
presented in other metasedimentary successions outcropping in the Calabria region (Italy). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: XRPD 
pattern of the samples examined. Peaks were assigned according to the literature (International Centre for 
Diffraction Data (2005). ICDD Products/PDF-2, http://www.icdd.com/products/pdf2.htm). Table S1: Threshold 
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values of potential hazardous elements in soils and groundwaters (Italian Legislative Decree N°.152 of 
03/04/2006) and air (NIOSH 2007). 
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