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Abstract- This paper deals with a method for the parameter 
identification of an improved dynamic model of a photovoltaic 
(PV) source, which encompasses a capacitor and an inductor. 
The method is based on piecewise-linear (PWL) circuit 
approximation and step load responses. Considering the PV 
I-V characteristic as a PWL function, if a transient occurs in a 
linear region, the PV source can be  approximated according to 
Thévenin’s theorem. The cases referred to either capacitive or 
inductive dominant time constant are explained. The 
identification of the circuit parameters by least squares 
regression (LSR) applied to experimental data is discussed and 
finally a case study is presented. 

Keywords- Photovoltaic source; dynamic modeling; statistics; 
least squares regression. 

I. INTRODUCTION 

An accurate mathematical model of the PV source 
represents a useful tool for the analysis of power converters 
in PV plants, for the study of maximum power point 
tracking (MPPT) algorithms and, above all, for simulating 
the PV system using circuit simulators or real time 
emulators. Several papers dealing with static PV modeling 
have been published. In general, diode-based nonlinear 
models are used, mostly a double-diode configuration [1-2] 
or a single-diode model [3-7]. 

However, either for theoretical investigations or for 
emulating purposes, a dynamic model is often necessary. 
because the connected load cannot be considered constant. 

In order to model the electrical dynamics of a PV source, 
a variable or fixed capacitor is usually added to the static 
model [8-9]. However, the resulting first order circuit does 
not allow to reproduce second order behaviors caused by the 
interaction of the junction capacitance with the parasitic 
inductance, mainly introduced by cables and metallic 
connections. Such typical behaviors are resonances on DC 
cables, interaction with inverter switching frequency 
harmonics and underdamped currents due to load variation. 

Hence, besides the capacitor, an inductor has to be added 
to the components of any static PV model (single-diode, 
double-diode or others), to improve the dynamic model of 
the PV source. As an example, fig. 1 shows the dynamic 
model obtained starting from the single-diode model. 

The proposed dynamic parameter identification is based 
on the consideration that the PV I-V characteristic can be 
considered as a piecewise linear (PWL) function [10-11]. As 
a consequence, if a transient involving a linear part of the 

characteristic occurs, the source can be modeled as a voltage 
generator with a series resistance, according to Thévenin’s 
theorem. A suitable choice of the load resistor ensures 
noninteracting capacitor and inductor time constants, 
allowing the parameters C and L to be identified. The 
situation τC >10·τL represents a reduced number of PV 
modules with short cables. On the contrary, a large number 
of PV modules with long cables implies τL >10·τC. Both 
scenarios represent typical cases. 

The paper is organized as follows: after discussing 
steady-state and transient analyses, a method for the 
identification of the circuit parameters is explained; finally a 
case study is presented and conclusions are given. 

 
Fig. 1. Improved dynamic model of the PV source based on 
single-diode static model 
 

II. STEADY-STATE ANALYSIS 

The equivalent circuit of a PV source in a linear piece of 
its I-V characteristic is drawn in fig. 2. It can be noted that, 
compared to the single-diode model, the current source with 
parallel diode and the shunt resistor have been replaced with 
a voltage generator Eth with a series resistance Rth. This 
linear circuit is different from the mere series or parallel 
RLC circuit, so a specific analysis is necessary. 

The approach proposed in this paper consists in the 
application of  a step load variation to  the considered circuit 

 
Fig. 2. The considered RLC circuit which is equivalent to a PV 
source operating in a linear zone. 
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in steady-state; the old value is indicated by RL,old, while 
then new one is simply denoted by RL.  In general, the time 
instants immediately before and after the load variation are 
indicated with t=0- and t=0+, respectively; the time at which 
all transients have expired is denoted with the infinity 
symbol. 
In order to determine the response of this circuit it is worth 
noting that at t=0- it is: 
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     (1a,b,c) 

 
At t=0+, due to the presence of the inductor and the 
capacitor, no variation occurs, so it is: 
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Instead, at the steady-state following the load variation it is: 
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III. TRANSIENT ANALYSIS WITH τC >10·τL 

When the capacitive effect is dominant, the time constant 
τC tied to the capacitance is much greater than the time 
constant τL tied to the inductance. In this case, after the step 
load variation, firstly the inductor drives the transient, 
remaining the capacitor at a nearly constant voltage. Then, 
when the inductor’s energy remains constant, it behaves as a 
short circuit and the capacitor begins charging or 
discharging. These two phases, indicated as inductive and 
capacitive transient respectively, can be analysed separately 
and the related quantities will be denoted with subscripts ind 
and cap. 

A typical response of the circuit in fig. 2 with τC >10·τL is 
shown in fig.s 3a-3b for e.g. RL<RL,old, together with the 
capacitive and inductive transients. 

As the figures show, the initial conditions of the inductive 
transient equal the corresponding conditions of the circuit in 
fig. 2. Instead, the steady-state conditions of the inductive 
transient equal the initial conditions of the capacitive 
transient. Furthermore, the steady-state conditions of the 
capacitive transient equal the corresponding conditions of 
the circuit in fig. 2. 

The analysis of the inductive and capacitive transients 
with τC >10·τL is presented in Appendix A. For the sake of 
simplicity, only the main results are recalled here. 
As for the inductive transient, its time constant is given by: 

)( sL
L RR

L
+=τ                                   (4) 

 
and its steady-state values are expressed by: 
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Then, current Iind is given by: 
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Plotting (6) produces the related green curve of fig. 3b, 
which is a close approximation of the response of the circuit 
in fig. 2 before the effect of the capacitor starts to be 
significant. 

 

0 0.5 1 1.5 2 2.5 3
x 10-5

70

75

80

85

90

95

100

V
(t)

,V
ca

p(t)
, V

in
d(t)

 (V
)

t (s)

V
old

V
0

V∞

 
Fig. 3a. Voltage V (blue curve), voltage Vcap (red) and voltage Vind 
(green) for τC >10·τL 
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Fig. 3b. Current I (blue curve), current Icap (red) and current Iind 
(green) for τC >10·τL 
 
As for the capacitive transient, its time constant is given by: 

CReqC ⋅=τ    (7) 
with: 

sLth
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eq RRR
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Then, current Icap is expressed by: 
[ ]
[ ] ∞

−
∞

−+

+⋅−=

=∞+⋅∞−=

IeII

IeIItI
C

C

t

cap
t

capcapcap

τ

τ

0           

)()()0()(
   (9) 

 
Plotting (9) produces the related red curve of fig. 3b, which 
is a close approximation of the response of the circuit in fig. 
2 after that the effect of the inductor has expired. 
Now it is possible to observe that, just as for any RLC 
circuit, if the chosen time origin equals the instant the step 
load variation is applied, the load current of the circuit in 
fig. 2 is given by the following equation: 

∞
−− +⋅+⋅−= IeAeAtI tt 21
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It is possible to rearrange (10) in the following form: 
KtItItI −+= )()()( 21                             (11) 

 
where: 









+=
+⋅=

+−⋅=

∞
−

−

old

t
old

t

IAK
IeAtI

IeAtI

1

22

11

2

1

)(
)1()(

τ

τ

               (12a,b,c) 

 
Comparing (12a),(12b) with (6) and (9) respectively, it is 

possible to deduce that: 
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This confirms that when the capacitive effect is dominant, 

the circuit’s response can be obtained summing the 
inductive and capacitive transients, which can be analysed 
separately, and then shifting down the obtained waveform 
by K according to (11). Therefore a transient with τC >10·τL 
can be exploited to determine the values of C and L. 

 

IV. TRANSIENT ANALYSIS WITH  τL >10·τC 

In this case, after the step load variation, firstly the 
capacitor drives the transient, remaining nearly constant the 
inductor current. Then, when the capacitor’s energy remains 
constant, it behaves as an open circuit and the inductor 
begins charging or discharging. 

Now the initial conditions of the capacitive transient 
equal the corresponding conditions of the circuit in fig. 2; 
instead, the steady-state conditions of the capacitive 
transient equal the initial conditions of the inductive 
transient. 

Furthermore, the steady-state conditions of the inductive 
transient equal the corresponding conditions of the circuit in 
fig. 2. 

The analysis of the capacitive and inductive transients 
with τL >10·τC is presented in Appendix B. For the sake of 
simplicity, only the main results are recalled here. 
Because of the specific initial conditions, the capacitive 
transient collapses into one point so the response of the real 
circuit shown in fig. 2 is identical to the inductive transient: 
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This means that the analysis of a transient with τL >10·τC 

cannot be exploited to determine the value of C; it allows to 
determine only the value of L. 

 

V. PARAMETER IDENTIFICATION 

The equations presented in section III allow the 
identification of the circuit parameters through a least 
squares regression (LSR) applied to experimental data 
obtained during a reference test, during which the load 
current waveform is acquired while applying a step 
variation of a purely resistive load. 

The reference test must be performed with a load 
resistance such that τC >10·τL, so that an overshoot appears 
in the waveform. This is possible since both time constants 
depend on RL, which can be chosen suitably. 

 

A. Transition from RL,old≠∞ to RL≠RL,old 
From the acquired waveform it is possible to read the 

following quantities: Vold, Iold, V∞ and I∞. In particular, if 
RL,old=0, it is Vold=0 and Iold equals the short circuit current, 
so the equations which follow can be simplified. 

As a preliminar step, in order to determine Eth it is 
possible to combine (1a) and (3a), obtaining: 
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Looking at the current’s waveform I(t), if the peak time is 
referred to as t* and ∆T1, ∆T2  correspond to suitable time 
intervals, it is possible to observe that: 
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where ε is a suitable nonzero quantity. 
In order to identify the capacitance value it is possible to 
combine (9) and (13b) obtaining: 
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and, thus, to apply a LSR to the quantity: 
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The opposite of the slope m1 will give the inverse of the 
capacitive time constant τC. The quantity 1qe  equals A2 and 
allows to determine I0 according to (13b): 

∞+= IeI q1
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Then, combining (1c) and (5a) it is: 
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Now it is possible to determine Req according to (8). 
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Finally, the capacitance is given by: 
 

eqC RC τ=                                        (23) 
 
Similarly, in order to identify the inductance value, it is 
possible to combine (6) and (13a) obtaining: 
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and, thus, to apply a LSR to the quantity: 
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The opposite of the slope m2 will give the inverse of the 
inductive time constant τL, while the inductance will be 
given by: 

)( sLL RRL +⋅=τ                                 (26) 
 
Finally, from (13a) it is old

q
old IeIAI +=+= 2

10  so a new 
value of I0 is obtained, which can be used to verify the 
goodness of the whole procedure, since it should equal the 
value of I0 calculated with (20). 
 

B. Transition from RL,old=∞ to RL≠RL,old 
When ∞=oldLR ,  some specific considerations apply. 

Firstly, it is Vold=VC,old=Eth and Iold=0. This implies that (16) 
is not needed. 

Equation (21) reduces to an undetermined form. In this 
case it is possible to find an expression for Rs from (5a): 
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After the identification of the inductance value, the new 

value of I0 can be calculated simply as 2

10
qeAI == . 

 

VI. EXAMPLE OF PARAMETER IDENTIFICATION 

This section provides an example of parameter 
identification applied to a PV generator with the following 
reference values: 

 
Voc=19.58 V, Isc=961.7 mA, Vmp=15 V, Imp=894.8 mA  (28) 

 
The I-V characteristic of the PV array is shown in fig. 4 

and it can be approximated with a 4-segment piecewise-
linear characteristic. In particular, the so-called nearly 
constant current (I) and nearly constant voltage (IV) regions 
can be considered. 

Then, a reference test can be performed with a load 
resistor value such that the operating point belongs to either 
of the afore mentioned regions. In these scenarios, the 
behaviour of the PV array can be assumed to be linear and 
described by the circuit of fig. 2. 
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Fig. 4. PV characteristic (black) and its 4-segment PWL 
approximation (red) 
 

A. Transient on the nearly constant voltage region 
This reference test allows to determine the following 

parameters: C, L and Rs while Eth is taken from the I-V 
characteristic. 

A transient is considered from the open circuit point 
(RL,old=∞) to the midpoint of the curvilinear arc MPP-VOC 
(RL=30 Ω). The related current waveform has been acquired 
and plotted in fig. 5 (blue curve). For the sake of clarity, fig. 
5 shows only a portion of the curve; the waveform actually 
starts at I(0)=Iold=0, ending at I(∞)=I∞=579.3 mA. 
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Fig. 5. Load current (blue, dotted), curves Icap and Iind (black, 
dashed) and their sum (red, solid) shifted by K. 
 

Then, the PV source can be described by the set of 
components (Eth=Voc; Rth=Rs0-Rs), where –1/Rs0 is the slope 
of the nearly constant region [12]. However, in order to 
apply the procedure described in section V.B, only the 
knowledge of the Thévenin generator is required: 

 
Eth=Voc=19.58 V   (29) 

 
The peak time (t*=1.1·10-6 s) and the steady-state load 

current (I∞=579.3 mA) have been read on the graph of 
fig. 5. Then, after plotting (19) extended to the whole time 
interval (fig. 6), the chosen interval for the first LSR has 
been specified by means of the following parameters: 
ε=4·10-7 s, ∆T2 =2·10-6 s. The regression line y=q1+m1·t has 
been superimposed. 

https://doi.org/10.24084/repqj10.751 1533 RE&PQJ, Vol.1, No.10, April 2012



 

 

The opposite of the inverse of the slope has given the 
following capacitive time constant:  

τC=1.929 µs       (30) 
 

Subsequent calculations, allowed the following quantities to 
be determined:  

I0=591 mA        (31) 
Rs=3.15 Ω, Rth=0.65 Ω, Req=0.64 Ω          (32a,b,c) 

 
Then, the capacitance value has been determined according 
to (23): 

C=3.00 µF       (33) 
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Fig. 6. Plot of ln[I(t)-I∞] vs. time, with the interpolating line 
superimposed. 
 

In order to perform the second LSR, equation (25) 
extended to the whole time interval has been plotted (fig. 7) 
and the parameter ∆T1=5·10-7 s has been chosen. The 
regression line y=q2+m2·t has been superimposed. 

0 1 2 3 4 5 6
x 10-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

ln
[I 0-I(

t)]
 (A

)

t (s)

experimental
interpolated

 
Fig. 7. Plot of ln[I0-I(t)] vs. time, with the interpolating line 
superimposed. 
 
The opposite of the inverse of the slope has given the 
following inductive time constant: 

τL=155.1 ns      (34) 
 
Therefore, according to (26), the inductance value is: 

L=5.14 µH     (35) 
 
In order to verify the goodness of the whole procedure, the 

quantity 2qe  has been evaluated and compared to (31). A 
1.8% error has been calculated, which is acceptable. 

Finally, the curves Icap and Iind on which the load current 
waveform lies (black) and their sum (red) shifted down by K 
have been plotted in fig. 5 to allow a comparison with the 
load current waveform (blue). 
 

B. Transient on the nearly constant current region 
This reference test allows to determine the following 

parameters: C, L, Rsh and Iph. 
A transient is considered from the short-circuit point 

(RL,old=0 Ω) to the midpoint of the curvilinear arc Isc-MPP 
(RL=10 Ω). The related current waveform has been acquired 
and it is shown in fig. 8 (blue curve). 

Then, in order to apply the procedure described in section 
V.A, the PV source can be described by the following set of 
components, whose values are unknown: 

 
Eth=Iph·Rsh; Rth=Rsh        (36) 
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Fig. 8. Load current (blue, dotted), curves Icap and Iind (black, 
dashed) and their sum (red, solid) shifted by K. 
 

The peak time (t*=1.07·10-6 s) and the steady-state load 
current (I∞=943 mA) have been read on the graph of fig. 8. 
Then, the generator’s value has been calculated according to 
(16): 

Eth=484 V     (37) 
 

After plotting (19) extended to the whole time interval 
(fig. 9), the chosen interval for the first LSR has been 
specified by means of the following parameters: 
ε=9.3·10-7 s, ∆T2 =1.8·10-5 s. The regression line y=q1+m1·t 
has been superimposed. 
The opposite of the inverse of the slope has given the 
following capacitive time constant:  

τC= 4.113 µs               (38) 
 

Subsequent calculations allowed the following quantities to 
be determined:  

I0=78.0 mA      (39) 
Rth=502 Ω, Req=10.6 Ω              (40a,b) 

 
Then, the capacitance value has been determined according 
to (23): 

C=386 nF      (41) 
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This value is different from (33). This is correct, since the 
junction capacitance is voltage-dependent and the operating 
point has changed. 
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Fig. 9. Plot of ln[I(t)-I∞] vs. time, with the interpolating line 
superimposed. 
 

In order to perform the second LSR, equation (25) 
extended to the whole time interval has been plotted 
(fig. 10) and the parameter ∆T1=2·10-7 s has been chosen. 
The regression line y=q2+m2·t has been superimposed. 
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Fig. 10. Plot of ln[I2(0+)-Iload] vs. time, with the interpolating line 
superimposed. 

 
The opposite of the inverse of the slope has given the 

following inductive time constant: 
τL=487.1 ns     (42) 

 
Therefore, according to (26), the inductance value is:  

L=5.30 µH      (43) 
 

Using the quantity 2qe , a -3.8% error against (39) has been 
calculated, which is acceptable. 
As before, the curves Icap and Iind on which the load current 
waveform lies (black) and their sum (red) shifted down by K 
have been plotted in fig. 8 to allow a comparison with the 
load current waveform (blue). 
Finally, the unknown values have been determined: 

Ω==  4.502thsh RR     (44) 

mA 4.963
4.502

484 ===
th

th
ph R

E
I    (45) 

 

VII. CONCLUSIONS 

A method for the parameter identification of the dynamic 
model of a photovoltaic source, based on piecewise-linear 
circuit approximation and step load responses, has been 
studied. The model encompasses capacitive junction effects 
and parasitic inductive effects, which allow to reproduce 
second order behaviors. 

The proposed approach is based on two reference tests, 
during which a step load variation is applied, obtaining an 
overshoot in the response waveform. The load values are 
chosen in order to perform transients involving the so-called 
nearly constant voltage and nearly constant current regions. 

The first transient allows to determine the parameters C, 
L, and Rs starting from the knowledge of Voc. The other 
transient allows to determine Rsh, Iph and a different value of 
C for the new operating point. 

In general, the proposed approach can be used also for 
studying other nonlinear circuits operating in linear regions. 
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APPENDIX A 
TRANSIENT ANALYSIS WITH  τC >10·τL 

 

A. Inductive transient 
The capacitor C shown in fig. 2 can be substituted with a 
voltage generator whose value equals VC,old, obtaining the 
circuit in fig. 11. Then, the inductive time constant is given 
by: 

)( sL
L RR

L
+=τ                                   (46) 

 
Fig. 11. Simplified circuit for studying the inductive transient 
when τC >10·τL 
 
The initial conditions of the circuit in fig. 11 at t=0- and t=0+ 
are equal to those found for the circuit in fig. 2: (1a,b) and 
(2a,b), respectively. However, its steady-state values, which 
will be the initial conditions of the capacitive transient, are 
different: 
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If, without loss of generality, a reduction of load resistance 
is supposed, then voltage Vind will start from its initial value 
(2b) and decrease with an exponential curve to reach its 
steady-state value expressed by (47b), according to fig. 3a: 
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Similarly, according to fig. 3b, current Iind will be expressed 
by: 
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In order to highlight the relationship between Vind(t) and 
Iind(t), it is possible to exploit (1c), obtaining: 
 

)()()( , tIRIRVtIRVtV indsoldsoldindsoldCind ⋅−⋅+=−=   (50) 
 

B. Capacitive transient 
In this case, the inductor L in the circuit of fig. 2 can be 
substituted with a short-circuit obtaining the circuit in fig. 
12. Then, the capacitive time constant is given by: 

CReqC ⋅=τ    (51) 
with: 
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Fig. 12. Simplified circuit for studying the capacitive transient 
when τC >10·τL 
 
The initial conditions of this circuit at t=0- are equal to those  
found for the circuit in fig. 2, expressed by (1a,b,c). 
However, the values at t=0+ are different, since only the 
capacitor voltage stays constant now, while the other two 
quantities exhibit a discontinuity: 
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Furthermore, the circuit reaches the same steady-state 
values of the original RLC circuit in fig. 2, i.e. (3a,b,c). 
Observing the circuit of fig. 12 it is clear that Vcap=RL·Icap, 
so, according to fig.s 3a-3b, voltage Vcap and current Icap 
have the same trend, being expressed by: 
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APPENDIX B 

TRANSIENT ANALYSIS WITH  τL >10·τC 
 
A typical response of the circuit in fig. 2 with τL >10·τC is 

shown in fig.s 13a-13b for e.g. RL<RLold together with the 
capacitive and inductive transients. 
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Fig. 13a. Voltage V (blue curve), voltage Vcap (red) and voltage 
Vind (green) for τL >10·τC 
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Fig. 13b. Current I (blue curve), current Icap (red) and current Iind 
(green) for τL >10·τC 

 

A. Capacitive transient 
The inductor L in the circuit of fig. 2 can be substituted with 
a current generator whose value equals Iold, obtaining the 
circuit in fig. 14. Then, the new capacitive time constant is 
given by: 

CRthC ⋅=2τ                                   (56) 

 
Fig. 14. Simplified circuit for studying the capacitive transient 
when τL >10·τC 
 
The initial conditions of this circuit at t=0- and t=0+ are 
equal to those found for the circuit in fig. 2: (1a,b,c) and 
(2a,b,c), respectively. However, its steady-state values are 
different: 
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Therefore, given those specific initial conditions, this circuit 
exhibits no transient, so it is: 
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As a matter of fact, assuming τL >10·τC the inductor effects 
are immediately significant, so the capacitive approximation 
of the real response collapses into one point. 
 

B. Inductive transient 
The capacitor C in the circuit of fig. 2 can be substituted 
with an open circuit, obtaining the circuit in fig. 15. Then, 
the new inductive time constant is given by: 
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Fig. 15. Simplified circuit for studying the inductive transient 
when τL >10·τC 

 
The initial conditions of this circuit at t=0- are  equal to 
those found for the circuit in fig. 2, expressed by (1a,b). As 
for the conditions at t=0+, they are numerically equal to 
those found for the circuit in fig. 2 and to (57a,b), as 
expected. Furthermore, the circuit reaches the same steady-
state values of the original RLC circuit in fig. 2, described 
by equations (3a,b). 
With similar considerations like those made in Appendix A 
it is possible to obtain: 
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In order to highlight the relationship between Vind(t) and 
Iind(t), a quick look at the circuit in fig. 15 allows to deduce 
that: 

)()()( tIRREtV indsththind ⋅+−=                     (62) 
 
As previously said, the contribution of the capacitor is 
almost null so the response of the real circuit shown in fig. 2 
is identical to the response of the simplified circuit in fig. 
15. 

Furthermore, it is worth remarking that, when 
LCL τττ ⋅≤≤⋅ 101.0 , the response of the circuit in fig. 15 is 

still a better approximation of the real circuit’s response, 
compared to those of circuits in fig.s 11, 12 and 14. 
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