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Abstract

We introduce the(k, �)-self-spannersgraphs tomodel non-reliable interconnection networks. Such
networks can be informally characterized as follows: if at most� edges have failed, as long as two
vertices remain connected, the distance between these vertices in the faulty graph is atmostk times the
distance in the non-faulty graph. By fixing the valueskand� (calledstretch factorandfault-tolerance,
respectively), we obtain specific new graph classes.We first provide characterizational, structural, and
computational results for these classes. Then, we study relationships between the introduced classes
and special graphs classes (distance-hereditary graphs, cographs, and chordal graphs), and common
network topologies (grids, tori, hypercubes, butterflies, and cube-connected cycles) as well.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Special graph classes; Spanners; Stretch number; Interconnection networks; Fault tolerance

1. Introduction

The main function of a network is to provide connectivity between the sites. In many
cases it is crucial that connectivity is preserved even in the case of faults in either sites
or links. Accordingly, a major concern in network design is fault-tolerance and reliability.
The large amount of research dedicated to fault-tolerant network design is basically based
on two approaches. The first approach consists of techniques that add redundancy to the

� Preliminary results of this paper has been presented at the 10th International Symposium on Algorithms and
Computation, December 16–18, Madras, India, 1999[10].
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desired architecture by introducing new network components (e.g., see[6,17,26]). In the
second approach, the fault-tolerance is achieved not by adding redundancy to the network,
but by using the non-faulty part of the network to simulate the desired architecture (e.g.,
see[2,11,21]).
Following a different approach, in this work we are interested in networks in which

distances between sites remain small even in the case of faulty links or sites. Hence, we do
not start with a fixed target graph, nor do we allow a re-structuring of the graph; we keep
the identification of each vertex fixed.As the underlying model, we use unweighted graphs,
and measure the distance in a network in which faults have occurred by a shortest path in
the subnetwork that is induced by the non-faulty components.
To study such networks, we introduce new classes of graphs that guarantee constant

stretch factorskeven when amultiple number ofedgeshave failed. In a first step, we do not
limit the number of edge faults at all, that is we allow forunlimitededge faults. The graphs
that model this case are calledk-self-spannersand the corresponding class is denoted by
SS(k). Secondly, we examine the case where the number of edge faults isboundedby a
constant�. For this, we introduce the class SS(k, �) of (k, �)-self-spannergraphs. In both
cases, the name is motivated by strong relationships to the concept ofk-spanners[23].
A network modeled as a(k, �)-self-spanner graph can be informally characterized as

follows: if at most� edges have failed, as long as two vertices remain connected, the
distance between these vertices in the faulty graph is at most k times the distance in the
non-faulty graph. By fixing the valuesk and� (calledstretch factorand fault-tolerance,
respectively), we obtain a specific new graph class. The goal of this work is twofold: (1)
to provide characterizational, structural and computational results for the new classes, and
(2) to study relationships between the introduced classes and common network topologies,
and special graphs classes as well.
Related works: As observed above, several papers present results about classical fault-

tolerant network design. Recently, some papers introduced and analyzed networks accord-
ing to the approach followed in this work. In[1,7–9], authors have considered networks
that guarantee constant delay factors even when anunlimitednumber ofverticesfail. In
particular, in[7,9] they study graphs in which the induced distance function is bounded by
amultiplicative constant, while in [1,8] the induced distance function is bounded by anad-
ditive constant. In [13], author gives characterizations for graphs in whichno delayoccurs
in the case that asinglevertex fails. These graphs are calledself-repairing. Unfortunately,
in all cases these results do not carry over to the dual case ofedge faults. In [15], a different
notion of fault-tolerance and reliability is considered. There, the goal was to find subgraphs
with a certain structure in a given graph such that a constant distance guarantee can be
given.
Results: As a preliminary step, we first introduce and investigatek-self-spanners, pro-

viding different strict characterizations. Such results prove that the recognition problem for
the class SS(k) is polynomially solvable fork�3, and that it is hard in general (fork not
fixed).
As main contribution, we introduce and investigate the(k, �)-self-spanners graphs.

Characterizational and structural results are used to tackle the main problem: deciding
whether a given graph is a(k, �)-self-spanner. This problem isNP-complete for the gen-
eral case wherek and� are part of the input and remainsNP-complete ifk�5 is fixed.
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However, ifk�2 is fixed or if��0 is fixed, then there are polynomial time algorithms to
solve it. Fork = 3 the problem is polynomial for(� + 1)-edge-connected graphs,�>0. In
conclusion, it remains to be settled for general graphs when 2<k�4.
At a second phase, we define some sufficient conditions to guarantee that a given graph

belongs to SS(k, �) for somek and�. These conditions are used to show that some well
knowngraph classes suchas distance-hereditary, cographs, and chordal graphs (e.g., see[5])
exhibit strong self-spanner properties, by providing upper bounds on the trade-off between
stretch factor and fault-tolerance.
Finally we show how the new graph classes of(k, �)-self-spanners fit into the context

of some popular network topologies. To this end, we first study self-spanner properties of
graphs built by means of Cartesian product. Then, we use these properties to show that
grids, tori, andhypercubesexhibit strong self-spanner properties, in particular for small
fault-tolerance values. Bounded-degree approximations of the hypercube such asconnected
cyclesandbutterflies, however, result in big stretch factors even in the case of small fault-
tolerance values.
The remainder of this paper is organized as follows. Notation and basic concepts used in

this work are given in Section 2. Sections 3 and 4 introduce and investigatek-self-spanners
and(k, �)-self-spanners, respectively. In Section 5, we provide self-spanner properties of
special graph classes. Section 6 shows howCartesian product affects self-spanner properties
of graphs; this result is used to investigate relations between(k, �)-self-spanners andpopular
network topologies. Finally, in Section 7, we give some final remarks.

2. Basic notions

In this work, we use standard notation for graphs (cf.[16]). LetG = (V ,E) be a simple
(i.e. without multiple edges or loops), unweighted, and undirected graph. Letn denote the
number of vertices, and letm denote the number of edges. Theset of vertices(andset of
edges, resp.) ofG is denoted byV (G) (andE(G), resp.). A subgraphH = (V ′, E′) of
G = (V ,E) (with V ′ ⊆ V andE′ ⊆ E) is calledspanningif V = V ′. If R ⊆ V (G), then
G[R] denotes the subgraph ofG induced byR.G−e wheree ∈ E(G) is the graph obtained
from G by deleting edgee. The neighborhoodNG(v) of a vertexv in G is the set of all
vertices that are adjacent tov in G.
Thedistancebetween two verticesu andv inG is denoted bydG(u, v), and corresponds

to the number of edges in a shortest path betweenuandv. If we considercycles, we always
meansimplecycles, i.e. cycles in which each vertex appears at most once. Thelength of a
cycle is the number of its vertices or its edges, resp. An edge is achordof a cycleC if it
connects two non-adjacent vertices ofC. A cycleC inG is calledinducedif G[V (C)] =C,
i.e. if C does not contain chords.
Cn denotes theinduced cycle graph(also called ring) withn vertices. Conversely,CCn

denotes a cycle onn vertices that may contain an arbitrary number of chords. Moreover,
Pn is thepath graphonn vertices.Kn is thecomplete graph(or clique) onn vertices, and
Kn,m is thecomplete bipartite graphwith a bipartition onn andmvertices.
For a connected graph, anarticulation vertexis a vertex whose deletion disconnects

the graph. A graph is calledbiconnected(or 2-vertex-connected) if it has no articulation
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Fig. 1. (a) A 3-self-spanner graph and (b) a 4-self-spanner graph.

vertex. It is called�-vertex-connectedif there is no subset of verticesSof size� − 1 such
thatG[V \S] is disconnected. A graph is�-edge-connectedif no deletion of� − 1 edges
disconnects it. An edgee of G is calledbridge if G − e is disconnected. Observe that an
�-edge-connected graph does not contain a bridge if��2. A blockof a graph is a maximal
biconnected subgraph.
A diamondis a biconnected graph formed by two possibly adjacent verticesu andv,

which are connected byK�2 disjoint paths of length 2 (see for example the leftmost block
in Fig. 1(a)).
For any fixed rationalk�1, ak-spannerof an unweighted graphG is a spanning subgraph

S in G such that the distance between every pair of vertices inS is at mostk times their
distance inG. The parameterk is calledstretch factor. We say that an edgee is coveredif
in S there exists a path of length at mostk that connects the endpoints ofe. Such a path is
called acovering path. Since in particular each edge has to be covered in ak-spanner, it is
clear that in unweighted graphsSis ak-spanner ofG if and only ifSis a
k�-spanner ofG.
Thus it suffices to consider integer stretch factorsk.
Moreover, in order to prove that a given spanning subgraph is ak-spanner, we do not

have to consider all pairwise distances of the vertices. It suffices to look only at edges of
the graph that are not part of the spanning subgraph.

Lemma 2.1(Peleg and Schaeffer[23]). A subgraphS = (V ,E′) of a graphG = (V ,E)

is ak-spannerof G if and only if all edges that do not belong to S are covered, i.e.,

dS(u, v)�k for every edgee = {u, v} ∈ E\E′. (1)

The concept of spanners has been introduced by Peleg and Ullman in[24], where they
used spanners to synchronize asynchronous networks. One of the many other applications
for spanners are communication networks, where one is interested in finding a sparse sub-
network that nevertheless guarantees a constant delay factor. Further results onk-spanners
and variants thereof can be found for example in[18].

3. k-self-spanner

In this section, we examine a class of graphs that guarantees constant delays even in the
case of anunlimitednumber ofedge faults.
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Definition 3.1. For any fixed integerk�1, a graphG = (V ,E) is ak-self-spannerif for
every subgraphG′ = (V ,E′) of G:

dG′(u, v)�k · dG(u, v) for all u, v ∈ V that are connected inG′. (2)

The class of allk-self-spanners is denoted by SS(k). The parameterk is calledstretch factor.
For a graphG,minS(G) denotes the smallestk such thatG ∈ SS(k).

For instance, the graphG in Fig. 1(a) belongs to SS(3), but asminS(G)= 3, it does not
belong to SS(2). If G′ is achieved fromGby adding the edge{u, v}, thenminS(G′)=6, and
thusG′ doesnot belong toSS(3)anymore.Thegraph inFig. 1(b) belongs toSS(4), but not to
SS(3). The previous definition works equally well for connected and disconnected graphs;
but it is obvious that we can restrict our analysis to connected graphs in the following.
Notice thatk-self-spanner graphs form a hierarchy of graph classes: if 1�k�k′, then

SS(k) ⊆ SS(k′). A network modeled as a graphG ∈ SS(k) is characterized as follows: if
G′ is the graph resulting by removing fromG an arbitrary number of faulty edges, then the
distance between two connected vertices inG′ is at mostk times their distance inG. By
replacing ‘edges’by ‘vertices’ in this characterizationwe get the class ofk-bounded induced
distance graphs, which have been introduced in[7] and deeply investigated in[7,9].
The following lemma motivates the namek-self-spanner(by showing a strong relation-

ship with the concept ofk-spanners) and provide useful characterizations.

Lemma 3.2. LetG = (V ,E), andk�1.The following statements are equivalent:

1. G ∈ SS(k);
2. everyconnected spanningsubgraphG′ = (V ,E′) of G is ak-spanner of G;
3. everyconnectedsubgraphG′ = (V ′, E′) of G is ak-spanner ofG[V ′];
4. every simple cycle of G has at mostk + 1 edges;
5. for every edgee= {u, v} ∈ E, a longest simple path between u andv in G has length at

most k.

Proof. [1⇒ 2] and[4 ⇒ 5] Trivial.
[2 ⇒ 3] Assume that every connected spanning subgraph ofG is ak-spanner ofG and

there is a connected (not necessarily spanning) subgraphG′ = (V ′, E′) of G such that
dG′(u, v)> k · dG[V ′](u, v) for two verticesu, v ∈ V ′. ExpandG′ to a connected spanning
subgraphG′′ = (V ,E′′) by linking missing vertices ofG to V ′ such that these vertices do
not lie on a cycle (this is always possible becauseG is connected). Then,G′′ is a spanning
subgraph ofG anddG′′(u, v)> k · dG(u, v), a contradiction.

[3 ⇒ 4] By contradiction, let us assume that there exists a simple cycleC in G with at
leastk + 2 edges. Let{u, v} be an edge ofC, and letG′ be the subgraph ofG induced by
the edges ofC except{u, v}. Hence,dG′(u, v)�k + 1. This inequality implies thatG′ is
not ak-spanner ofG[V (G′)], a contradiction.

[5⇒ 1]Bycontradiction, let usassume thatG /∈SS(k). ByPart 3, thereexistsaconnected
subgraphG′ = (V ′, E′) ofG such thatG′ is not ak-spanner ofG[V ′]. By Lemma 2.1, there
exists an edgee = {u, v} in G[V ′] that does not belong toE′ such thatdG′(u, v)> k. This
results in a simple path of length at leastk + 1, a contradiction. �
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Part 5 of the lemma above implies that the class ofk-self-spanners is closed under taking
subgraphs.

3.1. Complexity results

Since SS(k) ⊆ SS(k′), 1�k�k′, and since there always exists an integerk′′ such that
G ∈ SS(k′′) for a given graphG, the problem of determining the smallest class which
a graph belongs to naturally arises. This recognition problem can be formally defined as
follows:

Problem 1. MINIMUM SELF-SPANNER:GivenagraphGandan integerk�1,doesGbelong
toSS(k), i.e.,minS(G)�k?

In what follows we prove that: (1) MINIMUM SELF-SPANNER is hard in general, and
(2) there exist strict characterizations for SS(k) for smallk that lead to efficient recognition
algorithms.These results are based on Lemma3.2 and on the following lemma, respectively.

Lemma 3.3. Let G be a graph. Then following characterizations hold:

1. G ∈ SS(1) if and only if every block of G is aK2 (i.e.,G is a tree);
2. G ∈ SS(2) if and only if every block of G is aK3 or K2;
3. G ∈ SS(3) if and only if every block of G is a diamond,K4,K3, or K2.

Proof. The characterizations of SS(1) and SS(2) can be derived from Definition 3.1.
Concerning SS(3), notice thatminS(K4)= 3 andminS(D)= 3 for any diamondD. For

the other direction, consider a blockG′ ofG. If G′ contains atmost 4 verticesweare done, so
assume thatG′ contains at least 5 vertices. SinceG′ is biconnected, then it contains a cycle
C; according to Part 4 of Lemma 3.2,C has at most 4 vertices. So, assumeC = (a, b, c, d).
To avoid to generate cycles with 5 vertices, a vertexu such thatu ∈ G′ andu /∈C has to
be adjacent to 2 non-adjacent vertices ofC (w.l.o.g., assumeu adjacent toa andc). At this
point, other vertices can be adjacent toa andc only. Finally,Cmay have one chord only,
and such a chord joinsa andc. It is easy to see that the componentG′ is a diamond. �

Theorem 3.4. MINIMUM SELF-SPANNER is co-NP-complete. Moreover, testing whether
a graph G belongs toSS(k), for each fixedk�3, can be performed in polynomial time.

Proof. As mentioned in[14] (ND28), the following LONGESTCIRCUIT Problem isNP-
complete:Given a graphG=(V ,E) and a positive integerK� |V |, is there a simple cycle in
Gof lengthK or more? By Part 4 of Lemma 3.2 this is exactly the complementary problem
of MINIMUM SELF-SPANNER, and hence MINIMUM SELF-SPANNER is co-NP-complete.
The last part of the statement is a consequence of Lemma 3.3.�

It could be interesting to study MINIMUM SELF-SPANNER for k�4 fixed. Observe that
Lemmas 3.2 and 3.3 show that, if we ask for a class SS(k) that contains non-trivial networks,
we have to pay for a large stretch factork. This fact is due to the strong constraint for the
fault-tolerance that we have used in the definition ofk-self-spanners: ak-self-spanner has
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Fig. 2. The opaque cube OC.

to guarantee for a fixed bounded stretch factor even in case of anunlimitednumber of edge
faults. In the light of applicability, this assumption is overly pessimistic; usually alimited
number of edge faults is sufficient. Thus, the model of(k, �)-self-spanners as treated in the
following section is much more realistic.

4. (k,l)-self-spanners

In this section, we consider limited fault-tolerance, that is we study networks in which at
most� edges may fail. To model these networks, we introduce the following graphs:

Definition 4.1.

1. For any fixed integerk�1 and fixed integer��0, a graphG = (V ,E) is a(k, �)-self-
spannerif for every subgraphG′ = (V ,E′) of Gwith |E′|� |E| − � andE′ ⊆ E:

dG′(u, v)�k · dG(u, v) for all u, v ∈ V that are connected inG′.

The class of all(k, �)-self-spanners is denoted by SS(k, �). The parameterk is called
stretch factor, and the parameter� is calledfault-toleranceof the class SS(k, �).

2. For a graphG,minS�(G) denotes the smallestk such thatG ∈ SS(k, �) (i.e.,� is fixed),
whereasmaxT k(G) denotes the largest� such thatG ∈ SS(k, �) (i.e.,k is fixed).

For example, consider againFig. 1. If G is the graph inFig. 1(a), thenminS1(G) = 2,
minS2(G)=3,maxT2(G)=1, andmaxT3(G)=2.Thus,G is inSS(2,1)and inSS(3,2), but
not inSS(2,2).The ‘opaquecube’OC(seeFig. 2) hasminS1(OC)=3andmaxT3(OC)=1.
Thus,OCbelongs to SS(3,1) but not to SS(3,2).
As for k-self-spanners, we restrict our analysis toconnectedgraphs. Note that the defini-

tion of (k, �)-self-spanners doesnot imply thatG remains connected when at most� edges
are removed. If this is necessary, then we can restrict our attention to graphs belonging to
the intersection of the classes of(� + 1)-edge-connected graphs and(k, �)-self-spanners.

Remark 4.2. By similar arguments as in Lemma 2.1, to check whether a graphG=(V ,E)

belongs to SS(k, �) it is sufficient to check that for each subgraphG′ = (V ,E′) of G,
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with |E′|� |E| − � andE′ ⊆ E, the following holds:

dG′(u, v)�k for everye = {u, v} ∈ E\E′. (3)

The following lemma shows that, in order to check whether a graph belongs to a class
SS(k, �), we do not have to consider all (possibly disconnected) subgraphs but only
connected subgraphs.

Lemma 4.3. For fixed integersk�1and��0,G ∈ SS(k, �) if and only if everyconnected
and spanningsubgraphG′ = (V ,E′) with |E′|� |E| − � andE′ ⊆ E is a k-spanner
of G.

Proof. It suffices to show the ‘if’-part: suppose every connected spanning subgraph
G′ = (V ,E′) with |E′|� |E| − � andE′ ⊆ E is ak-spanner ofG, and, by contradiction,
assume thatG is not a(k, �)-self-spanner. By definition, there is a subgraphG′′ = (V ,E′′)
with |E′′|� |E| − � andE′′ ⊆ E (not necessarily connected) such that there is a pair of
verticesu andv (within one connected component ofG′′) anddG′′(u, v)> kdG(u, v). This
also impliesE′′ ⊂ E.
SinceG is connected, there is also a connected subgraphG̃= (V , Ẽ) with E′′ ⊂ Ẽ ⊆ E

(and thus|Ẽ|� |E| − �) constructed as follows: letC be the set of connected components
of G′′. ObtainG̃ fromG′′ by adding|C| − 1 bridge edges such that̃G is connected. Then
dG̃(u, v)> kdG(u, v) and hencẽG is not ak-spanner ofG, a contradiction. �

In the sequel, we use Lemma4.3 as a characterization for the class of(k, �)-self-spanners.

4.1. Characterization results

It is clear that for every connected graphG there are some parametersk and � such
that G belongs to SS(k, �). Analogously, if we fix one of the parameters we can al-
ways find a feasible value for the other parameter. Furthermore, it is easy to see that
(k, �)-self-spanners have inductive properties with respect to the parameters as stated
below.

Lemma 4.4. The following properties trivially hold:

1. If 1�k�k′, thenSS(k, �) ⊆ SS(k′, �) for each�>0;
2. if 0<���′, thenSS(k, �) ⊇ SS(k, �′) for eachk�1;
3. if k�1, thenSS(k) ⊆ SS(k, �) for each��0.

The class of(k, �)-self-spanners isnotclosed under subgraphs. For example, the ‘opaque
cube’ is in SS(3,1), but the graphG′ obtained from removing the internal vertex is not (in
fact, it has a stretch factorminS1(G

′)=5, and thus is in SS(5,1)).Also (k, �)-self-spanners
is not closed under supergraphs in the following sense: if a graphG is in SS(k, �) for some
fixed parametersk and� then there may be a supergraph ofG on the same vertex set (i.e.,
a graph with additional edges) that doesnot belong to SS(k, �). The same remains true
if we consider only(� + 1)-edge-connected graphs. As a consequence, the self-spanner
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properties of a graph cannot be inferred directly from the self-spanner properties of sub- or
supergraphs.
As examples of standard graphs that exhibit some particular self-spanner properties, it

is easy to see thatPn ∈ SS(1, �) for every ��1. FurthermoreCn ∈ SS(n − 1, �) but
Cn /∈SS(n−2, �) for every��1, sinceminS�(Cn)=n−1 for every��1 (i.e., the fault of
one edge results in a path of lengthn−1). Starting from these observations, we are interested
in finding non-trivial parameters such that a graph is a(k, �)-self-spanner. This includes the
problem of deciding for given parameterskand�whether a given graph belongs to SS(k, �)

as well as the more general recognition problems where we fix one of the parameters and
try to optimize the other. To analyze the complexity of these problems, let us first consider
the special case where we allow for single edge faults only, i.e.,�=1. The following lemma
can be easily derived.

Lemma 4.5. G ∈ SS(k,1) if and only if every induced cycle of G has at mostk + 1 edges.

Unfortunately, we cannot extend this characterization in a straightforwardway to the case
�>1. But, if we restrict ourselves to(� + 1)-edge-connected graphs we get the following
lemma:

Lemma 4.6. LetG= (V ,E) be(�+ 1)-edge-connected. ThenG ∈ SS(k, �) if and only if
for every edgee = {u, v} of G there are at least� edge disjoint paths(not involving e) of
length at most k connecting u andv.

Proof. For the ‘if’-part, letG′ =(V ,E′) be a subgraph withE′ ⊆ E and|E′|� |E|−�, and
let e = {u, v} be an edge that does not belong toE′. Assume that there are� edge disjoint
paths (not involvinge) of length at mostk connectingu andv. Thus, even if the remaining
�− 1 edge faults happen to appear in one of these paths each, at least one covering path for
e in G′ remains.
We show the opposite direction by contradiction: assumeG ∈ SS(k, �), and there is

an edgee = {u, v} such that there are at mostj < � edge disjoint paths (not involvinge)
p1, p2, . . . , pj of length at mostk connectinguandv. It is possible to construct a subgraph
G′ as follows: delete fromG the edgee along with one edge inpi , for each 1� i�j . G′
remains connected (sinceG is (� + 1)-edge-connected) butdG′(u, v)> k, a contradiction
toG ∈ SS(k, �). �

Observe that we cannot relax on the edge-connectivity constraint in this lemma.
Consider for example the diamond consisting of aC4 and one chord: this graph is
2-edge-connected and belongs to SS(3,2), but it does not fulfill the constraints of
Lemma 4.6.

Lemma 4.7. The following properties hold:

1. SS(1) ≡ SS(1, �) for each�>0;
2. SS(2) ≡ SS(2, �) for each�>0;
3. if k�3, thenSS(k, �)�SS(k, � + 1) for each�>0.
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Fig. 3. The graphGk,� used in the proof of Lemma 4.7.Gk,� is composed by an induced cycle ofk + 1 vertices;
moreover, for each edgeeof the cycle,� disjoint paths of length 2 connect the endpoints ofe.

Proof.

1. It directly follows fromDefinition4.1.Moreover, asnoted inLemma3.3,SS(1) coincides
with the class of trees.

2. According to Item 2 of Lemma 4.4, it is sufficient to show that SS(2) ≡ SS(2,1). By
Lemma 3.3, a graphGbelongs to SS(2) if and only if every block ofG is aK3 orK2. By
Lemma 4.5,G belongs to SS(2,1) if and only if every induced cycle ofG has at most 3
edges. Since these two characterizations are equivalent, the statement follows.

3. We show that, fork�3 and�>0, there exists a graphGk,� such that∈ SS(k, �) and
Gk,� /∈SS(k, �+1).Gk,� is composedbyan inducedcycleofk+1verticesu0, u1, . . . , uk;
moreover, for each vertexui of the cycle,Gk,� contains the� verticesu1i , u

2
i , . . . , u

�
i ,

each connected to bothui andu(i+1)mod(k+1) (seeFig. 3).
To prove thatGk,� /∈SS(k, � + 1), it is sufficient to consider the subgraph obtained by

removing the� edges{u0, ui0}, 1� i��, along with{u0, u1}. In this subgraph the distance
betweenu�0 andu0 is given by the path(u�0, u1, u2, . . . , uk, u0). Since the length of this
path isk + 1, thenGk,� /∈SS(k, � + 1).
To prove thatGk,� ∈ SS(k, �), we now show thatGk,� ∈ SS(3, �). By symmetrical

properties of graphGk,�, it is sufficient to test Property 3 of Remark 4.2 for edges{u0, u�0}
(case (a) below) and{u0, u1} (case (b) below) only.
(a) Let us considerG′ obtained fromGk,� by removing{u0, u�0} and at most other�− 1

edges. The edge{u�0, u1} belongs toG′, otherwiseu0 andu�0 are not connected inG′. If
{u0, u1} is in G′, thendG′(u0, u�0) = 2<k. If {u0, u1} is not inG′, then the removal of
{u0, u�0}, {u0, u1}, and at most other�−2 edges fromGk,� cannot destroy all the remaining
� − 1 paths of length 2 fromu0 to u1 passing throughui0, 1� i�� − 1. As a consequence,

assume that the edges{u0, uj0} and{uj0, u1} for somej, 1�j�� − 1, are inG′: then the

covering path(u�0, u1, u
j
0, u0) impliesdG′(u0, u�0) = 3�k.

(b) Let us consider thatG′ is obtained fromGk,� by removing{u0, u1} and at most other
� − 1 edges. This removal cannot destroy all the� paths of length 2 fromu0 to u1 passing
throughui0, 1� i��. As a consequence,dG′(u0, u1) = 2�k. �
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4.2. Complexity results

In this section, we consider the problem of recognizing graphs that belong to a given
class and investigate characterization problems by finding the optimal stretch factor or
fault-tolerance value of a given graph.As our main results, we establish an almost complete
set of complexity results for these problems, that are formally stated as follows.

Problem 2. MINIMUM �-STRETCH-FACTOR:Given a graph G and an integerk�1,does G
belong toSS(k, �), i.e.,minS�(G)�k?

Problem 3. MAXIMUM k-FAULT-TOLERANCE: Given a graph G and an integer��0,does
G belong toSS(k, �), i.e.,max Tk(G)��?

Problem 4. GENERALSELF-SPANNER:Given a graph G and two integersk�1, ��0,does
G belong toSS(k, �)?

Thus, in MINIMUM �-STRETCH-FACTOR we consider� as a fixed parameter, whereas in
MAXIMUM k-FAULT-TOLERANCEk is a fixed parameter.
Now, if we fix the fault-tolerance value�, we can determine the smallest stretch factor of

a given graphG = (V ,E) in polynomial time. This trivially results by observing that the
cardinality of the set{G′ = (V ,E′) | |E′|� |E| − �} is bounded by|V |2(�+1). Hence:

Theorem 4.8. MINIMUM �-STRETCH-FACTOR is inP for all ��0.

As a consequence, the problem of deciding whether a graph is a(k, �)-self-spanner for
fixed k�1 and��0 is inP. If we consider the dual problem where we fix the stretch
factor and we want to find the largest fault-tolerance value of a given graph, the situation is
different. To this aim, we introduce the following problem.

Problem 5. Given an integer��0, a (� + 1)-edge-connected graphG = (V ,E), and an
edgee = {s, t} ∈ E, does G contains� or more mutually edge disjoint paths(not involving
edge e) from s to t, which all have length at most5?

Theorem 4.9. Problem5 isNP-complete.

Proof. Consider the following problem:

• Given a connected graphG= (V ,E), two verticess, t ∈ V , and integers 0<K,L� |V |,
we have to decide whetherG containsL or more mutually edge disjoint paths froms to
t, which all have length at mostK.

Such a problem is known as MAXIMUM LENGTH-BOUNDED DISJOINT PATHS (cf. [14]
(ND41)). As shown in[20], this problem isNP-complete for all fixedK�5, it is polyno-
mially solvable forK�3, and it is open forK = 4. We show that MAXIMUM 5-BOUNDED
DISJOINT PATHS (that is, the same problem whenK = 5) is polynomially reducible to
Problem 5.
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Fig. 4. The subgraphGuv used to built the graphG′ in the proof of Theorem 4.9. Each oval represents a clique
and all the cliques have the same size.

Let G = (V ,E), s, t ∈ V , and 0<L� |V | be an instance of MAXIMUM 5-BOUNDED
DISJOINTPATHS.We construct a(�+ 1)-edge-connected graphG′ = (V ′, E′) with an edge
e′ = {s′, t ′} ∈ E′ such thatG contains the requested paths froms to t if and only if G′
contains the requested paths froms′ to t ′.

First of all, let� =
{
L − 1 if {s, t} ∈ E

L if {s, t} /∈E
.

If {s, t} ∈ E, thenG′ is formed bym = |E| subgraphs, one subgraphGuv for each edge
{u, v} ∈ E. If {s, t} /∈E, thenG′ is formed bym + 1 subgraphs, one subgraphGuv for
each edge{u, v} ∈ E along with the subgraphGst . Guv is composed by 7 cliques (see
Fig. 4), each containing�+2 vertices. These 7 cliques are denoted byKu andKv (thebasic
cliques), and byK1

uv,K
2
uv, . . . , K

5
uv. A basic cliqueKw contains verticesw,w1, . . . , w�+1.

The only edges inGuv are the edges in each clique along with the following ones:

1. {u, v};
2. {x, y}, for eachx ∈ Ki

uv and for eachy ∈ Ki+1
uv , 1� i <5;

3. {x, y}, for eachx ∈ Ku and for eachy ∈ K1
uv;

4. {x, y}, for eachx ∈ K5
uv and for eachy ∈ Kv.

Edges at Item 1 are calledbasicedges, while edges at Items 2, 3, and 4 are calledadditional
edges. Two (basic or additional) cliques areadjacentif there exists an additional edge
{w1, w2} such thatw1 belongs to the first clique andw2 to the second one. Considers′ ≡ s

andt ′ ≡ t , and notice that, by construction,{s′, t ′} ∈ E′. The union of vertices and edges
ofGuv, for each edge{u, v} ∈ E (along with vertices and edges ofGst if {s, t} /∈E), forms
the requested graphG′.G′ enjoys the following property:

P : If a path inG′ between verticesu andv, with u, v ∈ V , contains an additional edge,
then such path has length at least 6.

We first show thatG′ is (� + 1)-edge-connected. By contradiction, assume that there
is a subsetX ⊆ E′ containing at most� edges such thatG′′ = (V ,E′\X) is not con-
nected; moreover, assume thatG′′

1 andG
′′
2 are two connected components ofG′′. Let H

be a basic or additional clique inG′: if both G′′
1 andG

′′
2 contain vertices ofH, then the

removal of edges inX cannot disconnectG′′
1 fromG′′

2 (since there are at least� + 1> |X|
edges betweenG′′

1 andG
′′
2). Then, assume that each clique is entirely contained either in
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G′′
1 or G

′′
2. SinceG

′ is connected,G′′
1 contains a clique which is adjacent to a clique of

G′′
2; again, this implies that there are at least� + 1 edges betweenG′′

1 andG
′′
2, a contra-

diction.
Now assume thatG containsL or more mutually edge disjoint paths froms to t, each

one having length at most 5. If{s, t} ∈ E ({s, t} /∈E, resp.) thenG containsL − 1= �

(L = �, resp.) or more of such paths. Since all these paths are also inG′, thenG′ contains
the requested paths.
Conversely, assume thatG′ contains� or more mutually edge disjoint paths froms′ to t ′

(not involvinge′), which all have length at most 5. According to PropertyP, all such paths
are formed by basic edges. Hence, there areL or more mutually edge disjoint paths froms
to t in G, which all have length at most 5.�

Corollary 4.10.

1. MAXIMUM k-FAULT-TOLERANCE isNP-complete for all fixedk�5;
2. MAXIMUM k-FAULT-TOLERANCE, k = 1,2, is inP;
3. MAXIMUM 3-FAULT-TOLERANCE is inP for the class of(�+ 1)-edge-connected, �>0,

graphs;
4. GENERAL SELF-SPANNER isNP-complete.

Proof.

1. We first prove that the statement holds fork = 5.
According to the characterization provided by Lemma 4.6, MAXIMUM 5-FAULT-

TOLERANCEfor the class of(� + 1)-edge-connected graphs,��0, can be reformulated
as follows:

• Given a graphG = (V ,E) and an integer 0��� |V | such thatG is (� + 1)-edge-
connected, we have to decide whether for every edgee={u, v} ofG there are at least
� edge disjoint paths (not involvinge) of length at most 5 connectingu andv.

To solveMAXIMUM 5-FAULT-TOLERANCEfor the class of(�+1)-edge-connected graphs
we have to solve Problem 5 for each pair of adjacent vertices of the input graph.
Then, MAXIMUM 5-FAULT-TOLERANCE isNP-complete for the class of(� + 1)-edge-
connected graphs. To show that the same result holds for each fixedk >5, it is sufficient
to observe that the proof of Theorem 4.9 can be extended to each fixedk >5 by suitably
setting the number of additional cliques, that is, from 5 tok.
As a consequence, MAXIMUM k-FAULT-TOLERANCE is NP-complete, for all fixed

k�5, also for the general graphs.
2. According to Items 1 and 2 of Lemma 4.7, solving MAXIMUM k-FAULT-TOLERANCEfor

k = 1 (k = 2, resp.) corresponds to test the membership ofG to the class SS(1) (SS(2),
resp.). By Theorem 3.4, these membership problems can be solved efficiently.

3. By the formulation of the MAXIMUM k-FAULT-TOLERANCEfor the class of(�+1)-edge-
connected graphs given in the proof of Item 1, it is immediate to note that MAXIMUM

3-FAULT-TOLERANCE can be solved by running an algorithm that solves MAXIMUM

LENGTH-BOUNDED DISJOINT PATHS whenK = 3 for each pair of adjacent vertices.
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Since MAXIMUM LENGTH-BOUNDED DISJOINT PATHS is in P whenK = 3, then this
approach leads to the required efficient solution for MAXIMUM 3-FAULT-TOLERANCE.

4. This is a consequence of Item 1.�

TheproblemMAXIMUM k-FAULT-TOLERANCE, 2<k�4, remains to be settled for general
graphs, while MAXIMUM 4-FAULT-TOLERANCE is open even for the class of(� + 1)-edge-
connected graphs. Observe that it does not suffice to look for a maximum number of edge
disjoint paths froms to t underno length constraint. This problem is solvable in polynomial
time [14]. But in our case, the distance guarantee for every path is crucial.

5. Self-spanner properties of special graph classes

We now consider some sufficient conditions that guarantee that a given graph is a(k, �)-
self-spanner for somekand�. Themain idea here is the following: if a graph contains a long
cycle that has only few chords, then this graph is likely to have bad self-spanner properties.
In other words, if we can guarantee that a graph does not contain such a long cycle with
only few chords, then the self-spanner properties are good. This fact is expressed in the
following lemma. In the sequel, we denote byCCn a cycle onn vertices that may contain an
arbitrary number of chords (in contrast toCn denoting aninducedcycle).

Lemma 5.1. Given a graphG = (V ,E) and two fixed positive integers k and�, letCCt be
a cycle of G with at most�−1 chords having maximum length. Ift�k+1, then G belongs
toSS(k, �).

Proof. By contradiction, suppose thatt�k + 1 andG /∈SS(k, �). By Lemma 4.3, there
exists a subgraphG′ = (V ,E′) of G with |E′|� |E| − � such thatG′ is not ak-spanner
of G. By Lemma 2.1, this implies that there exists an edgee = {u, v} ∈ E\E′ such that
dG′(u, v)> k. The pathP giving the distancedG′(u, v) together with edgee forms a cycle
CCt ′ of G. SinceP is obtained fromG by removinge and at most� − 1 other edges ofE,
thent ′ >k + 1 andCCt ′ contains at most� − 1 chords. This is a contradiction, sinceCCt is
a maximum cycle ofGwith at most� − 1 chords. �

We call a condition as given in the previous lemma acycle-chord condition. Observe
that this lemma does not provide a strict characterization for the class SS(k, �): there are
(k, �)-self-spanners that do not fulfill the cycle-chord condition.We can extract some further
cycle-chord condition fromLemma5.1 resulting in an upper bound on the trade-off between
stretch factor and fault-tolerance.

Corollary 5.2. LetG = (V ,E) be a graph, t�3 an integer, andf : N → N a monotone
increasing function. If every cycle of G on t vertices has at leastf (t) chords, thenG belongs
toSS(t, f (t + 2)).

Proof. If every cycle ofGon t vertices has at leastf (t) chords, then, by monotonicity off,
also every cycle ont or more vertices has at leastf (t) chords. LetCCt ′ be a cycle ofGwith
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at mostf (t) − 1 chords and having maximum length. Then, the numberc(CCt ′) of chords
of CCt ′ fulfills the following inequality:

f (t ′)�c(CCt ′)�f (t) − 1.

By the monotonicity off, it follows that t ′ � t − 1. Hence, by Lemma 5.1,G belongs to
SS(t − 2, f (t)), and, by the generality oft, also to SS(t, f (t + 2)). �

The cycle-chord conditions also support the intuition that graphs in which every vertex
has a large degree are likely to have good self-spanner properties.
In the remainder of this section, we use the previous corollary to investigate the self-

spanner properties of widely studied graph classes, namely,distance-hereditary graphs,
cographs, andchordal graphs[5]. A graph isdistance-hereditaryif every two vertices
have the same distance in every connected induced subgraph containing both. A graph is
a cographthat does not contain any induced path of length 3. A graph is chordal if every
cycle of length at least 4 possesses a chord. Equivalently, a chordal graph does not contain
an induced subgraph isomorphic toCn for anyn�4.
Both distance-hereditary graphs and cographs can be characterized by means ofone-

vertex extensionoperations.Theseoperations canbeused to enlargeagraphof the respective
graph class to another graph of the same class containing more vertices. LetG be a graph,
ube any vertex ofG, andv be a new vertex. The operations to extendGby addingv are the
following:

• �(u, v): v is adjacent only tou (v is apendant vertex);
• �(u, v): v is adjacent tou and to every neighbor ofu (v is atrue twinof u);
• �(u, v): v is adjacent to every neighbor ofu (v is afalse twinof u).

Bandelt and Mulder showed in[4] that every distance-hereditary graph is obtained starting
from a single vertex by applying a sequence of operations�, �, and�. Corneil et al. showed
in [12] that every cograph is obtained starting from a single vertex by applying a sequence
of operations� and�.

Lemma 5.3. In a distance-hereditary graph,every cycleCCt , t�3,has at leastt−4chords
if t is even, and at leastt − 3 chords if t is odd. In a cograph, every cycleCCt , t�3, has at
leastt (t − 4)/4 chords if t is even, and at least(t − 1)(t − 3)/4 chords if t is odd.

Proof. We prove the property of distance-hereditary graphs by induction on the number
of vertices in a cycle. The induced cyclesC4 andC3 are distance-hereditary, and thus the
base case of the induction is true. Let us consider a distance-hereditary graphG isomor-
phic to a cycleCCt with t�5. Since Howorka[19] showed thatH is distance-hereditary
if and only if every cycle ofH having at least 5 vertices has two crossing chords, then
CCt has at least two crossing chords, say{u, v} and{u′, v′}. Chord{u, v} dividesCCt into
two cyclesCCt1 andCCt2 such thatt = t1 + t2 − 2. Let us supposet odd, and, w.l.o.g,t1
odd andt2 even. By induction hypothesis,CCt1 has at leastt1 − 3 chords andCCt2 has at
leastt2 − 4 chords. ThusCCt has at least the chords belonging toCCt1 and toCCt2 plus the
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two crossing chords{u, v} and{u′, v′}, that ist1 − 3+ t2 − 4+ 2= t1 + t2 − 5= t − 3
chords.Whent is even,t1 andt2 are either both even or both odd. By repeating the previous
arguments, the total number of chords ofCCt is t −4 in the first case andt −2 in the second
one.
We now prove the property about cographs. Let us assumet even. First notice that every

connected distance-hereditary graph having at least three vertices is generated by a sequence
of extensionoperations that startswith a�-operation, i.e.,G is anextensionofK2.Moreover,
the following properties are straightforward:

• A �-operation introduces one edge less than a�-operation; so, ifG′ is generated by a
sequence oft − 2 �-operations starting fromK2 and ifG′ is isomorphic to a cycleCCt ,
thenG′ has the minimum number of chords.

• The extension ofK2 by a sequence of�-operations gives a complete bipartite graphKp,q .
• A complete bipartite graphKp,q is isomorphic to a cycle if and only ifp=q andp, q�2.

The properties above imply that ift�4 is even, then a cograph isomorphic to a cycleCCt

has the minimum number of chords if and only if it is isomorphic toKt/2,t/2. This cycle
hast (t − 4)/4 chords.
Now let us assumet odd. The statement is trivially true fort = 3. According to the three

properties stated in the even case, a cographG that is isomorphic to a cycleCCt with t
odd andt >3, cannot be obtained fromK2 by using�-operations only. This means that
G has the minimum number of chords if it is obtained fromK2 by using the minimum
number of�-operations, and all the�-operations used in the sequence are applied after all
the�-operations.
Now, letGbe a cograph that is isomorphic toCCt with t >3.G can be generated fromK2

by applying firstt − 3 �-operations, and then only one�-operation to an arbitrary vertex.
SinceG is isomorphic to a cycleCCt , the firstt −3 �-operations produce a cographG that is
isomorphic toCCt−1wheret−1 is even.By the result from theevencase,CCt−1 is isomorphic
toK(t−1)/2,(t−1)/2 and contains(t − 1)(t − 5)/4 chords. The last�-operation results in the
creation of(t−1)/2 new chords. Thus,Ghas(t−1)(t−5)/4+(t−1)/2=(t−1)(t−3)/4
chords. �

From the basic characterization of chordal graphs, the following lemma can be derived.

Lemma 5.4. Every cycleCCt , t�4,of achordal graphG has at leastt − 3 chords.

By using Corollary 5.2 together with Lemmas 5.3 and 5.4, we get the following self-
spanner properties for the three graph classes:

Theorem 5.5.

1. Every distance-hereditary graph is inSS(n, n − 2) for every evenn�4; for oddn�3,
distance-hereditary graphs even belong toSS(n, n − 1).

2. Every cograph is inSS(n, (n2−4)/4) for every evenn�4; for oddn�3,cographs even
belong toSS(n, (n2 − 1)/4).

3. Every chordal graph is inSS(n, n − 1) for everyn�4.
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To summarize this subsection, distance-hereditary and chordal graphs exhibit strong self-
spanner properties: the stretch factor does not grow faster than the number of edge faults. In
particular, if the number of edge faults is bounded by a constant then also the stretch factor
is bounded by more or less the same constant. For cographs, the result is even stronger: the
stretch factor only grows in the order of the square root of the number of edge faults.

6. Self-spanner properties of common network topologies

In this section, we study how the new graph classes of(k, �)-self-spanners fit into the
context of some popular network topologies. Since the graphs used for modeling most of
such topologies can be defined by composing simpler graphs, we first study self-spanner
properties of graphs built by means of Cartesian product. The obtained results are then used
to examine some mesh-like networks (namelygrid, torus, andhypercube) with respect to
their self-spanner properties. In a second phase, we also investigate some hypercube derived
networks (cube connected cyclesandbutterflies).
Let G1 = (V1, E1) andG2 = (V2, E2) be two nontrivial graphs; the Cartesian product

G := G1 × G2 is the graph with vertex setV and edge setE as follows:

• V = {(x1, x2) | x1 ∈ V1, x2 ∈ V2},
• E = {{(x1, x2), (y1, y2)} | (x1 = y1 and{x2, y2} ∈ E2) or (x2 = y2 and{x1, y1} ∈ E1)}.
Consequently, two vertices ofG1 ×G2 are adjacent if and only if the first components are
equal and the second components form an edge inG2 or vice versa. Moreover, for anyx1 ∈
V1, G[{(x1, x2) | x2 ∈ V2}] is isomorphic toG2, and for anyx2 ∈ V2, G[{(x1, x2) | x1 ∈
V1}] is isomorphic toG1. W.l.o.g., we do not consider the case whereG1 orG2 is a graph
having no edge.
The next lemma shows that graphs that arise from the Cartesian product of two graphs

have strong self-spanner properties. In particular, it indicates that a stretch factor of 3 plays
an important role.

Lemma 6.1. LetG1=(V1, E1) andG2=(V2, E2) be two connected graphs,G=(V ,E)=
G1 × G2, andi ∈ {1,2}.
1. If Gi ∈ SS(ki, �i) and(�i +1)-edge-connectedthenG ∈ SS(max{k1, k2},min{�1, �2}).
2. Let� be the minimum vertex degree of vertices inV1 ∪ V2. ThenG ∈ SS(3, �).
3. G ∈ SS(2, �) if and only if each edge inGi belongs to at least� disjoint triangles inGi .
4. If G1 or G2 contains a bridge thenmax T2(G) = 0, i.e., there is no�>0 such that

G ∈ SS(2, �). In particular, if G1 or G2 contains a bridge andG ∈ SS(k, �) for some
�>0, thenk�3.

Proof.

1. Consider the edgee = {(x1, x2), (y1, y2)} in G. By Remark 4.2, it suffices to show that
the distance between(x1, x2) and(y1, y2) is at most max{k1, k2} after the removal of
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eand min{�1, �2} − 1 other arbitrary edges fromG. By definition of Cartesian product,
ebelongs to an induced subgraphG′′ of G that is isomorphic either toG1 or toG2. By
assumption,Gi ∈ SS(ki, �i) andGi is (�i + 1)-edge-connected. Hence, even if all the
removed edges fromG belong toG′′, the distance between(x1, x2) and(y1, y2) is at
most max{k1, k2} (because such a distance can be thought as computed inG′′ after the
removal of edges fromG).

2. W.l.o.g., assume thatx1 ∈ G1 is the vertex with minimum degree. Then there are
� verticesxj1 adjacent tox1 in V1,1�j��. Assuming that{x2, y2} is and edge in
G2, then e = {(x1, x2), (x1, y2)}is an edge inG. By definition of Cartesian product
there are� edge disjoint paths((x1, x2), (x

j
1, x2), (x

j
1, y2), (x1, y2)) of length 3 con-

necting(x1, x2) to (x1, y2) in G. The removal of� edges fromG includinge, cannot
destroy all these paths and the statement follows. By the generality ofeand according to
Remark 4.2, this proves thatG ∈ SS(3, �).

3. We have to show the ‘only if’-part: consider edgee = {(x1, x2), (y1, y2)} in G and,
w.l.o.g., assume thatx1 = y1 and {x2, y2} ∈ E2. SinceG ∈ SS(2, �), there are�
edge disjoint paths from(x1, x2) to (y1, y2) of length at most 2 inG not usinge. Ac-
cording to the proof of Part 2, any path from(x1, x2) to (y1, y2) ≡ (x1, y2) via a
vertex (v,w) with v �= x1 has length at least 3. Thus, there are verticeszj ∈ V2
such that{(x1, x2), (x1, zj )}, {(x1, zj ), (x1, y2)} ∈ E, and{x2, zj }, {zj , y2} ∈ E2for
1�j��. Hence,e belongs to� disjoint triangles inG2. The same arguments hold
for G1.

4. Part 4 is a special case of Part 3.�

Observe that, for Part 1 of the previous lemma, it is really necessary to claim the respec-
tive edge connectivity. Otherwise, we cannot guarantee that the graph considered in the
proof remains connected. Also, for Part 3 of that lemma, it does not suffice to claim that
G1 ∈ SS(2, �) (andG2 ∈ SS(2, �), respectively): weagain need that both graphsare(�+1)-
edge-connected. For smaller stretch factors, i.e.,k = 1, we already know thatG1 ×G2 has
a stretch factor smaller than 2 if and only if it is a tree.

Remark 6.2. Part 2 of Lemma 6.1 is tight in the following sense: ifGi /∈SS(2,1) andGi

hasminimum degree� for i ∈ {1,2}, thenminS�(G1×G2)=3 andmaxT3(G1×G2)=�.
ThusG1 × G2 ∈ SS(3, �), butG1 × G2 /∈SS(2, �) andG1 × G2 /∈SS(3, � + 1).

6.1. Mesh-like networks

In this section, we study self-spanner properties of mesh-like networks. In particular, we
considergrids, tori, andhypercubes:

• the gridGn,m is the Cartesian productPn × Pm for n,m�2;
• the torusTn,m is the Cartesian productCn × Cm for n,m�3;
• the hypercubeHd is recursively defined fromP2 byHd = P2 × Hd−1 = P2 × · · · × P2︸ ︷︷ ︸

d times

.

The following lemma indicates the self-spanner properties of these topologies.
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Theorem 6.3.

1. Gn,m belongs toSS(3,1), but not toSS(2,1).
If n>2 or m>2 thenGn,m does not belong toSS(3,2).
If n,m>2 thenGn,m belongs toSS(5,2), but not toSS(4,2) or SS(5,3).

2. Tn,m belongs toSS(3,2), but not toSS(2,2).
If n>3 or m>3 thenTn,m does not belong toSS(3,3).
Tn,m belongs toSS(min{5,max{n,m} − 1},3).
If n,m�5 thenTn,m belongs toSS(5,4), but not toSS(4,4).
If n,m>5 thenTn,m does not belong toSS(5,5).

3. Hd belongs toSS(3, d − 1), but not toSS(3, d) or toSS(2,1).

Proof.

1. Gn,m ∈ SS(3,1) andGn,m /∈SS(2,1) are immediate consequences of Parts 2 and 4 of
Lemma 6.1. To see the other self-spanner properties, observe that, for any edge on the
boundary of the grid, there is only one path of length 3 connecting the end-vertices of
that edge, all other paths have length 5 or longer. This 3-path (and the edge itself) may be
broken by a double edge fault such that the end-vertices still remain connected (ifn,m

are large enough). Accordingly,Gn,m ∈ SS(5,2). If Gn,m �= C4 thenGn,m /∈SS(4,2)
and ifn,m>2,Gn,m /∈SS(5,3).

2. Parts2and3ofLemma6.1directly imply thatTn,m ∈ SS(3,2)andTn,m /∈SS(2,2). From
Remark 6.2 it follows thatTn,m /∈SS(3,3), if m>3 or n>3. Observe that
T3,3 ∈ SS(3,3).
For every edge{x, y} in Tn,m there are two edge disjoint paths of length 3 connecting
x andy and one (also disjoint) path of length at most max{n,m} − 1. If n andm are
at least 5, then there are six different paths of length 5 connectingx andy, but only
two of length at most 4. It is easy to see that at least one of these paths of length 5
remains complete if{x, y} and three further edges are removed. Ifnandmare at least 6,
consider the case of fault of five direct parallel edges inTn,m: Tn,m remains connected
and the middle failing edge has a stretch factor that is greater than 5. Consequently,
Tn,m ∈ SS(min{5,max{n,m} − 1},3). Form, n large enough,Tn,m ∈ SS(5,4), but
Tn,m /∈SS(4,4) and alsoTn,m /∈SS(5,5).

3. To show thatHd belongs to SS(3, d − 1), but not to SS(3, d), it is sufficient to observe
that every edgeeofHd belongs tod −1 induced cycles of length 4 that are edge disjoint
apart frome. By Part 4 of Lemma 6.1,Hd does not belong to SS(2,1). �

Observe that the fault-tolerance value of the torus is higher than that of the grid,
due to the additional wrap-around connections, which make the topology symmetric. But
note that the addition of edges does not result in higher fault-tolerance values in
general.
Furthermore, note that the hypercubeHd still guarantees a constant stretch factor 3, even

if d − 1 edges fail, i.e., if the number of edge faults is in the order of the dimension ofHd .
Consequently, this topology expresses especially strong self-spanner properties.
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6.2. Hypercube derived networks

In this section, we study self-spanner properties of two different types of bounded-degree
approximations of the hypercube; in particular, we considercube-connected cycles graph
andbutterfly(e.g., see[22] and the references therein). Herewe use the following alternative
definition of hypercube[18]: thed-dimensional binary hypercubeHd ,d�1, has 2d vertices,
which are labeled with the binary strings of lengthd. Two vertices inHd are adjacent if
their labels differ in exactly one bit.
Thecube-connected cycles graphof dimensiond, denotedCCCd , is derived fromHd

by replacing each vertex ofHd by a fundamental cycleof lengthd. Each vertex of such a
cycle is labeled by a tuple(i, x) for 0� i�d−1, andi is called thelevelof the vertex.Apart
from thecycle edgesof the fundamental cycles, every vertex(i, x) is connected to vertex
(i, x(i)), wherex(i) denotes the vertex ofHd that is labeled by the same string as vertexx
but with bit i flipped. These edges are calledhypercube edges.
Thebutterfly graph(with wrap-around) of dimensiond, denotedBd , is derived fromHd

similarly asCCCd : Bd consists of the same vertices(i, x) for 0� i�d − 1 asCCCd , and
the samefundamental cyclesof lengthd. But now every vertex(i, x) is connected by two
hypercube edgesto vertices(i + 1, x(i)) and(i − 1, x(i − 1)).
CCCd can be obtained fromBd by replacing every pair of hypercube edges{(i, x),

(i +1, x(i))} and{(i, x), (i −1, x(i −1))} by one edge{(i, x), (i, x(i))}. Thus,CCCd can
be viewed as a spanning subgraph ofBd .
In [3], it is shown that different hypercube-derived topologies can be embedded within

other such topologies with small slowdown. Results on the existence of cycles and the
construction ofk-spanners can be found in[25,18], respectively. But all these results
do not imply on the self-spanner properties of the topologies studied here. We get the
following results concerning the self-spanner properties of the topologies
above:

Theorem 6.4. Bd belongs toSS(3,1) and toSS(d+1,2), but not toSS(2,1), SS(d,2), or
SS(d + 1,3). CCCd belongs toSS(7,1) and toSS(max{7, d − 1},2), but not toSS(6,1).

Proof. Any edge ofBd belongs to exactly one induced cycle of length 4 consisting of
two cycle edges and two hypercube edges. Thus,Bd ∈ SS(3,1). From [25], we know
thatBd does not contain a cycle of length 3 ifd >3. For smallerd, no cycle of length
3 contains a hypercube edge. Hence,Bd /∈SS(2,1). Now consider the case when two
edges fail inBd : if two edges of the same fundamental cycle fail, there still remains
a path of length 3 connecting the end-vertices of the faulty edges each. If both cycle
edges of a 4-cycle as mentioned above fail then there remains a path of lengthd −
1 via a fundamental cycle, but no shorter one. If a cycle edge and a hypercube edge
within such a 4-cycle fail then a shortest path of lengthd + 1 remains but not two such
paths.
CCCd consists of the same fundamental cycles asBd , but contains only half of the

hypercube edges. This results in longer cycles: for everyhypercube edge, there are two
(shortest) edge disjoint paths of length 7 that connect the end-vertices. For everycycle
edge, there is a path of lengthd − 1 (via the fundamental cycle) and another (disjoint)
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path of length 7 using hypercube edges. Consequently,CCCd ∈ SS(7,1) andCCCd ∈
SS(max{7, d − 1},2), butCCCd /∈SS(6,1). �

The previous theorem shows that bounded-degree approximations of the hypercube like
CCCd andBd perform poorly with respect to their self-spanner properties: in the case
of single edge faults the stretch factor is still a constant (though much larger than for the
hypercube), but for double edge faults the stretch factor grows linearly with the dimensiond.
Thus, the guarantees for delays in case of faults are really weak for these kinds of topologies.
The big differences between the self-spanner properties ofHd on the one side, andCCCd

andBd on the other are due to the bounded degree.

7. Further remarks

In this work, we have introduced the classes ofk-self spanners and(k, �)-self-spanners.
Such graphs model networks that guarantee constant stretch factors even in the case of
multiple edges faults. We have considered both the cases of unlimited and limited number
of edge faults. We have given characterizational, structural and computational results, and
we have shown that some popular network topologies and special graph classes exhibit
(more or less) strong self-spanner properties.
We consider this work as a first step towards a more general approach to the design of

networks that guarantee constant stretch factors in case of edge faults, and naturally many
problems remain open.On theonehand, it would be interesting to knowhowwellMAXIMUM

k-FAULT-TOLERANCEcan be approximated for the caseswhere it isNP-complete.Another
further goal in this context is to design sparse(k, �)-self-spanner networks for given pa-
rametersk and� such that specific connectivity requirements are fulfilled. On the other
hand, we are interested in further investigating the self-spanner properties of other known
topologies.
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