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Abstract: Fullerene dimers and oligomers are attractive molecular objects with an intermediate
position between the molecules and nanostructures. Due to the size, computationally assessing
their structures and molecular properties is challenging, as it currently requires high-cost quantum
chemical techniques. In this work, we have jointly studied energies, topological (Wiener indices
and roundness), and information theoretic (information entropy) descriptors, and have obtained
regularities in triad ‘energy–topology–symmetry’. We have found that the topological indices
are convenient to indicating the most and least reactive atoms of the fullerene dimer structures,
whereas information entropy is more suitable to evaluate odd–even effects on the symmetry of (C60)n.
Quantum chemically assessed stabilities of selected C120 structures, as well as linear and zigzag
(C60)n, are discussed.

Keywords: fullerene; fullerene dimers; fullerene oligomers; topological efficiency; Wiener index;
information entropy; symmetry

1. Introduction

Fullerene nanostructures constructed with two or more fullerene cages are promising
all-carbon building blocks for nanoarchitectonics [1,2]. Dimers (C60)2, regioisomeric (C70)2,
and cross-dimer C130 contain direct covalent bonding of the fullerene cages and are classic
representatives of this type of exohedral fullerene derivatives [3]. Most studied experi-
mentally, dimer (C60)2 is formed by the solid-state mechanochemical [2+2]-cycloaddition
reaction between the C60 cages [4,5]. This dimer has numerous structural isomers among
the carbon framework nanostructures, such as the family of isomeric C120 fullerenes, the
stability of which was theoretically explored [6–8], and peanut-shaped nanostructures with
fused C60 cages [9]. The structures of [2+2]-(C60)2 and C120 fullerenes contain pentagons
and hexagons whereas the fusion of the cages in the peanut carbon nanostructures is due
to the introduction of the heptagon–pentagon pairs.

More complex carbon nanostructures can be mechanochemically produced based on
the abovementioned [2+2]-dimerization reaction [10]. These are, for example, regioisomeric
C60 trimers [11], which were detected and then studied using direct visualization with
scanning tunneling microscopy. Ohtsuki et al. have shown that the formation of the
C60 and C70 tetramers were detected with the radiochromatographic technique [12]. The
[2+2]-linked multicage fullerene compounds can be formed in the carbon nanotubes, which
act as the nanoreactor providing pre-reaction self-assembly of the reactant and stabilizes
the oligomerization/polymerization products [13–17]. Note that there are obstacles for the
experimental studies of large fullerene oligomers associated with the low solubility.

There are many theoretical papers devoted to the structure–energy and structure–
property relationships of the two- and multicage fullerene nanostructures [1,11,15–28].
In these works, mainly the quantum chemical techniques (e.g., density functional theory
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methods, DFT) are applied to the fullerene dimer/oligomer nanostructures. However, a
computational treatment of the fullerene multicage compounds with high-level methods
is hard due to the large size of their molecules that makes the calculations time- and
resource-cost.

The topological approach associated with the analysis of the molecular graphs and
subsequent calculations of the topological descriptors has become an efficient method to
study relative stability trends within the series of fullerene isomers (see [29] and references
therein). Previous works exploited Wiener index and topological roundness parameters
to study C60 [30], C28 [31], C66 [32], C76 [33], and C84 fullerene isomers [34,35], as well
as nanocones [36]; and to monitor the Stone–Wales transformations of the giant C240
fullerene [37]. Thus, the approach works well in the case of diverse nanostructures contain-
ing 5-, 6-, 7-, and other cycles that make up their skeletons [30–37]. In the mentioned works,
good correlations for fullerene structures were found between (a) the energy/molecular
properties and topological roundness; and (b) sphericity and volume (geometry parame-
ters) and topological roundness. It means that the topological approach could be used to
pre-screen some structural, molecular, and physicochemical properties of the C60 oligomers
without the necessity of heavy quantum chemical artillery, which may be further applied to
refine the energy/molecular properties of a selected number of nanostructures. Meanwhile,
the topological indices were not applied to the fullerene dimers and oligomers.

In the present work, we have combined quantum chemical and topological techniques
to study the C60 dimers and oligomers and demonstrate the efficiency of the topological
approach for scrutinizing their chemical structures.

2. Computational Details

All optimizations were performed by the density functional theory method PBE/3ζ
implemented in the Priroda program [38]. The 3ζ basis set contains the orbital basis sets
of contracted Gaussian-type functions (11s,6p,2d)/[6s,3p,2d], which are used in combi-
nation with the density-fitting basis sets of uncontracted Gaussian-type functions and
(10s,3p,3d,1f) for carbon atoms. The hessians of the optimized structures contain no imag-
inary frequencies. The optimized geometries were used for the determination of their
symmetry point groups in the ChemCraft program [39].

Note that C60 and its derivatives remains a challenge for computational studies due to
the strong static correlation [40] and specific DFT-based methods are developed to take into
account this feature [41–43]. The obstacles for correct description of the electron system
of C60 assumedly relate the nonplanar displacement of sp2-hybridized carbon atoms and
symmetry effects [44]. This feature becomes less pronounced for C60 derivatives with
reduced π-electron systems, so that ‘classic’ DFT methods may provide reliable results. The
abovementioned method PBE/3ζ reproduces structures and physicochemical parameters
of fullerene derivatives with high accuracy, including dimer and oligomers [21–23,45–50].

The essence of the topological approach is based on describing a carbon molecule on a
simple graph G(N,B), in which N vertices and B edges correspond to N carbon atoms and B
chemical bonds, respectively. The vertices of G(N,B) are labeled as Vi (i = 1, 2, . . . , N–1, N).
The graphs present several invariants reflecting their topological structure. In particular,
molecular descriptors deduced from the chemical distances dij between all couples of
vertices Vi and Vj of G(N,B) extract the information stored in the molecular topology.
Chemical distance dij represents the length of the shortest path between vertices Vi and Vj
by walking on molecular graph bonds, taking dii = 0. Then, transmission wi on the node i
is defined as (it assumes integer positive values):

wi = ∑j dij, with j = 1, . . . , N (1)

The Wiener index W(N) is the integer defined as the semi-sum of the chemical distances:

W(N) =
1
2 ∑i wi, with i = 1, . . . , N (2)
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and essentially provides a measure of the molecular compactness [51].
Graph invariants wi give the contributions to W(N) coming from nodes Vi. By indicat-

ing the eccentricities of the nodes as Mi and numbers of m-neighbors of Vi as bim, we can
rewrite the transmission in a more convenient form:

wi = ∑m mbim, with m = 1, . . . , Mi (3)

Integer values bim are also called the Wiener weights of vertex Vi. Algorithmically,
the upper limit Mi in the sum over m of Equation (3) may be changed into the graph
diameter M = max{Mi} for every node i with an appropriate usage of null Wiener weights,
i.e., bim = 0, Mi < m ≤ M. The maximum distance present in graph diameter G(N,B) is
M = max{dij}. The extremal values of invariants wi:

w = min{wi}, with i = 1, . . . , N (4)

w = max{wi} with i = 1, . . . , N (5)

characterize the most (less) embedded nodes of with the minimal w and maximal w
transmission, respectively. This allows defining topological efficiency index ρ of the graph
that measures the average gap among transmission of the vertices and the minimal vertex
contribution w to W(N):

ρ =
2W(N)

Nw
with ρ ≥ 1 (6)

The extreme topological efficiency (or extreme topological roundness) ρE is simply
defined as

ρE =
max{wi}
min{wi}

=
w
w

with ρE ≥ 1 (7)

Invariants ρ and ρE are rooted into the topological symmetry of the nanostructure
G(N,B). In a set of similar graphs, they privilege systems with a high symmetry, i.e., with a
value equal (or close) to 1.

3. Results and Discussion
3.1. The C120 Isomers: A Fullerene and Two Dimers

We have considered three isomeric all-carbon molecules to scrutinize the relations
between the topology and other molecular properties. These are fullerene C120 (D5) and
two dimers, i.e., [2+2]-dimer (C60)2 (C2h) and fused dimer C120 (Ci), which have a peanut
shape (hereinafter, the symmetry point groups of the molecules are shown in parentheses)
(Figure 1). Note that the structures were theoretically studied (see, e.g., [6,9,20]) and their
parameters found in the present work are in agreement with the previous works. In this
work, we compare the thermodynamic favorability of the three isomers based on the
quantum chemical total energies found:

∆E = Etot
C120
− 2Etot

C60
, (8)

where Etot
C60

is the total energy of buckminsterfullerene C60 (Ih) (all E values include zero-
point vibration energies). The estimates of Equation (8) are the energy effects of the forma-
tion reactions of the C120 isomers from C60 (Ih), the most abundant fullerene structure [52].
According to energy calculations (Table 1), the thermodynamic stability of the structures
decreases in the series: C120 (D5)–C120 (Ci)–(C60)2 (C2h), i.e., the fullerene molecule and the
[2+2]-dimer are the most and the least favorable compounds of the series.
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respectively).

Table 1. Topology and energy parameters of the C120 isomers.

Isomer ∆E (kJ/mol) W M w w ρ ρE

C120 (D5) −1170.1 48,820 15 366 460 1.1116 1.2568
C120 (Ci) −149.2 49,362 16 333 497 1.2353 1.4925

(C60)2 (C2h) +11.4 51,912 18 308 548 1.4045 1.7793

All topological indices indicate that fullerene C120 is topologically favored among
the nanostructures under study. Indeed, its molecule is the most compact (lowest W and
graph diameter M) and the most round from the topological point of view (lowest ρ and ρE

values) (Table 1).
As follows from the topological calculations, the three structures have the stable

central belts, i.e., the atoms that should be less reactive due to their topological embedding.
They are shown in green circles in Figure 1. The corresponding nodes are characterized
with minimal transmission values w (Equation (3)). In contrast, maximal values (w) indicate
highly reactive atoms (in topological sense or ‘topo-reactive’), which are highlighted with
red circles in Figure 1. The w values show that the dimers have very stable nodes, e.g., four
sp3-hybridized carbon atoms of the cyclobutane ring bridging the fullerene cores in dimer
(C60)2 (C2h). Dimer C120 (Ci) is characterized the higher w values that is interpreted as the
corresponding nodes are ‘topo-reactive’ working against the global molecular stability.
Note that we consider topological interactions that occur at any distance in the graph, i.e.,
every node interacts with all the other 119 nodes.
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Thus, for the three C120 nanostructures, low topo-reactive atoms are located in the mid-
dle, forming a stability belt. As for experimental fullerene chemistry, this is consistent with
the reactivity of fullerenes in the addition reactions, e.g., the addition of dipole molecules
or radicals (in a less degree). For example, the reactivity of the atoms and 6.6-bonds of the
C70 fullerene molecule decreases from poles to equator of the cage. Moreover, equatorial
6.6-bonds (traditionally designated as ee) do not even react with ozone, diazomethane, car-
benes, peroxyl radicals etc. [53]. Obviously, this is due to the shift of the π-electron density,
which is crucial for reactivity in addition reactions, from the equator to the pole. Indeed,
polar 6.6-bonds ab have the order equal to 1.60 whereas the ee bond order is 0.96 (natural
bond orbitals analysis from our previous work [54]; see also the case study represented by
the C50 fullerene [55]).

We assume that, in addition to fullerenes, such ‘distribution of reactivity’ (higher
reactive atoms to the poles and lower reactive atoms to the equator) is usual for other
oblong carbon nanostructures, such as dimers. In the case of fullerenes, the difference
in the reactivity could be also explained with the difference in the curvatures of the
compared regions of the carbon surface. Usually, polar regions of fullerene molecules are
more curved [54,56]. In dimer (C60)2 (C2h), low reactivity of the bridging carbon atoms
deduced from the topology is due to their sp3-hybridization. It means that the used
topological indices correctly indicate opportunities of addition reactions in the context of
the hybridization of the reactive sites. Thus, the topological stability of this kind relates
only to the inertness of the reactive sites toward the addition reactions. Indeed, dimer
(C60)2 (C2h) is able to dissociate forming two separate C60 molecules via the C–C bonds [10]
classified by topological analysis as stable.

Symmetry is usually invoked when comparing fullerene structures. It is important but
insufficient itself to drive fullerene-based compounds toward the most stable structures.
The symmetry decreases from C120 (D5) fullerene to classic dimer (C60)2 (C2h) and then
to peanut C120 (Ci). The rotational symmetry numbers (σ) characterizing these symmetry
point groups equal 10 > 4 > 1. Another order is observed for extremal topological roundness
and Wiener indices of these structures: C120 (D5) < C120 (Ci) < (C60)2 (C2h) (Table 1).
Comparing these series with the DFT computations, we may postulate that that topological
symmetry of these nanostructures matters more the thermodynamic stability as compared
with geometrical one.

The σ and ρE (or W) trends do not match. Therefore, we conclude that our topological
indices relate not to the symmetry but to the shape and fragmentability of molecular sys-
tems. The dependence of the Wiener index on the molecular size is well known (see the
calculations for 1D lattices (polymers) [57] and their generalization for D-dimensional
lattices [58]). Heuristically, it depends on the presence of the node eccentricities in
Equation (3).

In this work, we consider three structures comparable in size, so the topological
indices ρE and W relate to the shape in the following sense. The C120 (D5) with lowest ρE

and W is an integral structure, viz. it is difficult to select different moieties in it. In contrast,
it is easily to select two fullerene cores in the dimer (C60)2 (C2h) molecules with the highest
ρE and W. In this sense, (C60)2 (C2h) is fragmentable. Nanopeanut C120 (Ci) is intermediate
in terms of the ρE and W parameters. The hemi-molecules are easier to recognize in the
fullerene, but harder than in the classical dimer. Remarkably, the fragmentability trend
based on ρE and W is consistent with the stability trend based on the DFT computations of
the molecular total energies (Table 1).

In the study above, we have operated with global indices W, ρ, and ρE, i.e., corre-
sponding to the whole molecules. So far, when calculating the topological indices, we have
considered topological interactions within entire graph diameter M. However, it is possible
to restrict the range of the topological interactions by applying cut-off parameter k with
1 ≤ k ≤M that poses the upper limit to the chemical distances dij ≤ k, which contribute to
the calculations of the invariants Equations (1)–(7).
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For example, graph invariant W(k) in the range of k = 6, 7, ... 12, 13 (i.e., limiting the
interactions from the 1st till the 6th nearest neighbors in case of k = 6 etc.) privilege the
(C60)2 (C2h) dimer. Over the interaction range for k ≥ 14, the other two molecules result
in more compact. Particularly, the C120 fullerene becomes the most compact at k = 3, 4, 5,
and 15 (Figure 2a). Index ρ(k) shows the inversion at k = 6 where (C60)2 (C2h) emerges the
most round structure whereas C120 (D5) still prevails for the other k values (Figure 2b). The
present calculations show that the fullerene cage is also the roundest structure according to
the ρE(k) index at any value of k.
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3.2. Linear and Zigzag [2+2]-Linked Oligomers (C60)n

We were previously performed a DFT study of the dipole polarizability of the nano-
aggregates constructed with the C60 cores connected via [2+2]-cycloadditions with all-trans-1
(linear oligomers) and all-eedge positions (zigzag oligomers) [23]. In the present work, we
study both linear (n ≥ 2) and zigzag chains (C60)n (n ≥ 3) in the aspect of their topology
(Figures 3 and 4).
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The results of the calculations are collected in Tables 2 and 3. In general, the W values
are higher for linear molecules (C60)n as compared with zigzag ones with the same n.
Hence, index W differentiates with oblong (linear) and compact (zigzag) nanostructures
(Figures 3 and 4).

Table 2. Topological and information entropy parameters of linear oligomers (C60)n.

n Symmetry Point Group σ W ρ ρE h (Bits)

2 D2h 4 51,912 1.4045 1.7792 3.974
3 D2h 4 163,116 1.2639 1.7113 4.603
4 D2h 4 374,352 1.3493 1.8824 4.974
5 D2h 4 718,020 1.3043 1.8501 5.322
6 D2h 4 1,226,520 1.3392 1.9198 5.559

Table 3. Topological and information entropy parameters of zigzag oligomers (C60)n.

n Symmetry Point Group σ W ρ ρE h (Bits)

3 CS 1 149,004 1.4150 1.9231 6.559
4 C2h 2 319,776 1.4451 1.9892 5.974
5 CS 1 582,948 1.4277 2.0360 7.295
6 C2h 2 960,120 1.4339 2.0323 6.559
7 CS 1 1,468,572 1.4173 2.0580 7.781

Expectedly, the ρE values are higher for compact zigzag oligomers. Interestingly,
the view of descriptor function ρE = f (n) allows classifying the (C60)n nanostructures
depending on their shape, i.e., linear or zigzag (Figure 5). We have found the peculiar
odd–even alternation of this function in the case of linear (C60)n. Indeed, linear trimer
(C60)3 manifests the extremal topological roundness lower than that of its even neighbors,
i.e., (C60)2 and (C60)4. In the case of zigzag oligomers, function ρE = f (n) has a monotonous
behavior with n. In general, linear isomers manifest lower topological efficiency being
ρE

linear < ρE
zigzag (Figure 6a).
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As the topological indices of oligomers (C60)n demonstrate odd–even effects, we
compared them with other structural descriptors, i.e., information entropy (h) and rotational
symmetry number (σ). The first one is an information theoretic index widely used in
theoretical chemistry of fullerenes (for example, it was previously used for the analysis of
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endofullerene formation [59] and complexity of fullerene graphs [60]). The second one is a
characteristic number of symmetry. The information entropy approach treats the molecule
as the subsets of inequivalent atoms (their chemical inequivalence corresponds to the
positions in the molecular graphs) [61], and the h index is expressed in bits as:

h = −∑m
j=1

Nj

∑m
j=1 Nj

log2
Nj

∑m
j=1 Nj

, (9)

where m is the number of atom types, Nj are their populations (numbers of atoms attributed
to each type), Σ Nj = N is a total number of atoms in the molecule, pj = Nj/Σ N are
probabilities to meet the atom of j-th type in the molecular structure.

Based on Equation (9) and analysis of the molecular structure, we have previously
derived general relations connecting the information entropy of oligomers (C60)n with
n [62]. Their view depends on the addition pattern, linear or zigzag, and oddity–evenness
of the n number:

heven
linear =

1
15

log2 15n +
14
15

log2
15n

2
, (10)

hodd
linear =

n + 2
15y

log2 15n +
2(7n− 1)

15n
log2

15n
2

, (11)

heven
zigzag =

14
15

log2 15n +
1
15

log2 30n, (12)

hodd
zigzag =

1
15

log2 60n +
7
15

log2 30n. (13)

The calculations via Equations (10)–(13) are shown in Tables 2 and 3. Similar to
ρE = f (n), the view of dependences h = f (n) depends on the molecular shape of (C60)n.
However, in contrast to ρE = f (n), the information entropy of zigzag oligomers is saw-like,
whereas h monotonously increases with n for linear structures (Figure 6b). Herewith, more
symmetric even zigzag (C60)n obtain lower h values.

We try rationalizing the non-monotonous behavior of the ρE = f (n) and h = f (n) for
selected types of the oligomers (linear and zigzag, respectively) through the symmetry of
the nanostructures under study. The symmetry point groups of the linear oligomers are
constantly D2h, i.e., independent of the number of the fullerene units. In the case of zigzag
(C60)n, the odd isomers have a CS symmetry and the even members are C2h structures.
These features of the symmetry of (C60)n are illustrated with the function of rotational
symmetry number on the size of the nanostructure σ = f (n) (Figure 6c). Function σ = f (n)
is constant for linear isomers (C60)n and oscillates zigzag (C60)n. Hence, both ρE and h
differentiate the series of (C60)n depending on the addition pattern. However, information
entropy better reflects the symmetry alternation of the nano-aggregates. We think that
this is due to the differences in the protocols of calculating ρE and h values. The h index is
deduced from the representation of the molecules as a set. In other words, its calculation
implies the use of only the vertices of the molecular graph (though the classification of the
vertices indirectly uses the connectivity). In contrast, the roundness based on the Wiener
indices exploits the edges of the graphs. Based on the obtained results, we consider that
representing the (C60)n molecules as the sets is more convenient for rationalizing their
symmetries as compared with the representation as networks.

In our studies, we try to reveal correlations between topology, structure, and stability
of compounds [34,35]. We have calculated the energy changes upon oligomer formation
from n molecules of C60, similar to Equation (8). In the case of the (C60)n nano-aggregates,
we do not find correlations between the energy and structural parameters. The energy
trends in series of linear and zigzag (C60)n differ: with increasing n, the thermodynamic
stability of the linear nanostructures decreases, whereas there is a linear increase for the
kinked counterparts (Figure 6d). The unfavourability of the formation of linear polymers
of C60 has been previously noticed in experimental work [13].
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In the previous parts of the present study, we have made molecular symmetry the
central point that defines other molecular properties. Here, we note that the molecular
symmetry in homologic series (C60)n does not affect the energies because there are no
odd–even effects according to the symmetry oscillations. Molecular size and addition
pattern (regardless of the symmetry) play crucial roles in the stability trends.

We consider that our numerical estimations of the nano-objects will be further used in
digitalizing the structural design approaches of novel materials focused on the chemical
structure rather than their thermodynamic stability (see [63–65]).

4. Conclusions and Prospective

We have performed the all-round theoretical study of the fullerene-based covalently
bonded nano-aggregates in terms of quantum chemical, structural, topological, and in-
formation entropy approaches. The approaches mainly provide consistent estimates and
could be further used to predict molecular properties of bulky (C60)n molecules without
time- and resource-cost quantum chemical calculations.

As found, the studied topological indices (Wiener index W and topological efficiencies
ρ and ρE) efficiently describe the molecular shapes (and fragmentability) of isomeric carbon
nanostructures C120. Estimated with W and ρE, the topological stability (compactness)
correlates well with the thermodynamic stability trend obtained with high-level DFT
calculations. A detailed analysis of the contributions to molecular descriptor W allows
elucidating the most and least reactive atoms of the structure toward the addition reactions.
The least reactive atoms make up the equatorial belt in each C120 structure. This agrees
with experimental data on the reactivity of higher fullerenes and we assume the following
general regularity: that the least reactive atoms are located in ‘equatorial’ parts of oblong
fullerenes and related carbon nanostructures.

However, the topological approach does not reflect molecular symmetries of nano-
aggregates (C60)n due to its mathematical feature. The symmetry of nano-objects and
molecules relates to the spatial positions of atoms whereas the used topological indices
are deduced from the topological distances between the vertices of the corresponding
molecular graphs. Therefore, we use the information entropy (h) approach to connect the
symmetry with structural descriptors. The h values are based on the atom classification,
so they ‘catch’ the symmetry point groups of (C60)n and reproduce odd–even effects on
the symmetry.

Note that none of the structural indices correlate with the energy trends of the (C60)n
stability (in contrast to the C120 case). Thus, in the studied homologic series, linear and
zigzag (C60)n, molecular size and addition pattern is decisive for energy properties as
compared with molecular symmetry.

In further studies, we will search for the correlations between structural descriptors
and molecular properties of the fullerene-based nanostructures. This is actual in two aspects.
The first one deals with replacing heavy high-level quantum chemical computations of
nano-objects, such as (C60)n, with faster topological and information theoretic calculations.
The second aspect relates to digitalizing carbon nanostructures. For this purpose, we need
to create a database covering diverse structural, topological, and other descriptors to make
the digital passports of chemical structures.
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