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Abstract

We introduce thék, ¢)-self-spannergraphs to model non-reliable interconnection networks. Such
networks can be informally characterized as follows: if at nfostiges have failed, as long as two
vertices remain connected, the distance between these vertices in the faulty graph ikémnesshe
distance in the non-faulty graph. By fixing the vallkesd¢ (calledstretch factoandfault-tolerance
respectively), we obtain specific new graph classes. We first provide characterizational, structural, and
computational results for these classes. Then, we study relationships between the introduced classes
and special graphs classes (distance-hereditary graphs, cographs, and chordal graphs), and common
network topologies (grids, tori, hypercubes, butterflies, and cube-connected cycles) as well.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Special graph classes; Spanners; Stretch number; Interconnection networks; Fault tolerance

1. Introduction

The main function of a network is to provide connectivity between the sites. In many
cases it is crucial that connectivity is preserved even in the case of faults in either sites
or links. Accordingly, a major concern in network design is fault-tolerance and reliability.
The large amount of research dedicated to fault-tolerant network design is basically based
on two approaches. The first approach consists of techniques that add redundancy to the
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desired architecture by introducing new network components (e.g[6S6£26). In the
second approach, the fault-tolerance is achieved not by adding redundancy to the network,
but by using the non-faulty part of the network to simulate the desired architecture (e.g.,
see[2,11,21).

Following a different approach, in this work we are interested in networks in which
distances between sites remain small even in the case of faulty links or sites. Hence, we do
not start with a fixed target graph, nor do we allow a re-structuring of the graph; we keep
the identification of each vertex fixed. As the underlying model, we use unweighted graphs,
and measure the distance in a network in which faults have occurred by a shortest path in
the subnetwork that is induced by the non-faulty components.

To study such networks, we introduce new classes of graphs that guarantee constant
stretch factor& even when a multiple number efigeshave failed. In a first step, we do not
limit the number of edge faults at all, that is we allow torlimitededge faults. The graphs
that model this case are call&eself-spannerand the corresponding class is denoted by
SSk). Secondly, we examine the case where the number of edge fabltsingledby a
constant. For this, we introduce the class &S¢) of (k, £)-self-spannegraphs. In both
cases, the name is motivated by strong relationships to the condejspahnerg23].

A network modeled as &, ¢)-self-spanner graph can be informally characterized as
follows: if at most¢ edges have failed, as long as two vertices remain connected, the
distance between these vertices in the faulty graph is at most k times the distance in the
non-faulty graph By fixing the valuesk and ¢ (called stretch factorandfault-tolerance
respectively), we obtain a specific new graph class. The goal of this work is twofold: (1)
to provide characterizational, structural and computational results for the new classes, and
(2) to study relationships between the introduced classes and common network topologies,
and special graphs classes as well.

Related worksAs observed above, several papers present results about classical fault-
tolerant network design. Recently, some papers introduced and analyzed networks accord-
ing to the approach followed in this work. [&,7-9], authors have considered networks
that guarantee constant delay factors even wheandimited number ofverticesfail. In
particular, in[7,9] they study graphs in which the induced distance function is bounded by
amultiplicative constantwhile in[1,8] the induced distance function is bounded byadn
ditive constantin [13], author gives characterizations for graphs in whiotdelayoccurs
in the case that ainglevertex fails. These graphs are calklf-repairing Unfortunately,
in all cases these results do not carry over to the dual casdgeffaultsin [15], a different
notion of fault-tolerance and reliability is considered. There, the goal was to find subgraphs
with a certain structure in a given graph such that a constant distance guarantee can be
given.

ResultsAs a preliminary step, we first introduce and investigatgelf-spannerspro-
viding different strict characterizations. Such results prove that the recognition problem for
the class S&) is polynomially solvable fok <3, and that it is hard in general (famot
fixed).

As main contribution, we introduce and investigate the¢)-self-spanners graphs.
Characterizational and structural results are used to tackle the main problem: deciding
whether a given graph is(&, £)-self-spanner. This problem i$"#-complete for the gen-
eral case wherk and¢ are part of the input and remaing’2-complete ifk >5 is fixed.
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However, ifk <2 is fixed or if¢ >0 is fixed, then there are polynomial time algorithms to
solve it. Fork = 3 the problem is polynomial fai¢ + 1)-edge-connected graphtss 0. In
conclusion, it remains to be settled for general graphs when Z 4.

At a second phase, we define some sufficient conditions to guarantee that a given graph
belongs to S&, ¢) for somek and¢. These conditions are used to show that some well
known graph classes such as distance-hereditary, cographs, and chordal graphs[@&)g., see
exhibit strong self-spanner properties, by providing upper bounds on the trade-off between
stretch factor and fault-tolerance.

Finally we show how the new graph classegq/af¢)-self-spanners fit into the context
of some popular network topologies. To this end, we first study self-spanner properties of
graphs built by means of Cartesian product. Then, we use these properties to show that
grids, tori, andhypercubegxhibit strong self-spanner properties, in particular for small
fault-tolerance values. Bounded-degree approximations of the hypercube socimasted
cyclesandbutterflies however, result in big stretch factors even in the case of small fault-
tolerance values.

The remainder of this paper is organized as follows. Notation and basic concepts used in
this work are given in Section 2. Sections 3 and 4 introduce and inveskigaié spanners
and (k, ¢)-self-spanners, respectively. In Section 5, we provide self-spanner properties of
special graph classes. Section 6 shows how Cartesian product affects self-spanner properties
of graphs; this resultis used to investigate relations betweeh-self-spanners and popular
network topologies. Finally, in Section 7, we give some final remarks.

2. Basic notions

In this work, we use standard notation for graphs[{th)]). Let G = (V, E) be a simple
(i.e. without multiple edges or loops), unweighted, and undirected grapim. dextote the
number of vertices, and leh denote the number of edges. Téet of verticegandset of
edges resp.) ofG is denoted byV (G) (and E(G), resp.). A subgraptid = (V’, E’) of
G = (V,E) (with V' C V andE’ C E) is calledspanningf V = V'. If R C V(G), then
G[R] denotes the subgraph@finduced byR. G — e wheree € E(G) is the graph obtained
from G by deleting edge. The neighborhoodVg (v) of a vertexv in G is the set of all
vertices that are adjacenttdn G.

Thedistancebetween two vertices andv in G is denoted byl (1, v), and corresponds
to the number of edges in a shortest path betwesmdv. If we considercycles we always
meansimplecycles, i.e. cycles in which each vertex appears at most oncdempth of a
cycleis the number of its vertices or its edges, resp. An edgectsoad of a cycleC if it
connects two non-adjacent verticesbfA cycleCin Gis calledinducedf G[V (C)] =C,

i.e. if C does not contain chords.

C, denotes thénduced cycle graplfalso called ring) withn vertices. Conversely(,
denotes a cycle on vertices that may contain an arbitrary number of chords. Moreover,
P, is thepath graphon n vertices.K,, is thecomplete graplfor clique) onn vertices, and
K, is thecomplete bipartite graplwith a bipartition omn andm vertices.

For a connected graph, amticulation vertexis a vertex whose deletion disconnects
the graph. A graph is callebiconnectedor 2-vertex-connectgdf it has no articulation
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Fig. 1. (a) A 3-self-spanner graph and (b) a 4-self-spanner graph.

vertex. It is calledl-vertex-connected there is no subset of verticéof size¢ — 1 such
that G[V'\S] is disconnected. A graph isedge-connecteid no deletion of¢ — 1 edges
disconnects it. An edge of G is calledbridgeif G — e is disconnected. Observe that an
¢-edge-connected graph does not contain a bridge: 2. A blockof a graph is a maximal
biconnected subgraph.

A diamondis a biconnected graph formed by two possibly adjacent verticasd v,
which are connected hi > 2 disjoint paths of length 2 (see for example the leftmost block
in Fig. 1(a)).

For any fixed rationat > 1, ak-spanneiof an unweighted grapB is a spanning subgraph
Sin G such that the distance between every pair of verticésiat mostk times their
distance inG. The parametek is calledstretch factor We say that an edgeis coveredif
in Sthere exists a path of length at méghat connects the endpoints@fSuch a path is
called acovering pathSince in particular each edge has to be coveredkispanner, it is
clear that in unweighted grapBss ak-spanner ofs if and only if Sis a|k |-spanner of>.
Thus it suffices to consider integer stretch factors

Moreover, in order to prove that a given spanning subgraphkisganner, we do not
have to consider all pairwise distances of the vertices. It suffices to look only at edges of
the graph that are not part of the spanning subgraph.

Lemma 2.1 (Peleg and Schaeff¢23]). A subgraphS = (V, E’) of a graphG = (V, E)
is ak-spannepf G if and only if all edges that do not belong to S are coveied

ds(u,v)<k forevery edge = {u,v} e E\E'. 1)

The concept of spanners has been introduced by Peleg and UlInf24],invhere they
used spanners to synchronize asynchronous networks. One of the many other applications
for spanners are communication networks, where one is interested in finding a sparse sub-
network that nevertheless guarantees a constant delay factor. Further regu#igaomers
and variants thereof can be found for examplgLi].

3. k-self-spanner

In this section, we examine a class of graphs that guarantees constant delays even in the
case of arunlimitednumber ofedge faults
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Definition 3.1. For any fixed integek > 1, a graphG = (V, E) is ak-self-spanneiif for
every subgraplts’ = (V, E’) of G:

dg(u,v)<k-dg(u,v) forallu,v e V thatare connected i@’. (2)

The class of alk-self-spanners is denoted by % The parametekis calledstretch factor
For a graphG, minS(G) denotes the smallektsuch thaiG € SSKk).

For instance, the gragh in Fig. 1(a) belongs to S&), but asminS(G) = 3, it does not
belongto S®). If G’ is achieved fronG by adding the edgg:, v}, thenminS(G’)=6, and
thusG’ does not belong to §3) anymore. The graph iRig. 1(b) belongs to S@), but not to
SS3). The previous definition works equally well for connected and disconnected graphs;
but it is obvious that we can restrict our analysis to connected graphs in the following.

Notice thatk-self-spanner graphs form a hierarchy of graph classes<i# &k, then
SSk) € SSK). A network modeled as a graggh € SSK) is characterized as follows: if
G’ is the graph resulting by removing fro@an arbitrary number of faulty edges, then the
distance between two connected verticessins at mostk times their distance 6. By
replacing ‘edges’ by ‘vertices’in this characterization we get the classolunded induced
distance graphswhich have been introduced [ii] and deeply investigated [i@,9].

The following lemma motivates the narkeself-spanner(by showing a strong relation-
ship with the concept df-spanners) and provide useful characterizations.

Lemma 3.2. LetG = (V, E), andk > 1. The following statements are equivalent

1. G € SSK);

2. everyconnected spannirepbgraphG’ = (V, E’) of G is ak-spanner of G

3. everyconnectegubgraphG’ = (V’, E’) of G is ak-spanner ofG[V'];

4. every simple cycle of G has at mést 1 edges

5. for every edge = {u, v} € E, alongest simple path between u anth G has length at
most k

Proof. [1 = 2] and[4 = 5] Trivial.

[2 = 3] Assume that every connected spanning subgraghisfa k-spanner ofs and
there is a connected (not necessarily spanning) subgtéph (V', E’) of G such that
dg/(u, v) >k - dgpy(u, v) for two verticesu, v € V'. ExpandG’ to a connected spanning
subgraphG” = (V, E”) by linking missing vertices o6 to V’ such that these vertices do
not lie on a cycle (this is always possible beca@ds connected). Ther;” is a spanning
subgraph of5 anddg (u, v) > k - dg(u, v), a contradiction.

[3 = 4] By contradiction, let us assume that there exists a simple & ateG with at
leastk + 2 edges. Letu, v} be an edge of, and letG’ be the subgraph d& induced by
the edges o€ except{u, v}. Hencedg (u, v) >k + 1. This inequality implies thaG’ is
not ak-spanner of5[V (G’)], a contradiction.

[5 = 1] By contradiction, letus assume tiatz SSk). By Part 3, there exists a connected
subgraphG’ = (V’, E’) of G such thaG’ is not ak-spanner of7[V']. By Lemma 2.1, there
exists an edge = {u«, v} in G[V’] that does not belong t&’ such that/s: (u, v) > k. This
results in a simple path of length at least 1, a contradiction. [
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Part 5 of the lemma above implies that the cladssélf-spanners is closed under taking
subgraphs.

3.1. Complexity results

Since S%) € SSk’), 1<k <Kk, and since there always exists an intekfésuch that
G € SSK”) for a given graphG, the problem of determining the smallest class which
a graph belongs to naturally arises. This recognition problem can be formally defined as
follows:

Problem 1. MINIMUM SELF-SPANNER Givenagraph G and anintegee> 1,does G belong
to SSk), i.e, minS(G) <k?

In what follows we prove that: (1) MIMUM SELF-SPANNER is hard in general, and
(2) there exist strict characterizations for(Bfor smallk that lead to efficient recognition
algorithms. These results are based on Lemma 3.2 and on the following lemma, respectively.

Lemma 3.3. Let G be a graph. Then following characterizations hold

1. G € SY1) if and only if every block of G is &> (i.e., G is a treg;
2. G € SS?2) if and only if every block of G is &3 or K>;
3. G € S§3) if and only if every block of G is a diamon&l4, K3, or K>.

Proof. The characterizations of $8 and S$2) can be derived from Definition 3.1.
Concerning S8), notice thatninS(K4) =3 andminS(D) = 3 for any diamond. For

the other direction, consider a block of G. If G’ contains at most 4 vertices we are done, so

assume tha’ contains at least 5 vertices. SinGéis biconnected, then it contains a cycle

C; according to Part 4 of Lemma 3.2,has at most 4 vertices. So, assuthe (a, b, ¢, d).

To avoid to generate cycles with 5 vertices, a veteuch that: € G’ andu ¢ C has to

be adjacent to 2 non-adjacent verticediv.l.0.g., assume adjacent ta andc). At this

point, other vertices can be adjacenttandc only. Finally, C may have one chord only,

and such a chord joirsandc. It is easy to see that the componétitis a diamond. [

Theorem 3.4. MINIMUM SELF-SPANNERIs co-./"Z2-complete. Moreovetesting whether
a graph G belongs t&Sk), for each fixedc < 3, can be performed in polynomial time

Proof. As mentioned if14] (ND28), the following LONGESTCIRCUIT Problem isA”#-
complete: Givenagrapi=(V, E) and a positive integek’ <|V |, isthere a simple cycle in

G of lengthK or more? By Part 4 of Lemma 3.2 this is exactly the complementary problem
of MINIMUM SELF-SPANNER, and hence MIIMUM SELF-SPANNER is co-A/"#-complete.
The last part of the statement is a consequence of Lemma 313.

It could be interesting to study MIMUM SELF-SPANNER for k >4 fixed. Observe that
Lemmas 3.2 and 3.3 show that, if we ask for a clasg& BtBat contains non-trivial networks,
we have to pay for a large stretch factoiThis fact is due to the strong constraint for the
fault-tolerance that we have used in the definitiok-gklf-spanners: &-self-spanner has
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Fig. 2. The opaque cube OC.

to guarantee for a fixed bounded stretch factor even in caselwflamitednumber of edge
faults. In the light of applicability, this assumption is overly pessimistic; usudlimnied
number of edge faults is sufficient. Thus, the modelko®)-self-spanners as treated in the
following section is much more realistic.

4. (k, £)-self-spanners

In this section, we consider limited fault-tolerance, that is we study networks in which at
most¢ edges may fail. To model these networks, we introduce the following graphs:

Definition 4.1.

1. For any fixed integet > 1 and fixed integef >0, a graphG = (V, E) is a(k, £)-self-
spanneiif for every subgraplG’ = (V, E) of Gwith |E’| > |E| — £ andE’ C E:

dg(u,v)<k -dg(u,v) forallu,v e V that are connected iG’.

The class of allk, ¢)-self-spanners is denoted by &S¢). The parametek is called
stretch factoy and the parametéris calledfault-toleranceof the class S&, ¢).

2. For a graplts, minS,(G) denotes the smallekisuch thatG € SSk, ¢) (i.e., ¢ is fixed),
whereasnax T (G) denotes the largegtsuch thaiG € SSk, ¢) (i.e.,k s fixed).

For example, consider agaltig. L If G is the graph irFig. 1(a), thenninS1(G) = 2,
minS>(G)=3, maxT>(G)=1,and max'3(G)=2. ThusGisin SS2, 1) and in S$3, 2), but
notin SS2, 2). The ‘opaque cub®C(seerig. 2) hasminS1(0OC)=3 and max3(0C)=1.
Thus,OC belongs to S&, 1) but not to S$3, 2).

As for k-self-spanners, we restrict our analysistmnectedyraphs. Note that the defini-
tion of (k, £)-self-spanners doa®timply thatG remains connected when at mésidges
are removed. If this is necessary, then we can restrict our attention to graphs belonging to
the intersection of the classes(@f+ 1)-edge-connected graphs agid ¢)-self-spanners.

Remark 4.2. By similar arguments as in Lemma 2.1, to check whether a gtapliV, E)
belongs to S&, ¢) it is sufficient to check that for each subgragh = (V, E’) of G,
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with |[E’| > |E| — £ andE’ C E, the following holds:
de/(u,v)<k foreverye={u,v} € E\E'. (3)

The following lemma shows that, in order to check whether a graph belongs to a class
SSk, £), we do not have to consider all (possibly disconnected) subgraphs but only
connected subgraphs.

Lemma 4.3. For fixed integerg >1and¢>0,G € Sk, ¢) if and only if everyconnected
and spanningsubgraphG’ = (V, E’) with |E'|>|E| — £ and E’ C E is a k-spanner
of G.

Proof. It suffices to show the ‘if-part: suppose every connected spanning subgraph
= (V, E")with |E'|>|E| — £ andE’ C E is ak-spanner ofG, and, by contradiction,
assume thab is not a(k, £)-self-spanner. By definition, there is a subgraph= (V, E”)
with |[E”| > |E| — £ andE” C E (not necessarily connected) such that there is a pair of
verticesu andv (within one connected component@f’) anddg: (u, v) > kd g (u, v). This
also impliest” C E. _ _ _
SinceG is connected, there is also a connected subgéagh(V, E) with E” C E C E
(and thus E| > - |E| — ¢) constructed as follows: lef be the set of connected components
of G”. ObtainG from G” by adding|%| — 1 bridge edges such thatis connected. Then
dg(u, v) > kdg(u,v) and hences is not ak- -spanner of5, a contradiction. [

Inthe sequel, we use Lemma 4.3 as a characterization for the clgsg pself-spanners.
4.1. Characterization results

It is clear that for every connected grafhthere are some parametdesand ¢ such
that G belongs to S&, ¢). Analogously, if we fix one of the parameters we can al-
ways find a feasible value for the other parameter. Furthermore, it is easy to see that
(k, £)-self-spanners have inductive properties with respect to the parameters as stated
below.

Lemma 4.4. The following properties trivially hold

1. If 1<k <K, thenSSk, ¢) € SSK/, ¢) for each? > 0;
2. if0< <, thenSYk, ¢) D SSk, ¢) for eachk >1;
3. if k>1,thenSSk) € SSKk, ¢) for each¢ >0.

The class ofk, ¢)-self-spanners isotclosed under subgraphs. For example, the ‘opaque
cube’is in S$3, 1), but the graphG’ obtained from removing the internal vertex is not (in
fact, it has a stretch facterinS1(G') =5, and thus is in SG, 1)). Also (k, £)-self-spanners
is not closed under supergraphs in the following sense: if a géaiphin SSk, ¢) for some
fixed parameterk and¢ then there may be a supergraph@bn the same vertex set (i.e.,

a graph with additional edges) that daest belong to S&, £). The same remains true
if we consider only(¢ + 1)-edge-connected graphs. As a consequence, the self-spanner
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properties of a graph cannot be inferred directly from the self-spanner properties of sub- or
supergraphs.

As examples of standard graphs that exhibit some particular self-spanner properties, it
is easy to see thal, € SH1, ¢) for every¢>1. FurthermoreC,, € SSn — 1, ¢) but
C, ¢SSn—2,¢)foreveryt>1, sinceninS,(C,) =n — 1foreveryt >1 (i.e., the fault of
one edge results in a path of length 1). Starting from these observations, we are interested
in finding non-trivial parameters such that a graph,&)-self-spanner. This includes the
problem of deciding for given parametérand? whether a given graph belongs to@&¢)
as well as the more general recognition problems where we fix one of the parameters and
try to optimize the other. To analyze the complexity of these problems, let us first consider
the special case where we allow for single edge faults onlyfke1,. The following lemma
can be easily derived.

Lemma 4.5. G € SSk, 1) if and only if every induced cycle of G has at mbst 1 edges

Unfortunately, we cannot extend this characterization in a straightforward way to the case
¢ > 1. But, if we restrict ourselves t@ + 1)-edge-connected graphs we get the following
lemma:

Lemma 4.6. LetG = (V, E) be (£ + 1)-edge-connected henG € SSk, ¢) if and only if
for every edge = {u, v} of G there are at least edge disjoint pathgnot involving ¢ of
length at most k connecting u and

Proof. Forthe ‘if-part, letG'=(V, E’) be asubgraphwith’ C E and|E’| > |E|—¢, and
lete = {u, v} be an edge that does not belongitb Assume that there areedge disjoint
paths (not involvinge) of length at mosk connectingu andv. Thus, even if the remaining
¢ — 1 edge faults happen to appear in one of these paths each, at least one covering path for
ein G’ remains.

We show the opposite direction by contradiction: ass@ie SSk, ¢), and there is
an edger = {u, v} such that there are at mogk ¢ edge disjoint paths (not involving
P1, P2, - - -, pj oflength at mosk connectings andv. Itis possible to construct a subgraph
G’ as follows: delete fronG the edgee along with one edge ip;, for each i <. G’
remains connected (sin€eis (¢ + 1)-edge-connected) but; (1, v) > k, a contradiction
toG € SSk,0). O

Observe that we cannot relax on the edge-connectivity constraint in this lemma.
Consider for example the diamond consisting o4 and one chord: this graph is
2-edge-connected and belongs to(%2), but it does not fulfill the constraints of
Lemma 4.6.

Lemma 4.7. The following properties hold

1. SS1) = S41, ¢) for each? > 0;
2. SS2) = S92, ¢) for eacht > 0;
3. if k>3,thenSSk, £)2SSk, £ 4 1) for eacht > 0.
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Fig. 3. The graplG ¢ used in the proof of Lemma 4.T; 4 is composed by an induced cycle/of- 1 vertices;
moreover, for each edgeof the cycle ¢ disjoint paths of length 2 connect the endpointg.of

Proof.

1. Itdirectly follows from Definition 4.1. Moreover, as noted in Lemma 3.3 1$8oincides
with the class of trees.

2. According to Item 2 of Lemma 4.4, it is sufficient to show tha{&S= SS2, 1). By
Lemma 3.3, a grapB belongs to S&) if and only if every block ofG is aK3 or K». By
Lemma 4.5G belongs to S&, 1) if and only if every induced cycle db has at most 3
edges. Since these two characterizations are equivalent, the statement follows.

3. We show that, fok >3 and? > 0, there exists a grapfix , such thate SSk, ¢) and
Gy ¢ SSk, £+1). Gy ¢ iscomposed by aninduced cycleaf 1 verticesig, u1, . . ., ug;
moreover, for each vertex of the cycle,Gy ¢ contains the verticesu?, u?, ..., uf,
each connected to both andu ;4 1ymodik-+1) (S€€Fig. 3.

To prove thatGy ¢ ¢ SSk, £ + 1), it is sufficient to consider the subgraph obtained by
removing the? edgeuo, ug}, 1<i <¢, along with{ug, u1}. In this subgraph the distance
betweenu§ andug is given by the pathud, u1, uz, . .., ux, ug). Since the length of this
path isk + 1, thenGy , ¢ SSk, £ + 1).

To prove thatGy, € SSk, ¢), we now show thaGy, € SS3, £). By symmetrical
properties of graplx ¢, it is sufficient to test Property 3 of Remark 4.2 for edges ug}
(case (a) below) anflig, u1} (case (b) below) only.

(a) Let us considet’ obtained fromGy, , by removing{uo, ué} and at most othef — 1
edges. The edg{sué, u1} belongs toG’, otherwiseug andué are not connected i6’. If
{uo, u1} is in G', thendg: (uo, uf) = 2 <k. If {uo, u1} is not in G’, then the removal of
{uo, ug}, {uo, u1}, and at most othef— 2 edges fronGy , cannot destroy all the remaining
¢ — 1 paths of length 2 fromg to u; passing throughi, 1<i <¢ — 1. As a consequence,
assume that the edgés, ué} and{u{), u1} for somej, 1< j <€ — 1, are inG’: then the
covering pathu§, u1, uj, uo) impliesdg (uo, uf) = 3<k.

(b) Let us consider thaf’ is obtained fronGy, , by removing{uo, 1} and at most other

¢ — 1 edges. This removal cannot destroy all theaths of length 2 from to u1 passing
throughug, 1<i <£. As a consequencég (1o, u1) = 2<k. [
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4.2. Complexity results

In this section, we consider the problem of recognizing graphs that belong to a given
class and investigate characterization problems by finding the optimal stretch factor or
fault-tolerance value of a given graph. As our main results, we establish an almost complete
set of complexity results for these problems, that are formally stated as follows.

Problem 2. MINIMUM ¢-STRETCHFACTOR: Given a graph G and an integér> 1, does G
belong toSSk, ¢), i.e., minS,(G) <k?

Problem 3. MAXIMUM k-FAULT-TOLERANCE Given a graph G and an integér> 0, does
G belong toSSk, ¢), i.e., max T, (G) > £?

Problem 4. GENERAL SELF-SPANNER Given a graph G and two integeks> 1, £ >0, does
G belong toSSk, €)?

Thus, in MNIMUM ¢-STRETCHFACTOR we consider as a fixed parameter, whereas in
MAXIMUM k-FAULT-TOLERANCEK is a fixed parameter.

Now, if we fix the fault-tolerance valug we can determine the smallest stretch factor of
a given graphG = (V, E) in polynomial time. This trivially results by observing that the
cardinality of the setG’ = (V, E) | |E'|>|E| — ¢} is bounded byV [2¢+D Hence:

Theorem 4.8. MINIMUM £-STRETCHFACTORIs in £ for all £>0.

As a consequence, the problem of deciding whether a graplkistaself-spanner for
fixedk>1 and¢>0 is in 2. If we consider the dual problem where we fix the stretch
factor and we want to find the largest fault-tolerance value of a given graph, the situation is
different. To this aim, we introduce the following problem.

Problem 5. Given an intege¥ >0, a (¢ + 1)-edge-connected grapti = (V, E), and an
edgee = {s, 1t} € E, does G containg or more mutually edge disjoint patlfisot involving
edge &from s to t which all have length at mos&t?

Theorem 4.9. Problem5is ./"#2-complete
Proof. Consider the following problem:

e Given a connected grafgh=(V, E), two vertices,, t € V,and integers & K, L<|V|,
we have to decide wheth& containsL or more mutually edge disjoint paths frasio
t, which all have length at most.

Such a problem is known as AMIMUM LENGTH-BOUNDED DISJOINT PATHS (cf. [14]
(ND41)). As shown irf20], this problem is/”2-complete for all fixed > 5, it is polyno-
mially solvable forK <3, and it is open foK = 4. We show that MxiMum 5-BOUNDED
DISJOINT PATHS (that is, the same problem whet = 5) is polynomially reducible to
Problem 5.
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ANVA

Fig. 4. The subgraply,,, used to built the grapls’ in the proof of Theorem 4.9. Each oval represents a clique
and all the cliques have the same size.

LetG = (V,E),s,t € V,and O< L<|V| be an instance of MXiIMuM 5-BOUNDED
DISJOINT PATHS. We construct & + 1)-edge-connected graghl = (V’, E) with an edge
¢ = {s/,t'} € E’ such thatG contains the requested paths frarto t if and only if G’
contains the requested paths frehto ¢'.

. L—-1 if{s,t}eE

First of all, let¢ = {L it (5.1 ¢ E

If {s, 7} € E, thenG’ is formed bym = | E| subgraphs, one subgraph,, for each edge
{u,v} € E. If {s,t} ¢ E, thenG' is formed bym + 1 subgraphs, one subgraph,, for
each edgdu, v} € E along with the subgrapliy;. G, is composed by 7 cliques (see
Fig. 4), each containing + 2 vertices. These 7 cliques are denotedkhyand K, (thebasic
cliques), andbx} , K2, ..., K2 . Abasic cliquek,, contains vertices), wi, ..., wei1.

uv’

The only edges i;,,, are the edges in each clique along with the following ones:

1. {u, v};

2. {x, y}, for eachx € K and for eachy € Ki}1, 1<i <5;
3. {x, y}, for eachx € K, and for eacly € KL}U;

4. {x, y}, for eachx € K2, and for eachy € K,.

uv

Edges at Item 1 are callédhsicedges, while edges at Items 2, 3, and 4 are caltilitional
edges. Two (basic or additional) cliques @djacentif there exists an additional edge
{w1, wy} such thatw; belongs to the first clique and, to the second one. Considér= s
and:’ = ¢, and notice that, by constructiofs,, t'} € E’. The union of vertices and edges
of G,,, for each edgéu, v} € E (along with vertices and edges®f; if {s, ¢} ¢ E), forms
the requested graphi’. G’ enjoys the following property:

P: If a path inG’ between vertices andv, with u, v € V, contains an additional edge,
then such path has length at least 6.

We first show thaiG’ is (¢ + 1)-edge-connected. By contradiction, assume that there
is a subsetX C E’ containing at most edges such tha&” = (V, E’\X) is not con-
nected; moreover, assume ti@f and G/ are two connected components@f. Let H
be a basic or additional clique i@': if both G| and G5 contain vertices of, then the
removal of edges iiX cannot disconned#; from G5 (since there are at least- 1> |X|
edges betwee@r] andG%). Then, assume that each clique is entirely contained either in



S. Cicerone et al. / Discrete Applied Mathematics 150 (2005) 99—-120 111

G’ or G5. SinceG’ is connected(/ contains a clique which is adjacent to a clique of
G5, again, this implies that there are at least 1 edges betweeG] and G, a contra-
diction.

Now assume thaB containsL or more mutually edge disjoint paths frasro t, each
one having length at most 5. {§, ¢} € E ({s,t} ¢ E, resp.) therG containsL —1=1¢
(L = ¢, resp.) or more of such paths. Since all these paths are al$q thenG’ contains
the requested paths.

Conversely, assume that containst or more mutually edge disjoint paths frorito ¢’
(not involvinge’), which all have length at most 5. According to Propé®hall such paths
are formed by basic edges. Hence, thereLawe more mutually edge disjoint paths frasn
totin G, which all have length at most 5.

Corollary 4.10.

1. MAXIMUM k-FAULT-TOLERANCEIs ./"Z2-complete for all fixed > 5;

2. MAXIMUM k-FAULT-TOLERANCE, k =1, 2,is in Z;

3. MAaXiIMUM 3-FAuLT-TOLERANCEIs in Z for the class of¢ + 1)-edge-connected > 0,
graphs

4. GENERAL SELF-SPANNERIS A/ 2-complete

Proof.

1. We first prove that the statement holdskce 5.
According to the characterization provided by Lemma 4.8 xMum 5-FAuULT-
TOLERANCE for the class of¢ + 1)-edge-connected graphs> 0, can be reformulated
as follows:

e Given a graphG = (V, E) and an integer & ¢ <|V| such thatG is (¢ + 1)-edge-
connected, we have to decide whether for every edgéu, v} of G there are at least
¢ edge disjoint paths (not involving) of length at most 5 connectingandv.

To solve MaxiMUM 5-FauLT-TOLERANCEfor the class of¢ + 1)-edge-connected graphs
we have to solve Problem 5 for each pair of adjacent vertices of the input graph.
Then, MAXIMUM 5-FAULT-TOLERANCE s A" 2-complete for the class @f + 1)-edge-
connected graphs. To show that the same result holds for eaclt fix&dit is sufficient
to observe that the proof of Theorem 4.9 can be extended to eaclt fixédy suitably
setting the number of additional cliques, that is, from k.to

As a consequence, MIMUM k-FAULT-TOLERANCE is A"2-complete, for all fixed
k >5, also for the general graphs.

2. According to Items 1 and 2 of Lemma 4.7, solvingRMuM k-FAULT-TOLERANCE for
k=1 (k =2, resp.) corresponds to test the membership tif the class SQ) (SS?2),
resp.). By Theorem 3.4, these membership problems can be solved efficiently.

3. By the formulation of the MxiMum k-FAULT-TOLERANCEfor the class of¢ + 1)-edge-
connected graphs given in the proof of Item 1, it is immediate to note tht\NMIM
3-FAULT-TOLERANCE can be solved by running an algorithm that solvesxihium
LENGTH-BOUNDED DISJOINT PATHS when K = 3 for each pair of adjacent vertices.
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Since MaXIMUM LENGTH-BOUNDED DISJOINT PATHS is in 2 when K = 3, then this
approach leads to the required efficient solution feaxMiuMm 3-FAULT-TOLERANCE.
4. This is a consequence of Item 1]

The problem MXIMUM k-FAULT-TOLERANCE, 2 < k < 4, remains to be settled for general
graphs, while MXIMUM 4-FAULT-TOLERANCE is open even for the class ¢f + 1)-edge-
connected graphs. Observe that it does not suffice to look for a maximum number of edge
disjoint paths fronsto t undemo length constraintThis problem is solvable in polynomial
time [14]. But in our case, the distance guarantee for every path is crucial.

5. Self-spanner properties of special graph classes

We now consider some sufficient conditions that guarantee that a given grah &5-a
self-spanner for someand¢. The main idea here is the following: if a graph contains along
cycle that has only few chords, then this graph is likely to have bad self-spanner properties.
In other words, if we can guarantee that a graph does not contain such a long cycle with
only few chords, then the self-spanner properties are good. This fact is expressed in the
following lemma. In the sequel, we denote @y, a cycle om vertices that may contain an
arbitrary number of chords (in contrast@ denoting arinducedcycle).

Lemma 5.1. Given a graphG = (V, E) and two fixed positive integers k afdet ; be
a cycle of G with at mogt— 1 chords having maximum lengthK k + 1, then G belongs
to SSk, £).

Proof. By contradiction, suppose that k + 1 andG ¢ SSk, ¢). By Lemma 4.3, there
exists a subgrapy’ = (V, E’) of G with |E’| >|E| — ¢ such thatG’ is not ak-spanner
of G. By Lemma 2.1, this implies that there exists an edge {«, v} € E\E’ such that
dg(u, v) > k. The pathP giving the distancé (1, v) together with edge forms a cycle
«, of G. SinceP is obtained fromG by removinge and at most. — 1 other edges dE,
thent’ > k + 1 and(, contains at most — 1 chords. This is a contradiction, sin@® is
a maximum cycle o with at most¢ — 1 chords. [

We call a condition as given in the previous lemmayale-chord conditionObserve
that this lemma does not provide a strict characterization for the clags §Sthere are
(k, £)-self-spanners that do not fulfill the cycle-chord condition. We can extract some further
cycle-chord condition from Lemma 5.1 resulting in an upper bound on the trade-off between
stretch factor and fault-tolerance.

Corollary 5.2. LetG = (V, E) be agraphs >3 anintegerand f : N — N a monotone
increasing function. If every cycle of G on t vertices has at I¢g&st chords then G belongs
to S, f(t + 2)).

Proof. If every cycle ofG ont vertices has at leagt(¢) chords, then, by monotonicity &f
also every cycle ohor more vertices has at leagtr) chords. LetC, be a cycle of5 with
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at mostf (t) — 1 chords and having maximum length. Then, the nunalo&¥,/) of chords
of @, fulfills the following inequality:

fEH<c@nH<f() -1

By the monotonicity off, it follows that:’<s — 1. Hence, by Lemma 5.5 belongs to
SSr — 2, f(1)), and, by the generality df also to S&, f(r +2)). U

The cycle-chord conditions also support the intuition that graphs in which every vertex
has a large degree are likely to have good self-spanner properties.

In the remainder of this section, we use the previous corollary to investigate the self-
spanner properties of widely studied graph classes, namistgnce-hereditary graphs
cographs and chordal graphs[5]. A graph isdistance-hereditaryf every two vertices
have the same distance in every connected induced subgraph containing both. A graph is
a cographthat does not contain any induced path of length 3. A graph is chordal if every
cycle of length at least 4 possesses a chord. Equivalently, a chordal graph does not contain
an induced subgraph isomorphicdg for anyn > 4.

Both distance-hereditary graphs and cographs can be characterized by meaes of
vertex extensiooperations. These operations can be used to enlarge a graph of the respective
graph class to another graph of the same class containing more vertic€sbeet graph,
ube any vertex o6, andv be a new vertex. The operations to ext&dy addingv are the
following:

e o(u, v): vis adjacent only tai (v is apendant vertex
e f(u,v): vis adjacent tar and to every neighbor af (v is atrue twinof u);
e y(u, v): vis adjacent to every neighbor of(v is afalse twinof u).

Bandelt and Mulder showed [4] that every distance-hereditary graph is obtained starting
from a single vertex by applying a sequence of operatigfisandy. Corneil et al. showed

in [12] that every cograph is obtained starting from a single vertex by applying a sequence
of operationss andy.

Lemma 5.3. In a distance-hereditary graplevery cycleC;, r > 3, has at least — 4 chords
if tis evenand at least — 3 chords if t is odd. In a cograplevery cycleC;, t >3, has at
leastt (r — 4)/4 chords if t is evepand at leasi(r — 1)(r — 3)/4 chords if t is odd.

Proof. We prove the property of distance-hereditary graphs by induction on the number
of vertices in a cycle. The induced cycl€g andC3 are distance-hereditary, and thus the
base case of the induction is true. Let us consider a distance-hereditary@iapimor-

phic to a cycled; with r >5. Since Howorkd19] showed thaH is distance-hereditary

if and only if every cycle ofH having at least 5 vertices has two crossing chords, then
(; has at least two crossing chords, gayv} and{x’, v'}. Chord{u, v} divides(; into

two cycles@;, and;, such thatt =11 + r» — 2. Let us supposeodd, and, w.l.0.gs1

odd andr, even. By induction hypothesi€;, has at least; — 3 chords andC;, has at
leastt, — 4 chords. Thug(; has at least the chords belonging@, and to, plus the
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two crossing chordg, v} and{u’,v'}, thatisry — 3+ —4+2=1+1tp—5=1t—3
chords. Whethis eveng, andr, are either both even or both odd. By repeating the previous
arguments, the total number of chords®f is r — 4 in the first case and— 2 in the second
one.

We now prove the property about cographs. Let us asswaven. First notice that every
connected distance-hereditary graph having at least three vertices is generated by a sequence
of extension operations that starts withraperation, i.e GG is an extension ak,. Moreover,
the following properties are straightforward:

e A y-operation introduces one edge less thafr@peration; so, ifG’ is generated by a
sequence of — 2 y-operations starting fronk, and if G’ is isomorphic to a cycle;,
thenG’ has the minimum number of chords.

e The extension oK by a sequence gfoperations gives a complete bipartite grapj,, .

o Acomplete bipartite grapK , , is isomorphicto a cycle ifand only jf=q andp, g > 2.

The properties above imply thatif>4 is even, then a cograph isomorphic to a cy€le
has the minimum number of chords if and only if it is isomorphidig, ;. This cycle
hast(t — 4)/4 chords.

Now let us assumeodd. The statement is trivially true foe= 3. According to the three
properties stated in the even case, a cogi@phat is isomorphic to a cycl€’, with t
odd andr > 3, cannot be obtained frorki, by usingy-operations only. This means that
G has the minimum number of chords if it is obtained frdfa by using the minimum
number off-operations, and all thg-operations used in the sequence are applied after all
they-operations.

Now, letG be a cograph that is isomorphicd@, with 7 > 3. G can be generated froii,
by applying firstt — 3 y-operations, and then only orfieoperation to an arbitrary vertex.
SinceG is isomorphic to a cycl€’;, the firstr — 3 y-operations produce a cogra@tthat is
isomorphictaC,_1 wherer —1is even. By the result from the even cagg, 1 isisomorphic
to K(;—1)/2,(—1)/2 and containgt — 1)(r — 5) /4 chords. The last-operation results in the
creation of(r — 1) /2 new chords. Thu& has(r —1)(r —5)/4+ (¢ — 1) /2= —1)(t —3) /4
chords. O

From the basic characterization of chordal graphs, the following lemma can be derived.
Lemma 5.4. Every cycle,, r >4, of achordal graplG has at least — 3 chords.

By using Corollary 5.2 together with Lemmas 5.3 and 5.4, we get the following self-
spanner properties for the three graph classes:

Theorem 5.5.

1. Every distance-hereditary graph is 85n, n — 2) for every evem >4; for oddn > 3,
distance-hereditary graphs even belond@38n, n — 1).

2. Every cograph is il8S(n, (n? — 4)/4) for every evem > 4; for oddn >3, cographs even
belong toSS(n, (n® — 1)/4).

3. Every chordal graph is itsS(n, n — 1) for everyn >4.
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To summarize this subsection, distance-hereditary and chordal graphs exhibit strong self-
spanner properties: the stretch factor does not grow faster than the number of edge faults. In
particular, if the number of edge faults is bounded by a constant then also the stretch factor
is bounded by more or less the same constant. For cographs, the result is even stronger: the
stretch factor only grows in the order of the square root of the number of edge faults.

6. Self-spanner properties of common network topologies

In this section, we study how the new graph classeg of)-self-spanners fit into the
context of some popular network topologies. Since the graphs used for modeling most of
such topologies can be defined by composing simpler graphs, we first study self-spanner
properties of graphs built by means of Cartesian product. The obtained results are then used
to examine some mesh-like networks (namgilig, torus, andhypercubg with respect to
their self-spanner properties. In a second phase, we also investigate some hypercube derived
networks €ube connected cyclemdbutterflies.

Let G1 = (V1, E1) andG2 = (V», E2) be two nontrivial graphs; the Cartesian product
G := G1 x Gy is the graph with vertex s&tand edge sef as follows:

o V ={(x1,x2) | x1 € V1,x2 € V2},
E = {{(x1, x2), (y1, y2)} | (x2 = y1 and{xz, y2} € E») or (x2 = y> and{x1, y1} € E1)}.

Consequently, two vertices 6f1 x G are adjacent if and only if the first components are
equal and the second components form an edggior vice versa. Moreover, forany €
Vi, G[{(x1, x2) | x2 € Va2}] is isomorphic toG,, and for anyxy € Vo, G[{(x1, x2) | x1 €
V1}1 is isomorphic toG1. W.l.o.g., we do not consider the case whéreor G is a graph
having no edge.

The next lemma shows that graphs that arise from the Cartesian product of two graphs
have strong self-spanner properties. In particular, it indicates that a stretch factor of 3 plays
an important role.

Lemma 6.1. LetG1=(V1, E1) andG>=(V>, E2) be two connected graph6 =(V, E) =
G1 x Gp,andi € {1, 2}.

If G; € SSk;, £;) and(¢; + 1)-edge-connectethenG € SSmax{ky, k2}, min{{1, £2}).

Leto be the minimum vertex degree of verticedinJ V,. ThenG € SS3, §).

G € S92, ¢) if and only if each edge i7; belongs to at least disjoint triangles inG;.

If G1 or G, contains a bridge themax T>(G) = 0, i.e,, there is no¢ > 0 such that
G € SS2, ¢). In particular, if G1 or G2 contains a bridge and; € SYk, ¢) for some
£ >0, thenk>3.

PwdPE

Proof.

1. Consider the edge= {(x1, x2), (y1, y2)} in G. By Remark 4.2, it suffices to show that
the distance betwee(x1, x2) and(y1, y2) is at most magks, k»} after the removal of
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eand min(¢1, £2} — 1 other arbitrary edges fro@. By definition of Cartesian product,
e belongs to an induced subgragtf of G that is isomorphic either t&'1 or to G,. By
assumptionG; € SSk;, ¢;) andG; is (¢; + 1)-edge-connected. Hence, even if all the
removed edges fror® belong toG”, the distance betweer1, x2) and (y1, y2) is at
most maxks, k»} (because such a distance can be thought as compu&taiter the
removal of edges frorn®).

2. W.l.o.g., assume that;y € G1 is the vertex with minimum degree. Then there are
0 verticeSx{ adjacent taxy in Vi, 1< j<d. Assuming that{xz, y»} is and edge in
Go, thene = {(x1, x2), (x1, y2)}is an edge inG. By definition of Cartesian product
there ares edge disjoint paths(x1, x2), (x1, x2), (x1, y2), (x1, y2)) of length 3 con-
necting(x1, x2) to (x1, y2) in G. The removal of® edges fromG including e, cannot
destroy all these paths and the statement follows. By the generatigmaf according to
Remark 4.2, this proves thét € SS3, J).

3. We have to show the ‘only if-part: consider edge= {(x1, x2), (y1, y2)} in G and,
w.l.o.g., assume that; = y; and {x2, y2} € E>. SinceG € SS2,¢), there arel
edge disjoint paths fromx1, x2) to (y1, y2) of length at most 2 irG not usinge. Ac-
cording to the proof of Part 2, any path froMy, x2) to (y1, y2) = (x1, y2) via a
vertex (v, w) with v # x3 has length at least 3. Thus, there are verticese V>
such that{(x1, x2), (x1, zj)}, {(x1,2;), (x1, ¥2)} € E, and{xo, z;}, {z;, y2} € Eafor
1< j <. Hence,e belongs to¢ disjoint triangles inG,. The same arguments hold
for G1.

4. Part 4 is a special case of Part 3]

Observe that, for Part 1 of the previous lemma, it is really necessary to claim the respec-
tive edge connectivity. Otherwise, we cannot guarantee that the graph considered in the
proof remains connected. Also, for Part 3 of that lemma, it does not suffice to claim that
G1 € SS2,¢) (andG2 € SS2, ¢), respectively): we again need that both graphg&sel)-
edge-connected. For smaller stretch factors,4.e: 1, we already know that; x G» has
a stretch factor smaller than 2 if and only if it is a tree.

Remark 6.2. Part 2 of Lemma 6.1 is tight in the following sensedif ¢ SS2, 1) andG;
has minimum degre&fori € {1, 2}, thenminSs(G1 x G2) =3 and maxi3(G1 x G2) =9.
ThusGy x G2 € SS3, 9), butG1 x G2 ¢ SS2, 6) andGy x G2¢ SS3,0 + 1).

6.1. Mesh-like networks

In this section, we study self-spanner properties of mesh-like networks. In particular, we
considemgrids, tori, andhypercubes

e the gridG, ,, is the Cartesian produ@, x P,, forn,m>2;

e the torusT, ,, is the Cartesian product, x C,, forn, m >3;

e the hypercubéi, is recursively defined froni, by H; = Po x Hyj_1= P2 X -+ X Pa.
—_—

d times

The following lemma indicates the self-spanner properties of these topologies.
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Theorem 6.3.

1.

Gn.m belongs toSS3, 1), but not toSS 2, 1).
If n>2o0rm>2thenG,,, does not belong t8§S3, 2).
If n, m > 2thenG,_, belongs toeSS5, 2), but not toSS4, 2) or SS5, 3).

. T,.m belongs td5S3, 2), but not toSY2, 2).

If n >3 orm > 3thenT, , does not belong t8§3, 3).

Tn.m belongs toaSSmin{5, max{n, m} — 1}, 3).

If n, m >5thenT, , belongs tdSS5, 4), but not toSS4, 4).
If n, m > 5thenT, , does not belong t8§S5, 5).

. H; belongs tdSS3,d — 1), but not toSS3, d) orto S§2, 1).

Proof.

1.

Gnm € SS3,1) andG, , ¢ SS2, 1) are immediate consequences of Parts 2 and 4 of
Lemma 6.1. To see the other self-spanner properties, observe that, for any edge on the
boundary of the grid, there is only one path of length 3 connecting the end-vertices of
that edge, all other paths have length 5 or longer. This 3-path (and the edge itself) may be
broken by a double edge fault such that the end-vertices still remain connected (if

are large enough). Accordinglg,, ,, € SS5, 2). If G,,.,» # CathenG,, ,, ¢ SS4, 2)
andifn,m>2,G, , ¢ S5, 3).

Parts 2and 3 of Lemma 6.1 directly imply thigt, € SS3, 2) andT7,, ,, ¢ SS2, 2). From
Remark 6.2 it follows thatT7, , ¢ SS3,3), if m>3 or n>3. Observe that

T33 € SS3, 3).

For every edgéx, y} in T, ,, there are two edge disjoint paths of length 3 connecting

x andy and one (also disjoint) path of length at most figx:} — 1. If n andm are

at least 5, then there are six different paths of length 5 connexgtargdy, but only

two of length at most 4. It is easy to see that at least one of these paths of length 5
remains complete ifx, y} and three further edges are removed dihdm are at least 6,
consider the case of fault of five direct parallel edgeg,ip,: 7,,, remains connected

and the middle failing edge has a stretch factor that is greater than 5. Consequently,
Thm € SSMIin{5, max{n, m} — 1}, 3). For m, n large enough?, ,, € SS5, 4), but

Ty.m ¢ SS4, 4) and alsdT,, ,, ¢ S5, 5).

To show thatH; belongs to S&, d — 1), but not to S$3, d), it is sufficient to observe

that every edge of H; belongs ta/ — 1 induced cycles of length 4 that are edge disjoint
apart frome. By Part 4 of Lemma 6.1H,; does not belong to 83, 1). [

Observe that the fault-tolerance value of the torus is higher than that of the grid,

due to the additional wrap-around connections, which make the topology symmetric. But
note that the addition of edges does not result in higher fault-tolerance values in
general.

Furthermore, note that the hyperculig still guarantees a constant stretch factor 3, even

if d — 1 edges falil, i.e., if the number of edge faults is in the order of the dimensiéf .of
Consequently, this topology expresses especially strong self-spanner properties.
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6.2. Hypercube derived networks

In this section, we study self-spanner properties of two different types of bounded-degree
approximations of the hypercube; in particular, we consiigre-connected cycles graph
andbutterfly(e.g., se¢22] and the references therein). Here we use the following alternative
definition of hypercub§l8]: thed-dimensional binary hyperculi¢;, d > 1, has 2 vertices,
which are labeled with the binary strings of lengthTwo vertices inH; are adjacent if
their labels differ in exactly one bit.

The cube-connected cycles graphdimensiond, denotedCCCy, is derived fromH,
by replacing each vertex df; by afundamental cyclef lengthd. Each vertex of such a
cycle is labeled by a tuplg, x) for 0<i <d — 1, andi is called thdevelof the vertex. Apart
from thecycle edge®f the fundamental cycles, every vertgxx) is connected to vertex
(i, x(i)), wherex (i) denotes the vertex df; that is labeled by the same string as vertex
but with biti flipped. These edges are callegbercube edges

Thebutterfly graph(with wrap-around) of dimensioty, denotedBy, is derived fromH,
similarly asCCC: B, consists of the same vertic@sx) for 0<i<d —1asCCCy, and
the samdundamental cyclesf lengthd. But now every vertexi, x) is connected by two
hypercube edgés vertices(i + 1, x(i)) and(i — 1, x(i — 1)).

CCC, can be obtained fronB; by replacing every pair of hypercube eddés x),

(i+1, x@())}and{(i, x), (i —1, x({ — 1))} by one edgé(i, x), (i, x(i))}. Thus,CCC, can
be viewed as a spanning subgraptBgf

In [3], it is shown that different hypercube-derived topologies can be embedded within
other such topologies with small slowdown. Results on the existence of cycles and the
construction ofk-spanners can be found [25,18] respectively. But all these results
do not imply on the self-spanner properties of the topologies studied here. We get the
following results concerning the self-spanner properties of the topologies
above:

Theorem 6.4. B, belongs t&6S3, 1) and toSS(d + 1, 2), but not toSS2, 1), SSd, 2), or
SSd + 1, 3). CCC4 belongs tdSY7, 1) and toSSmax7, d — 1}, 2), but not toSS6, 1).

Proof. Any edge of B; belongs to exactly one induced cycle of length 4 consisting of
two cycle edges and two hypercube edges. TlBys,e SS3,1). From[25], we know

that B; does not contain a cycle of length 3df> 3. For smallerd, no cycle of length

3 contains a hypercube edge. Hendg,¢ SS2, 1). Now consider the case when two
edges fail inB,: if two edges of the same fundamental cycle fail, there still remains

a path of length 3 connecting the end-vertices of the faulty edges each. If both cycle
edges of a 4-cycle as mentioned above fail then there remains a path of lergth

1 via a fundamental cycle, but no shorter one. If a cycle edge and a hypercube edge
within such a 4-cycle fail then a shortest path of length- 1 remains but not two such
paths.

CCC, consists of the same fundamental cyclesBas but contains only half of the
hypercube edges. This results in longer cycles: for egpercube edgehere are two
(shortest) edge disjoint paths of length 7 that connect the end-vertices. Forogetry
edge there is a path of length — 1 (via the fundamental cycle) and another (disjoint)
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path of length 7 using hypercube edges. Consequafith; € SS7,1) andCCCy €
SSmax{7,d — 1}, 2), butCCC, ¢ SS6,1). O

The previous theorem shows that bounded-degree approximations of the hypercube like
CCC, and B, perform poorly with respect to their self-spanner properties: in the case
of single edge faults the stretch factor is still a constant (though much larger than for the
hypercube), but for double edge faults the stretch factor grows linearly with the dimeinsion
Thus, the guarantees for delays in case of faults are really weak for these kinds of topologies.
The big differences between the self-spanner propertiés; an the one side, andCCy
and B, on the other are due to the bounded degree.

7. Further remarks

In this work, we have introduced the classe&-aklf spanners ang, £)-self-spanners.

Such graphs model networks that guarantee constant stretch factors even in the case of
multiple edges faults. We have considered both the cases of unlimited and limited number
of edge faults. We have given characterizational, structural and computational results, and
we have shown that some popular network topologies and special graph classes exhibit
(more or less) strong self-spanner properties.

We consider this work as a first step towards a more general approach to the design of
networks that guarantee constant stretch factors in case of edge faults, and naturally many
problems remain open. On the one hand, it would be interesting to know how weNmv
k-FAULT-TOLERANCECan be approximated for the cases where iti?-complete. Another
further goal in this context is to design sparge’)-self-spanner networks for given pa-
rametersk and ¢ such that specific connectivity requirements are fulfilled. On the other
hand, we are interested in further investigating the self-spanner properties of other known
topologies.
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