
G iven a set of initial conditions for the local outbreak of a new potentially pan-

demic pathogen, the timeline of the arrival of the epidemic in each country 

is mainly determined by the human mobility network that couples different 

regions of the world. By looking at individual countries or a given continent in 

isolation, any estimate of the epidemic timeline would be based on assumptions 

about imported cases from the rest of the world. Human mobility patterns are 

hence key to consistently simulating the mobility of infectious individuals on the 

global scale, and thus providing ab initio estimates of the epidemic timeline in 

each country or urban area without assumptions on case importation.

The Global Epidemic and Mobility (GLEAM) framework produces realistic 

simulations of the global spread of infectious diseases with this in mind. It 

integrates (FIGURE 3.1) three data layers: 

CHAPTER 3
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MOBILITY FRAMEWORK
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Epidemic model Mobility data Population data

• An individual-based stochastic mathematical model of the infection 

dynamics 

• Real-world data on the mobility of this population 

• Real-world data on the global population  

The real-world population and mobility data discussed in the previous chap-

ter are used to determine when and where people will interact and potentially 

transmit the infection. In order to do that, GLEAM divides the world into a 

grid of small square cells. Satellite and census sources are used to calculate 

the population density in each of these cells, which are then clustered into 

subpopulations centered on their nearest transportation hub.

GLEAM simulates human mobility and disease spreading in a sequence 

of time steps (representing full days). Within each population cluster, the 

spread of the infection among individuals is governed by the characteristics 

of the disease and the containment and mitigation responses specified in 

the epidemic model. The disease is transmitted between population clus-

ters when people commute to work or school or travel longer distances on 

national and international flights. On high-performance computers, GLEAM 

executes millions of stochastic simulations, making it possible to generate for 

each population the statistical ensemble of possible epidemic evolutions and 

analytics for quantities such as newly generated cases, seeding events, time 

of arrival of the infection, and others.

BUILDING A SYNTHETIC WORLD
The GLEAM framework is based on a metapopulation approach in which the 

world is divided into geographical regions defining a subpopulation network 

where connections among subpopulations represent the individual fluxes due 

to the transportation and mobility infrastructure. The population layer is based 

on highly detailed data, with a granularity defined by a lattice of cells covering 

Figure 3.1 | GLEAM data layers

The three data layers integrated into 
the GLEAM computational modeling 
framework.

HUMAN MOBILITY PATTERNS 
ARE THE KEY TO CONSISTENTLY 
SIMULATING THE MOBILITY
OF INFECTIOUS INDIVIDUALS 
ON THE GLOBAL SCALE.
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the whole planet at a resolution of 15 x 15  arc minutes (approximately 25 x 25 

kilometers). In order to define the subpopulations that constitute the metapop-

ulation structure of the model, a Voronoi tessellation of the Earth’s surface is 

performed, defining census areas centered around the major transportation 

hubs obtained from the International Air Transport Association (IATA) and 

OAG database, as shown in FIGURE 3.2. By considering the distance between 

the cells and the transportation hubs, we assign each cell to a specific hub; 

this process generates over 3,200 subpopulations worldwide or more pre-

cisely census areas. In this tessellation, hubs generally correspond to major 

urban areas and airports. The cells belonging to a subpopulation allow us to 

determine the population of that census area. Other attributes, such as the 

age structure of the population, health infrastructures, etc., can be added 

according to available data.  

MOVING PEOPLE AROUND
The spatio temporal patterns of the disease spreading are associated with the 

mobility flows that couple different subpopulations. These flows constitute 

the mobility data layer that is represented as a network of connections among 

subpopulations. This identifies the number of individuals going from one sub-

population to the others. The mobility network is made by different kinds of 

mobility processes, from short-range commuting to intercontinental flights 

with time scale and traffic volumes that span several orders of magnitude. 

The airline system layer integrates air travel mobility, containing the list of 

worldwide origin-destination flows between airport pairs on a daily schedule. 

Figure 3.2 | GLEAM's tessellation 
of North America

The polygons define the census areas 
considered by the model. The circles 
represent the major transportation hub 
centers of each area. The colors of the 
census areas are proportional to the 
population of each cell.
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Individuals travel on airplanes according to an explicit dynamic that considers 

the probability for each individual in the population to travel on a specific route.  

For the short-range mobility, we rely on databases collected from the 

Offices of Statistics of 30  countries in five continents. The full dataset includes 

more than 80,000 administrative regions and over five million commuting 

flow connections between them. In order to overcome the differences in the 

spatial resolution of the commuting data across different countries, we define 

a worldwide homogeneous standard for GLEAM. We use the geographical 

census areas obtained from the Voronoi tessellation as the elementary units to 

define the centers of gravity for the process of commuting. This allows us to 

deal with similar units across the world with respect to mobility which emerge 

from the tessellation, and not country specific administrative boundaries. We 

map the different levels of commuting data into the geographical census areas. 

The mapped commuting flows can be seen as a second transportation network 

connecting subpopulations that are geographically close. Where data are not 

available, the short-range mobility layer can be generated synthetically by 

relying on the so-called gravity law1,2 and the more recent approach dubbed 

the radiation law, both calibrated on the real data available.3  The short-range 

mobility network can be overlaid on the airline system layer forming the mobility 

system of the GLEAM synthetic world (FIGURE 3.3).4 

1   Duygu balcan et al., “multiscale mobility networks and the spatial spreading of infectious diseases,” proceedings of the 
national academy of Sciences 106, 21484–21489 (2009).

2  cécile Viboud et al., “Synchrony, waves, and spatial hierarchies in the spread of influenza,” Science 312, 447–451 (2006).
3  filippo Simini et al., “a  universal  model  for  mobility  and migration patterns,” nature 484, 96–100 (2012).
4  Duygu balcan et al., “modeling the spatial spread of infectious diseases: the global epidemic and mobility computational 

model,” Journal of computational Science 1, 132–145 (2010).

Figure 3.3 | Long- and short-range 
mobility implementation in GLEAM

Highlighting some of the air transpor-
tation connections (orange) and the 
short-range mobility network (blue) for 
Madrid, Spain.
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The short-range commuting mobility of individuals is simulated by an 

effective approach that defines mixing subpopulations and which identifies 

the number of individuals Nij(t ) of the subpopulation i effectively present in 

subpopulation j at time t (see INFOBOX 3.1). This methodology assumes the 

subpopulation i  as having an effective number of individuals Nij<< Nii in contact 

with the individuals of the neighboring subpopulation j in a quasi-stationary 

Figure 3.1.1 | Illustration of commuting and subdivision 
of population
At any time each subpopulation is occupied by its residents 
plus visitors from its neighbors. For instance, the population 
in subpopulation i is divided between individuals who reside 
and are present in the subpopulation (Nii ) and those who are 
residents in subpopulation j but present in subpopulation i (Nji). 
Different classes of people move between connected subpopu-
lations along the edges at the rates shown. 

Adapted from D. Balcan and A. Vespignani, "Invasion threshold in structured 
populations with recurrent mobility patterns." J. Theor. Biol 293 (2012)

In the case of commuting flows, we assume that 
individuals in the subpopulation i will visit anyone 
of the connected subpopulations with a per capita 
diffusion rate σi . As we aim at modeling commuting 
processes in which individuals have a memory of 
their location of origin, displaced individuals return 
to their original subpopulation with rate τ .

In order to model the commuting flows in the 
subpopulation network, we define mixing subpop-
ulations. At any moment in time, each member of 
subpopulation i  is either in their subpopulation of resi-
dence or outside and visiting one of the neighboring 
subpopulations j. By using the approach developed in 
Sattenspiel and Dietz (1995)1 and Keeling and Rohani 
(2002)2, we may group the members of i according 
to the location in which they are actually present at 
a given time t, Nii(t ) and Nij(t ) with j є ν (i ) where ν (i ) 
are the subpopulations connected to i  (FIGURE 3.1.1). 
The rate equations for the population sizes of different 
subgroups can be readily written by explicitly taking 
into account the mobility rates along the edges of 
the subpopulation network. This system of rate equa-
tions has a characteristic relaxation time that can 
be obtained by solving the appropriate differential 

1 L. Sattenspiel and K. Dietz, “A structured epidemic model 
incorporating geographic mobility among regions,” Mathematical 
Biosciences 128, 71–91 (1995).

2 Matt J Keeling and Pejman Rohani, “Estimating spatial coupling 
in epidemiological systems: a mechanistic approach,” Ecology 
Letters 5, 20–29 (2002).

equations. In particular, it is possible to show under 
the general assumption of σi << τi that the relaxation 
characteristic time is τi

–1 and that the mixing subpop-
ulations read as: 

   

This implies that in the regime σi << τi , Ni (t )  
represent a small perturbation to the overall subpopu-
lation of size Nj . These expressions are used to obtain 
the effective force of infection taking into account the 
interactions generated by the commuting flows.
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state, reached whenever the time scale of the epidemic spreading is larger 

than the commuting rate.

THE DISEASE DYNAMIC
Superimposed on the worldwide population and mobility layers is the epidemic 

model that defines the disease and population dynamics. Individuals move 

around and transmit the infection via the interactions with other people. The 

infection dynamics takes place within each subpopulation and assumes the 

classic compartmentalization scheme for the characterization of the disease 

(FIGURE 3.4). Each individual fits, at any given point in time, within a certain 

compartment that corresponds to a particular disease-related state (being, 

e.g., susceptible, symptomatic, or vaccinated). These compartments are con-

nected by transitions that define how individuals may pass from one state 

to another (e.g., from susceptible to latent when being infected), while the 

associated parameters determine the likelihood that such transitions take place. 

GLEAM uses algorithms mathematically defined through individual-based 

stochastic processes to calculate the proportion of the population within each 

compartment for each subpopulation and how these proportions change 

over time as individuals transition from one compartment to the next (INFO-

BOX 3.2). The progression of the disease is then simulated at the individual 

level. GLEAM can also include the age structure of individuals in defining the 

transitions.  It is clear that no model fits all diseases, and GLEAM needs the 

detailed process describing the evolution of the illness within each individual 

and the transmission process. In general, this is specified by the so-called 

natural history of the disease that maps the time-periods of the disease 

Figure 3.4 | Summary of basic  
definitions of the stages of a 
disease 

As a function of time, the disease’s 
evolution in two patients. Individuals 
who have not been in contact with 
the pathogen are generally labeled as 
susceptible.  The pre infectious period, 
also called the latent period, defines 
the time from infection to when the 
host is on her turn able to transmit 
the infection. The incubation period 
is the time from infection to the onset 
of clinical symptoms. The infectious 
period is the time period in which 
the host can transmit the infection to 
other hosts. The clinical disease time 
refers to the duration of the clinical 
symptoms. It is important to stress 
that the time of each period can 
change in the case of pharmaceutical 
interventions specific to the disease 
considered. Some diseases may also 
require more detailed classification of 
the states characterizing the natural 
history of the disease.
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Although the realistic modeling of infectious 
diseases generally implements much more compli-
cated compartmental structures, let’s use as an 
example the basic compartmental structure where 
individuals can only ever be in one of three states: 
susceptible, infectious, and recovered. This simple 
three-state compartmentalization defines the clas-
sic susceptible-infected-recovered (SIR) model. In 
this case we have only two possible transitions. The 
first, denoted S → I, is when a susceptible individ-
ual interacts with an infectious one and becomes 
infected. The second one, denoted I  → R, occurs 
when the infectious individual recovers from the 
disease and is assumed to have acquired perma-
nent immunity from the disease. The two processes 
completely determine the epidemic evolution. The I 
→ R transition is spontaneous and occurs after the 
individual has spent a certain time fighting the 
disease or taking a specific medical treatment; in 
other words the transition does not depend on any 
interaction with the other individuals in the popula-
tion. The S → I transition instead occurs only 
because of the contact/interaction of the suscepti-
ble individual with an infectious individual. In this 
case the interaction dynamics between people is a 
specific feature of the transition and has to be taken 
into account. The conceptual abstraction of the SIR 
compartmental model is well represented by the 
flow diagram of FIGURE 3.2.1 in which the different 
compartment transitions are schematized through 
arrows that indicate the possible change of state of 
the individuals. 

The I → R transition is obviously the simplest 
one to model. For many type of diseases, the 
amount of time spent in the infectious class is 
distributed around a well-defined mean value. For 
the sake of realism, the probability that one person 
will move from the I class to the R class depends on 

how much time he/she has spent in the I class. The 
distribution of the “infectious period” and the tran-
sition probability can generally be estimated from 
clinical data; however, from a simplistic modeling 
assumption, the probability of transition is assumed 
constant. In this way it is possible to define a tran-
sition probability per unitary timestep μ, called the 
recovery probability. Since we are dealing with a 
probability per unit time, the time an individual will 
spend on average in the infectious compartment, 
the mean infectious period, is equal to μ –1.  

The definition of the transition probability in the 
case of the S → I transitions is more complicated 
than the recovery transition. The probability that 
a susceptible individual moves into the infectious 
compartment depends on the number of contacts 
with infectious people and the probability that in each 
contact with an infectious individual the disease 
is transmitted to the susceptible. The number of 
contacts with infectious individuals depends in turn 
on the per capita number of contacts per unit time 
with other individuals and the total number of infec-
tious people present in the population. In the GLEAM 
framework, the transmission dynamics can be simu-
lated at different levels of detail (see FIGURE 3.2.2).

Figure 3.2.1 | Flow diagram of the SIR model

The model allows only the S → I and the I → R  transitions. The 
transitions are denoted by arrows going from one compartment 
to the other. The S → I  transition occurs only in the presence 
of a contact/interaction with infectious individuals. For this 
reason the transition arrow has a line callout to the infectious 
compartment.  
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        Figure 3.2.2 | Multiple schemes for the stochastic intra- 
population contagion dynamic 

The simplest approaches consider chain binomial 
processes in which the discrete individuals are indistin-
guishable and characterized only by their compartmental 
state. These models can be made more realistic by 
including age structure or other features of the individu-
als. In this case the transmission of the disease is 
described by parameters that depend on those features. 
An example is provided by models implementing  specific 
contact matrices that characterize the number of 
contacts among individuals in different age brackets.

At the finer level, synthetic population constructions 
are even more refined and consider a classification of 
location such as households, schools, offices, etc.  The 
movements and time spent in each location can be 
used to generate individual-location bipartite networks 
whose unipartite projection defines the individual level, 
synthetic interaction network that governs the epidemic 
spreading. Also in this case, although the model 

underlying the computational approach is a network 
model, each individual is annotated with the residence 
place, age, as well as many other possible demographic 
information that can be exploited in the analysis of the 
epidemic outbreak. Detailed synthetic populations thus 
reconstruct a statistically equivalent  picture of the 
actual population down to the level of the granularity of 
the data available.

For the sake of simplicity, let us consider here the 
example of a homogenous mixing approximation which 
assumes that individuals randomly interact among them. 
According to this minimal framework, the larger the 
number of sick and infectious people among one indi-
vidual’s contacts, the higher the probability of infection 
transmission. This readily translates in the definition of 
the force of infection λ, also called risk, that expresses 
the probability per unit time at which susceptible indi-
viduals may contract the infection. In the limit of small 
risk, it is possible to derive the explicit form λ = βIt /N. 
Here β defines the transmissibility, average number of 
transmissions per unit time, that depends on the specific 
disease as well as the contact pattern of the population, 
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It the total number of infectious individuals at time t ; 
It /N is therefore the density of infected individuals in 
the population. This form of the force of infection is 
called the mass action law and is used in many other 
reaction-diffusion problems in chemistry and phys-
ics. It is important to note that the force of infection is 
said to be frequency dependent as it assumes that the 
number of contacts is independent of the population 
size. Therefore, the force of infection depends only on 
the density of infectious individuals, and decreases for 
larger populations all the other factors being equal. This 
is indeed an assumption that fits with our intuition as 
the probability of getting infected by one single infec-
tious individual in a city like Paris with about two million 
residents is necessarily much lower than the probabil-
ity to be infected by the same infectious individual in 
Bloomington, Indiana, a campus town with only 80,000 
residents.

In order to translate the above formal relation 
into an explicit equation, we can define the variables 
St , It and Rt denoting the number of individuals in the 
susceptible, infectious, and recovered compartment at 
time t, respectively. Given the assumption that μ and 
β are constant, we can easily define the associated 
stochastic processes that relate the stochastic vari-
ables at time t with the variables at time t +1 in the form 
of a simple binomial model of transmission for discrete 
contacts and discrete time. Each susceptible individual 
has a probability λ t= βI t /N to contract the disease and 
transit to the infectious state.

As we assume to have St independent events 
occurring with the same probability, the number of 
new infected individuals I+ generated at time t +1 is a 
random variable that will follow the binomial distribu-
tion I+~Bin (St, λt). The binomial distribution provides the 
probability that among the St independent trials with 
probability λt , we have y positive events at time t +1.  
Analogously, the number of new recovered individu-
als at time t +1 is a random variable that will follow a 
binomial distribution R+~Bin (I t , μ), where the number of 
independent trials is given by the number of infectious 
individuals It that might recover and the probability of 

recovery in a timestep is given by the recovery proba-
bility μ. If we consider  a specific value of the stochastic 
variables St , It and Rt, the stochastic equations regulat-
ing the behavior of the epidemic can be written as:

st+1 = st – Bin (st, λt)

it+1 = it + Bin (st, λt ) – Bin (it, μ)

rt+1 = rt + Bin (it, μ),

where Bin (st, λt) and Bin (it, μ) are two random variables 
distributed according to the respective binomial distri-
bution. It is worth remarking here that the unitary time 
step defines an actual time scale ∆t and that the tran-
sition probability must be defined as a function of this 
time scale.

In the SIR model it is possible to readily calculate 

the basic reproduction number explicitly as R0 = β/μ. It 

is given simply by the transmissibility times the average 

duration of the infectiousness of the single individual; 

this provides the average secondary infections per 

infectious individual.
In such a computational approach, we deal with 

stochastic systems, and therefore we need to generate 
random variables according to the specified probability 
distributions defined in the model. In a stochastic simu-
lation, each sequence of random values is generated 
through a random number generator. Each different 
random input therefore provides a single stochas-
tic instance of the system’s behavior.  In the case of 
epidemic models, each stochastic realization will 
represent only one of the many possible epidemic 
outcomes that the same model with the same initial 
conditions and parameters can generate. A careful 
analysis of the quality of the random number generator 
used is advisable in all intensive large-scale computa-
tional applications.

The simple example discussed here has to be 
generalized to the more complicated compartmental 
structures used by GLEAM for the realistic modeling of 
infectious diseases. In many cases this implies the use 
of more advanced mathematical constructions and the 
use of multinomial stochastic processes.
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progression. In INFOBOX 3.3, we show the basic compartmental structure of 

some of the diseases we will consider. It is important to note that it is possible 

to define more compartmental states by also considering the implementation 

of pharmaceutical and non-pharmaceutical interventions such as hospitaliza-

tion, vaccination, quarantine, isolation, and so on. In addition, in GLEAM it is 

important to associate with each compartment the likelihood that the individual 

will travel long distance, commute, etc. In many cases, clinical symptoms are 

associated with reduced or no mobility of the sick individual. This is also true 

for compartments signaling the isolation or quarantine of individuals. Each 

compartment, therefore, carries additional information of the mobility and the 

potential interaction of the individual. 

The disease progression is mostly defined by two quantities generally 

used to quantify the transmissibility potential and spreading time scale of the 

disease. The first quantity is the basic reproduction number, R0 , that is the 

average number of secondary cases produced by a primary case in a fully 

susceptible population. If each infectious individual does not generate a number 

of infectious individuals larger or equal to one, the number of infectious indi-

viduals will generally decrease, and the transmission chain will die out before 

an epidemic can take place. However, if each infectious individual generates 

more than one infectious individual in the transmission process, the number 

of infectious individuals will continue to increase in time. Intuitively, the larger 

the R0, the more transmissible the disease is and the faster the number of 

cases will grow (FIGURE 3.5). Together with the basic reproduction number, 

the generation time Gt of the disease, defined as the time occurring from the 

infection of the host to the end of the infectious period, is also an important 

quantity that defines the time scale of the disease. For the same R0 , a smaller 

generation time indicates a much faster progression of the disease, as the 

Figure 3.5 | Illustration of the chain 
of transmissions as a branching 
process

Each infectious individual generates a 
number of secondary cases according 
to the model transmission rate and 
the available susceptible individuals. 
The branching ratio of this process, 
defined as the average number of 
secondary generations in a fully 
susceptible population, defines the 
basic reproduction number or ratio, 
R0. One of the main targets of public 
health intervention is the reduction of 
the transmissibility, for instance, by 
vaccinating a fraction of individuals, 
resulting in an effective reproduction 
number Reff smaller than one. 

Table 3.1 | Reproduction number

Ranges for the reproduction number of 
some infectious diseases.

SARS
HIV
Smallpox
Pandemic In�uenza
Ebola

2 – 3
2 – 5

5 – 10
1.5 – 3.5
1.5 – 3.5

Disease Type R0 Value



READ 
CONFIGURATION

SETTINGS

FLIGHT

POPULATION

COMMUTING

SET START DATE

WRITE FINAL 
STATISTICS

FLIGHT TRAVEL

INFECTION

AGGREGATE

WRITE TIMESTEP 
OUTPUT

INCREMENT  
DATE

EPIDEMIC MODEL

 YES

 NO

READ DATA

 FINAL 
 DATE?

 START

 STOP

Data moDel integration:  the global epiDemic anD mobility framework 39 

THE BASIC REPRODUCTION 
NUMBER, R

0
, IS THE AVERAGE 

NUMBER OF SECONDARY CASES 
PRODUCED BY A PRIMARY 
CASE IN A FULLY SUSCEPTIBLE 
POPULATION.

same number of secondary cases are generated in a shorter time window. 

In general, a measure of the generation time is clinically offered by the serial 

interval: the time from the onset of a primary case to the onset of the secondary 

case. R0 is a function of the parameters describing the natural history of the 

disease and can be calculated explicitly in different models (INFOBOX 3.2). Often, 

the level of threat of an infectious disease is measured as a function of the R0.

SYNTHETIC EPIDEMICS
GLEAM defines a synthetic world in which we can simulate with the com-

puter the unfolding of epidemics and pandemics. Each simulated time step 

represents a full day. The model needs the definition of the initial conditions 

that specify the number and location of individuals capable of transmitting 

the disease. At the start of the time step, we use the flight network to move 

travelers to their destination.

As a consequence, the arrival time for the infection is the day at which the 

first infected traveler arrives, and this seed individual is considered to have the 

chance of infecting others. The probability of traveling changes from day to 

day and can be generalized in order to consider the effects of location specific 

Figure 3.6 | GLEAM engine flow 
chart

The full procedure used by the 
GLEAM simulation engine. The left 
column represents input databases. 
The program flow occurs along the 
center.
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GLEAM labels individuals in each population according 
to the compartment describing the state of the disease 
and the possibility to travel, commute, etc. 

Influenza
A susceptible individual in contact with a symptom-
atic or asymptomatic infectious person contracts the 
infection at rate β or rβ β, respectively, and enters the 
latent compartment where he is infected but not yet 
infectious.

At the end of the latency period ε–1, each latent indi-
vidual becomes infectious, entering the symptomatic 
compartments with probability 1–pa or becoming asymp-
tomatic with probability pa . The symptomatic cases are 
further divided between those who are allowed to travel 
(with probability pt ) and those who would stop traveling 
when ill (with probability 1–pt). Infectious individuals 
recover permanently with rate μ. 

Influenza with antiviral pharmaceutical interventions
A modified Susceptible-Latent-Infectious-Recovered 
model is considered to take into account the use of anti-
viral drugs as a pharmaceutical measure. In particular, 
infectious individuals are subdivided into: asymptomatic 
(Infectiousa), symptomatic individuals who travel while 
ill (Infectiousst), symptomatic individuals who restrict 
themselves from travel while ill (Infectioussnt ), and symp-
tomatic individuals who undergo the antiviral treatment 
(InfectiousAVT). A susceptible individual interacting 
with an infectious person may contract the illness with 
rate β and enter the latent compartment where he/she 
is infected but not yet infectious. The infection rate is 
rescaled by a factor ra in case of asymptomatic infection 
and by a factor rAVT in case of a treated infection. At the 
end of the latency period, of average duration equal to 
ε-1, each latent individual becomes infectious, showing 
symptoms with probability 1–pa, and asymptomatic with 
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probability pa. Change in traveling behavior after the onset 
of symptoms is modeled by pt , which is the probability 
that individuals would continue traveling when ill. Infec-
tious individuals recover permanently after an average 
infectious period μ–1. We assume the antiviral treatment 
regimen is administered with pAVT to the symptomatic 
infectious individuals within 1 day from the onset of symp-
toms, reducing the infectiousness and shortening the 

infectious period by one day.

SARS-like viruses and their non-pharmaceutical 
containment
The population of each city is classified into seven 
different compartments, namely, susceptible, latent, 
infectious, hospitalized who either recover or die, dead, 
and recovered individuals. We assume that hospi-
talized, as well as infectious individuals are able to 
transmit the infection, given the large percentage of 
the cases that were seen among healthcare workers. 
The actual efficiency of hospital isolation procedures 
is modeled through a reduction of the transmission 
rate β by a factor rβ = 20%, as estimated for the early 
stage of the epidemic in Hong Kong. The infectiousness 
of patients in the hospitalized compartments HR and 

HD are assumed to be equal (although this assump-
tion can easily be changed in the model). Susceptible 
individuals exposed to SARS enter the latent class. 
Latents represent infected individuals who are not yet 
contagious and are assumed to be asymptomatic, as 
suggested by results based on epidemiological, clinical, 
and diagnostic data in Canada. They become infectious 
after an average time ε –1 (mean latency period). Indi-
viduals are classified as infectious during an average 
time equal to μ –1, from the onset of clinical symptoms 
to their admission to the hospital where they eventu-
ally die or recover. Patients admitted to the hospital are 
not allowed to travel. The average periods spent in the 
hospital from admission to death or recovery are equal 
to μD

–1 and μR
–1, respectively. The average death rate is 

denoted by d.

Viral hemorrhagic fever compartmental model
Legrand et al .1 introduced a compartmental model 
for VHF virus where the individuals are classified in 
the following way: susceptible individuals S, who can 
acquire the disease after contact with infectious indi-
viduals,   latent individuals L who are infected but do not 
transmit the disease and are asymptomatic, infectious 
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individuals I who can transmit the disease and are 
symptomatic, hospitalized infectious individuals 
H, dead individuals F that can infect through the 
burial ceremonies, and removed individuals R. 
The most distinctive feature of this model is that 
dead individuals can still transmit the disease.

Susceptible individuals, after contact with an 
infectious individual (I, H or F), enter the latent class 
at a rate βI , βH , or βF. At the end of the latency 
period α –1, each individual becomes infectious. 
Infectious individuals then can transition to the 
hospitalized, funeral, or removed compartments 

according to different parameters. Similarly, from 
the compartment hospitalized and funeral, individu-
als can enter the removed compartment. The mean 
duration from onset of symptoms to hospitalization 
is γh

–1, γdh
–1 is the mean duration from hospitalization 

to death, and γi
–1 denotes the mean duration of the 

infectious period for survivors. The mean duration 
from hospitalization to end of infectiousness for 
survivors is γih

–1, and γf
–1 is the mean duration from 

death to burial.
θ1 is computed so that θ% of infectious cases 

are hospitalized. δ1 and δ2 are defined such that 
the overall case-fatality ratio is δ.

1 Judith Legrand, Rebecca Freeman Grais, Pierre-Yves Boëlle, Alain-Jacques Valleron, and Antoine Flahault, “Understanding the  
  dynamics of ebola epidemics,” Epidemiology & Infection 135, 610–621 (2007).

airline traffic reductions. The short-range mobility and the infection dynamics 

are modeled together by defining the probability of transition and risk of infec-

tion acting on each individual in each subpopulation. This process is repeated 

for every simulated day, keeping track of all the individuals and their traveling 

patterns as shown in the pseudo-code for the GLEAM algorithm (FIGURE 3.6). 

GLEAM also allows the introduction of seasonal variations in the transmis-

sibility of the disease, such as in the case of influenza. Seasonality effects are 

still an open problem in the transmission of ILI. In order to include the effect 
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of seasonality on the observed patterns of ILI, a standard empirical approach 

can be used in which seasonality is modeled by a forcing that reduces the 

basic reproduction number by a factor ranging from 0.1 to 1 (no reduction). 

This forcing is described by a sinusoidal function over a 12-month period that 

reaches its peak during winter time and its minimum during summer time in 

each hemisphere, with the two hemispheres at opposite phases. The mini-

mum rescaling  of  αmin of the reproduction number is a free parameter to be 

estimated from data. For scenario purposes it is possible to consider a mild 

seasonality and a strong seasonality scenario, with αmin ~0.5 and αmin ~0.1, 

respectively.5

Given the population and mobility data, infection dynamics parameters, and 

initial conditions, GLEAM performs the simulation of stochastic realizations 

of the worldwide unfolding of the epidemic. From these in silico epidemics, 

a variety of information can be gathered, such as the prevalence, morbidity, 

number of secondary cases, number of imported cases, hospitalized patients, 

amounts of drugs used, and other quantities for each subpopulation with a 

time resolution of 1 day. In the next chapter, we will see the results of the 

numerical simulations and why and how they can be useful to our analysis 

and understanding of infectious disease spreading.

5  ben S. cooper et al., "Delaying the international Spread of pandemic influenza," ploS med 3, e212 (2006). 

 

IF EACH INFECTIOUS INDIVIDUAL 
GENERATES MORE THAN ONE 
INFECTIOUS INDIVIDUAL, 
THE NUMBER OF INFECTIOUS 
INDIVIDUALS WILL INCREASE IN 
TIME. 
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