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Abstract: In this paper we report of a technique to design optimal feedback control
laws for hybrid systems with autonomous (continuous) modes. Existing techniques
design the optimal switching surfaces based on a singular sample evolution of the
system; hence providing a solution dependent on the initial conditions. On the
other hand, the optimal switching times can be found, providing an an ”open
loop” control to the system, but those also are dependent on the initial conditions.
The technique presented relies on a variational approach, giving the derivative of
the switching times with respect to the initial conditions, thus providing a tool to
design programs/algorithms generating switching surfaces which are optimal for
any possible execution of the system.
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1. INTRODUCTION

Consider a switched system with autonomous
continuous dynamics,

ẋ(t) = fq(t)(x(t)), (1)

q+(t) = s(x(t), q(t)). (2)

where (1) describes the continuous dynamics of
the state variable x ∈ X ⊆ R

n and (2) describes
the discrete event dynamics of the system. Given
an initial condition x0 := x(t0), the switching
law (2) determines the switching instants ti, i =
1, 2, . . ., and thus the intervals where a certain
modal function is active, as well as the initial
condition for the o.d.e. which defines the evolution

under the next mode. The discrete variable q is
piecewise constant in time and belongs to a finite
or countable set Q, hence, it can be expressed in
terms of the index i as q(i). In terms of such index
the dynamics of a switched system is:

ẋ(t) = fi(x(t)), t ∈ (ti−1, ti] (3)

i+ = s(x(t), i, t). (4)

with the understanding that fi := fq(i), for a given
map q(i), i.e., in this case (4) only expresses the
occurrence of the ith switch, the specification of
the next active mode being given by the map q(i).

Since the continuous modes are autonomous, the
evolution of the system is determined by the



active modes, according to (4). When the function
s does not depend by the (continuous) state
variable x, the switching instants are determined
as exogenous inputs, and the system is controlled
in open loop (timing control); when s is dependent
only on the state variables, the switching law is
given in a feedback form, and it may be defined
by switching surfaces in the state space.

To formulate the problem we are interested with,
consider a simple execution of (3,4) with only
one switch, starting at x(t0) = x0 with mode
1, switching to mode 2 at time t1, an exogenous
switch, and terminating either at a fixed final time
t2 or in correspondence of a terminal manifold
defined by a function g(x), so that t2 satisfies
g(x(t2)) = 0. For ease of reference, denote such
two sets of possible executions by χt and χg ,
respectively.

To fix notation, let the explicit representation of
the evolution determined by mode i be given by
x(t) = ϕi(t, s, x(s)), hence,

x(t) =

{

ϕ1(t, t0, x0) t ∈ [t0, t1]
ϕ2(t, t1, x(t1)) t ∈ (t1, t2]

(5)

Also, let xi := x(ti), and R := f1(x1)− f2(x1). In
this paper the following conventions will be used:
1) vectors are column vectors; 2) the derivative of
a scalar, e.g. L, w.r.t. a vector x is a row vector:

Lx :=
dL

dx
=

[

∂L

∂x1
, . . . ,

∂L

∂xn

]

. (6)

(hence LT
x is a column vector). The Hessian ma-

trix is denoted by Lxx. If f is a (column) vector,
function of the vector x i.e.,

f = [f (1)(x), . . . , f (n)(x)]T

then

fx :=
∂f

∂x
=















∂f (1)

∂x1
. . .

∂f (1)

∂xn
...

. . .
...

∂f (n)

∂x1
. . .

∂f (n)

∂xn















According to this convention, for the scalars c, t
and the vectors x, y, z, the usual chain rule applies
to c(x(t)) and c(x(y)), i.e. dc

dt
= cxẋ, cy = cxxy (v̇

stays for dv
dt

); also:

dxT y

dz
= yT xz + xT yz, (7)

1.1 Problem formulation

When the optimal control problem to minimize a
cost function

J =

∫ t2

t0

L(x(t))dt (8)

is formulated, for some continuously differentiable
function L, and such that Lxx is symmetric, then
it is known that when t1 = t∗1, a (locally) optimal
switching time, it satisfies the following condition,
see e.g. (Egerstedt et al., 2003):

c(t∗1) := pT (t∗1)R(x∗

1) = 0 (9)

where pT (t), for t ∈ [t∗1, t2] is given by:

pT (t) =

∫ t2

t

Lx(x(s))Φ2(s, t)ds + pT (t2)Φ2(t2, t)

(10)

with Φi the transition matrix of the linearized
time-varying system ż(t) = ∂fi(x(t))

∂x
z(t), and

pT (t2) = 0 for fixed final time and pT (t2) =
−L(x2)gx(x2)/L2, for an evolution ending at a
terminal manifold, where L2 := gx(x2)f(x2), the
Lie derivative of g along f2 evaluated at x2.

Assuming to start from a perturbed initial con-
dition x̃0 = x0 + δx0; it is possible to use the
information of optimality of t∗1, as a switching
time, to determine t̃∗1; in other words: what is the
dependence of the optimal switching time on the
initial conditions?

This problem is motivated by the determination
of optimal switching surfaces, which tend to solve
optimal control problems for autonomous system
via the synthesis of feedback laws, which may be
pursued for specifications of stability or optimal
control. Relevant application of such technique
may arise in many areas such as behavior based
robotics (Arkin, 1998), or manufacturing systems
(Khmelnitsky and Caramanis, 1998) to cite a few.

Computational methods exist and are based on
the optimization of parametrized switching sur-
faces (Boccadoro et al., 2005). However, the choice
of the optimal values for such parameters depend
on the particular trajectory chosen to run an
optimization program, and thus, fundamentally,
on the initial conditions (remind that the we are
considering a system with no continuous inputs).

An interesting reference for this type of approach
is (Giua et al., 2001), which addressed a timing
optimization problem, and discovered the spe-
cial structure of the solution for linear quadratic
problems. Indeed, in that case it is possible to
identify homogeneous regions in the continuous
state space, whose boundaries, when reached, de-
termine the optimal switches, thus providing a
feedback solution to a problem which is formu-
lated in terms of an open loop strategy.

Here we explicitly investigate the relation existing
between optimal switching times and initial con-
ditions, studying how the condition of optimality
(9) that switching times must satisfy, vary in de-
pendence of the initial conditions.



This paper reports the work in progress toward
this goal, which is still being pursued.

2. OPTIMAL SWITCHING TIMES V/S
INITIAL CONDITIONS

It is well known that, under mild assumptions,
executions of switched systems are continuous
w.r.t. the initial conditions (Broucke and Arapos-
tathis, 2002). If we assume that also the depen-
dence of c on t∗1 as well as t∗1 on x0 is such, we
may characterize function t∗1 by deriving (9) w.r.t.
x0 and setting this derivative to zero. In fact, if
starting from x̃0 = x0 + δx0, it results t̃∗1 = t∗1 +
δt∗1; then, by continuity, 0 = c(t̃∗1) = c(t∗1) +
dc

dx0

δx0 + o(δx0). Hence, set dc
dx0

= 0, to satisfy

optimality condition for t̃∗1. As we will see this
yields a formula for the variational dependence
of t∗1 on x0. To go further, the superscript ∗ will
be dropped (hence assuming that t1, x1 etc. are
relative to optimal executions) in order to reduce
the notational burden.

By (7) we have that

dc

dx0
= RT dp(t1)

dx0
+ pT (t1)

dR

dx0
(11)

To calculate dp(t1)
dx0

, account for the following re-
sult, which is readily verified:

d

dx

∫ a

t(x)

f(s, x)ds =

∫ a

t

df

dx
(s, x)ds − f(t, t)tx

(12)

Then, considering first the simpler case of fixed
final time, by (10, 7, 12)

dp(t1)

dx0
=

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))

dx(s)

dx0
+

dΦT
2 (s, t1)

dt1
LT

x (xs)
dt1
dx0

ds

−LT
x (x1)Φ2(t1, t1)

dt1
dx0

(13)

To get dx(s)
dx0

notice that x(t1) = ϕ1(t1, t0, x0),
hence x(s) = ϕ2(s, t1, ϕ1(t1, t0, x0)) for s ∈ [t1, t2],
thus,

dx(s)

dx0
=

∂x(s)

∂t1

dt1
dx0

+
∂x(s)

∂x1

∂x1

∂t1

dt1
dx0

+
∂x(s)

∂x1

∂x1

∂x0

(14)

Now, ∂x(s)/∂t1 = −f2(x(s)) 1 , ∂x(s)/∂x1 =
Φ2(s, t1), ∂x1/∂x0 = Φ1(t1, t0), ∂x1/∂t1 =
f1(x1), Φ2(t1, t1) = I ,

d

dt1
Φ2(s, t1) = −Φ2(s, t1)

∂f2(x1)

∂x
(15)

1 For time invariant dynamics, [ϕ(s, t + h, x) −

ϕ(s, t, x)]/h = [ϕ(s − h, t, x) − ϕ(s, t, x)]/h = −f(x(s)) +
o(h).

(to be transposed). It results:

d

dx0
p(t1) = I1 − I2 + I3 − I4 − K (16)

where

I1 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)f1(x1)

dt1
dx0

I2 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))f2(x(s))

dt1
dx0

I3 =

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)Φ1(t1, t0)ds

I4 =

∫ t2

t1

fT
2x(x1)Φ

T
2 (s, t1)L

T
x (x(s))

dt1
dx0

ds

K = LT
x (x1)

dt1
dx0

(17)

To handle these, integrate by parts I2 (letting
dt1
dx0

), taking into account that
∫

Lxx(x(s))f2(x(s))ds = LT
x (x(s))

we have
∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))f2(x(s))ds =

−I4 + ΦT
2 (s, t1)L

T
x (x(s))

∣

∣

∣

t2

t1
=

−I4 + ΦT
2 (t2, t1)L

T
x (x2) − K (18)

This leads to the cancellation of I4 and K in (16).

To complete, let’s compute dR(x1)/dx0. Again,
notice that x1 = x(t1) = x[t1(x0), x0], hence,

d

dx0
R(x1) =

∂R

∂x
(x1)

[

∂x1

∂t1

dt1
dx0

+
∂x1

∂x0

]

=

∂R

∂x
(x1)

[

f1(x1)
dt1
dx0

+ Φ1(t1, t0)

]

(19)

Multiplying this by pT (t1), (16) by RT from the
left and summing up we finally obtain:

dc(t1)

dx0
=

[

RT (Qf1 − ΦT
2 (t2, t1)L

T
x (x2)) + pT (t1)Rxf1

] dt1
dx0

+
[

RT Q − pT (t1)Rx

]

Φ1(t1, t0) (20)

where f1 := f1(x1), and

Q :=

∫ t2

t1

ΦT
2 (s, t1)Lxx(x(s))Φ2(s, t1)ds (21)

which is a kind of quadratic form co-costate.
Notice that the term multiplying dt1

dx0

above, is a
scalar. So, if we know that t∗1 is a local optimum
for an evolution starting from x0, then, assuming
to start from x̃0 = x0+δx0, we simply must switch
at t∗1 + δt∗1 + o(δx0). According to (20),

δt∗1 =
−[RT Q − pT (t1)Rx]Φ1(t1, t0) δx0

RT (Qf1 − ΦT
2 (t2, t1)LT

x (x2)) + pT (t1)Rxf1

(22)



3. TOWARD THE CONSTRUCTION OF THE
OPTIMAL SWITCHING SURFACES

To put in use Eq. (22) assume that one optimal
switching time has been derived for a certain
”sample” evolution of the system, e.g. one starting
in x̂0. Then the optimal switching surfaces are
defined by the optimal switching states yielded by
the variation on the optimal switching times when
initial conditions different than x̂0 are considered.
However, it must be paid attention to the fact that
the formula derived above works for a fixed final
time: indeed for the case of evolution ending at a
terminal manifold the following result holds,

Theorem 1. Consider a nominal and a perturbed
execution of the set χg, x(·) and y(·), respectively,
the first starting at x0 and the latter starting from
a point y0 which lies on the nominal trajectory;
i.e., assume that it exists an interval δt0 such
that y0 = ϕ1(t0 + δt0, t0, x0). Then, the optimal
switching time

t∗1(y0) = t∗1(x0) − δt0 (23)

for all δt0 < t∗1 − t0

Proof Denote by a → b a trajectory from point
a to b, and let x(t∗1) = x∗

1 and x(t∗2) = x∗

2 where
t∗2 is the terminal time if the switching time from
mode 1 to mode 2 is t∗1. If (23) did not hold then
assume

t∗1(y0) = t∗1(x0) − δt0 + ε (24)

for some ε (assume with no loss of generality
ε > 0). Let the nominal trajectory that switches
at t∗1(x0)+ε terminate at xε

2. Denote A = x(t0) →
x(t0 + δt0), B = x(t0 + δt0) → x∗

1, C = x∗

1 → x∗

2,
D = x(t∗1) → x(t∗1 + ε) and E = x(t∗1 + ε) → xε

2.
According to (23) the optimal nominal trajectory
is A∪B∪C paying for this the cost J(A)+J(B)+
J(C). On the other hand by (24) the perturbed
trajectory B ∪ C incurs in a greater cost than
B∪D∪E, which implies that J(C) > J(D)+J(E).
This in turn means that if the nominal trajectory
switches at t∗1(x0) + ε then it pays less than if the
switch take place at t∗1 ut

Notice that Theorem 1 easily extends to negative
δt0, i.e., if y0 is chosen such that the evolution
starting from y0 will reach x0 we must add the
time needed to reach x0 from y0 to the optimal
(nominal) switching time.

In case of fixed terminal time the optimal switch-
ing state may vary because the perturbed trajec-
tory described in Theorem 1 above, switching at
t∗1 − δt0, reaches the point x(t2) (of the nominal
trajectory) at time instant t2−δt0, thence ”visits”
additional states from t2−δt0 to t2 (in other words
x̃(·)(t2−δt0,t2] is a set of states not visited by x(·)).
Such remnants of the perturbed trajectory add

further costs, so that two different trajectories,
even if the starting point of one of them lies in the
trajectory of the other, cannot really be properly
compared, in terms of optimal switching states.

This can be actually seen: take an i.c. y0 =
ϕ1(t0 + δt0, t0, x0) very close to x0, so that δx0 =
f1(x0)δt0 + o(δt0). Multiplying (22) by such δx0,
we have that its numerator (plus higher order
terms) is:

−[RT Q + pT (t1)Rx]Φ1(t1, t0)δx0 =

−[RT Qf1 − pT (t1)Rxf1]δt0 (25)

where Φ1(t1, t0)f1(x0) = f1(x1) is due to the fact
that vector fields obey their variational dynam-
ics 2 . Hence in this case

δt∗1 =
−[RT Qf1 − pT (t1)Rxf1] δt0

RT (Qf1 − ΦT
2 (t2, t1)LT

x (x2)) + pT (t1)Rxf1

(26)

In this case condition (23) is equivalent to δt∗1 =
−δt0, so that to be verified, denominator and
numerator should have had the same terms, op-
posed in sign. Here, the only term making the
difference, preventing (23) to hold (as expected)
is −RT ΦT

2 (t2, t1)L
T
x (x2).

According to Theorem 1, and to the above ”ver-
ification”, the procedure to build optimal switch-
ing surfaces should be better pursued consider-
ing evolution ending at terminal manifolds, since
variations in the switching times define soundly
optimal switching states as well. Theorem 1 also
gives an hint about the set of initial conditions
that should be considered to set such procedure.
Indeed, it seems reasonable account only for that
set of initial conditions which are transversal to
the flow defined by the vector field of the initial
dynamics (here f1) which contains x̂0. Such set
of initial condition is a surface itself and can be
described by s(x) = 0 where s is a R-valued
function such that s(x̂0) = 0 and such that sx(x)
is collinear with f1(x), so that s would be a kind
of potential of the vector field. This choice is
justified by Theorem 1, since the components of
the variation δx0 on some x0 which are tangent
to the flow yield no difference on the optimal
switching state, hence giving no contribution to
the construction of an optimal switching surface
which is optimal for the executions determined by
any possible initial condition.

4. CONCLUSION AND FUTURE WORKS

This paper presents the first steps to determine
optimal switching surfaces for hybrid systems

2 Indeed, the variational system ż(t) =
∂f(x(t))

∂x
z(t) has

the solution z(t) = f(x(t)), which can be seen from the
chain rule ḟ = fxf



with autonomous modes. Future work will be de-
voted to the derivation of an analogue formula of
(22) for executions ending at a terminal manifold.
This in order to pursue the program outlined
above, about the investigation of the impact of
transverse variations in the initial condition on
the switching states.
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