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Abstract: The purpose of this proposed investigation is to
study unsteady magneto hydrodynamic (MHD) mixed
initial-boundary value problem for incompressible frac-
tional Maxwell fluid model via oscillatory porous rectan-
gular duct. Considering the modified Darcy’s law, the
problem is simplified by using the method of the double
finite Fourier sine and Laplace transforms. As a limiting
case of the general solutions, the same results can be
obtained for the classical Maxwell fluid. Also, the impact
of magnetic parameter, porosity of medium, and the
impact of various material parameters on the velocity
profile and the corresponding tangential tensions are
illuminated graphically. At the end, we will give the con-
clusion of the whole paper.

Keywords: fractional Maxwell fluid, exact solutions, non-
Newtonian fluid, oscillatory rectangular duct, velocity
field

1 Introduction

Fluid mechanics is an important branch of applied
mathematics; nowadays, the theory of fluid mechanics
is growing greatly due to which in various aspects of
our life the study of mechanics of fluids has become
very significant. The ability of the creatures to move
through fluids, i.e., air as well as water, is of vital signifi-
cance for their way of life. In our real world, all creatures
live immersed in fluids (air or water). Significant ways are
provided by the circulating fluids systems to distribute
the things where they are necessary. For instance, take
the example of blood flow which is very important for our
body. Likewise, another significant circulation system is
ocean which is essentially very crucial for man. Action of
flow of fluid on the rotating blades converts different
forms of energies like chemical energy, heat energy, or
potential energy into kinetic energy in a steam turbine,
gas turbine as well as in a water turbine. The efficiency of
different types of turbines can be improved by studying
this type of flow. Heat is transferred quickly from one part
of the engine to the other part by the effective motion of
fluid in various cases. The water motion through turbine
produces electric power by waves, which is an example of
fluid motion. Structures are designed in such a way that
they can resist violent sea motions, strong winds, and
river erosion, but all these need the understanding of
forces exercised by waves, currents as well as winds on
these static structures. Therefore, in every case the inclu-
sive information of fluid flow plays the vital role. All these
problems are very complicated. The progressive informa-
tion of turbulence and boundary layer flow can tackle
these complicated problems, since the motion of fluid
generally propagates in a haphazard manner [1].

Subjects like non-Newtonian flow and rheology are
basically interdisciplinary in nature and also get wide
applications in many fields. Indeed, non-Newtonian fluids
behavior is encountered in almost all the chemical and
allied processing industries. Elements determining rheolo-
gical properties of certain material are very complicated.
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The active role of applied mathematicians, physicists, and
chemists is necessary for the full understanding of these
complicated problems. Some of them consider this subject
as central to their disciplines. Also, it gets diverse applica-
tions in many fields. It also requires an active contribution
from chemical and process engineers. They can play their
role by processing and handling complicated materials
like slurries, polymer melts solutions, foams and emul-
sions, etc. Similarly, the practicing engineers, scientists,
and theoretical mathematicians find this subject very
important for them with diverse cultural background [2].

The working and understanding of artificial and
natural systems requires the traditional derivative and
integral which are important for technology profes-
sionals. The derivative operators and calculus integral
can be defined by fractional calculus which is the field
of mathematics in which the fractional exponents are
used in place of integer exponents. In the definition of
the non-integer order derivatives there is integral, so it is
clear that these derivatives are nonlocal operators, which
shows one of their most important uses in applications.
The specific information about some function in space or
time at some earlier points is contained by the non-integer
derivative at some specific point in space or time, respec-
tively. Therefore, non-integer derivatives are characterized
by some memory effects that are shared with numerous
materials like polymers and viscoelastic materials and also
its uses in anomalous diffusions. Many researchers have
studied keenly and comprehensively the fractional opera-
tors [3–10,23,46–48,56]. Due to this, fractional calculus is
used in different disciplines [19–22,49–53]. Many scholars
had discussed the dynamics predator-prey model with
integer and fractional derivatives (see, e.g., ref. [32–40,
54,55]). S. Djilali discussed the dynamics of other models
(see, e.g., ref. [41,42]) for better understanding. B. Ghanbari
et al. and S. Kumar et al. had studied the tumor-immune
model for cancer treatment with fractional derivatives
[43,44]. Similarities in a fifth-order evolution equation
with and with no singular kernel were studied in ref.
[45] by E. Goufo. In technological applications, non-New-
tonian fluids have vital role as compared to Newtonian
fluids. Non-Newtonian fluids are vastly used in industry
and they vary from each other in their rheological proper-
ties. Due to simplicity of governing equation of the
Maxwell fluid model, the scholars have keenly focused
on it and elaborated its flow in various geometries. In
geo-mechanics, biomechanics, and industry, the most
important thing is how the flow takes place via porous
media which include flow water through rock regulation
of skin and filtration of fluids. Various types of solutions
can be obtained by the cross sections of different

geometries. It can be wisely used in industry due to its
ability to flow via ducts. For the cooling in engineering
systems, the porous passages with rectangular cross sec-
tions are of prime importance. So, the exact solutions of
the classical Maxwell fluid and the generalized Maxwell
fluid in different geometries have been thoroughly studied in
the literature. Abdulhameed et al. [11] studied the Maxwell
fluid via circular tube with the help of Caputo Fabrizio
derivative. Aman et al. [12] focused on the thermal prop-
erties of Maxwell nanofluids with the fixed wall tempera-
ture. Bai et al. [13] studied the numerical analysis of MHD
Maxwell fluid over the accelerating with slip condition.
With the help of Atangana–Baleanu definition in porous
medium, Abro et al. [14] obtained the temperature and
velocity fields for the MHD Maxwell model. With the
impact of slip and Newtonian heating, Imran et al. [15]
focused on the fractional MHD Maxwell fluid flow. Raza
and Asad [24] studied the heat transfer of fractional
Maxwell fluid. Riaz et al. [25] studied the Maxwell fluid
model with different fractional derivatives. Many
researchers have studied the flow fluid through porous
medium under different factors and conditions [26–29].
Nazar et al. [16,17] studied the motion of generalized and
ordinary Maxwell fluid via an oscillatory rectangular duct
and obtained the exact solution for the velocity and tan-
gential stresses. Then, Sultan et al. [18] extended the Nazar
et al. [16,17] problem and studied the unsteady flow of a
Maxwell fluid in porous rectangular duct. However, to our
best knowledge, there were no works on the flow of MHD
generalized Maxwell fluid via porous rectangular duct. So,
motivated by this, we are interested to find the exact solu-
tion for this problem by using integral transform [30].

The remainder of this article is organized as follows.
Section 2 provides formulation of the flow problem. In
Section 3, we will give the explicit expression of velocity
field and the tangential stresses corresponding to MHD
flows of a Maxwell fluid with fractional derivatives within
an oscillating rectangular duct. In Section 4, we will
obtain the explicit expressions for the velocity and the
associated tangential stresses of the classical Maxwell
fluids and the generalized Maxwell fluid without mag-
netic and porosity parameters. In Section 5, the obtained
results are illuminated by the graphs. In Section 6, we
will give the conclusion of the whole article.

2 Formulation of flow problem

Let us suppose the incompressible fractional Maxwell
fluid in a duct of rectangular cross section whose sides
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are at =x ̲ 0, =x d̲ , =y̲ 0, =y h̲ . At time =

+t 0 , the duct
starts to oscillate along the z ̲-axis. The inner fluid is in a
motion due to the oscillation on the boundary of duct.

→

( ) = ( ) = ( )

→

= ( )

x y z ξ x y t k ξ

x y t

W ̲, ̲, ̲ ̲, ̲, ˆ 0, 0, ,

S S ̲, ̲, ,
(2.1)

For the velocity field and an extra-stress, we have the
following assumptions where k̂ is the unit vector pointing
in z ̲-direction. According to the first Rivlin–Ericksen
kinematic tensor,

→

A can be defined as

→

≔ ∇
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+ (∇
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)W W ,†A (2.2)

where † denotes the transpose operation. The tangential
tensor is defined by →τ as

→

≔ −
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+

→

τ p J S ,

in above relation, p is the hydrostatic pressure of the
fluid,

→

J is the identity tensor, and
→

S is the extra tangen-
tial tensor and can be written as
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λ ϖ1 S .t A (2.3)

Here, >ϖ 0 is the dynamic viscosity, λ is the relaxation
time. The operator �t is so-called upper convected deri-
vative and can be written as
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Furthermore, it is obvious to constrain the initial condi-
tions for the fluid initially at rest
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∂

∂

( )x y o
t

x yS ̲, ̲, 0 S ̲, ̲, 0 . (2.5)

For the MHD flow, the governing equations for the incom-
pressible fluid will be
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where >ρ o represents the density of the fluid. For the
simplicity, the body forces and pressure gradient are
ignored.

2.1 Mathematical formulation of the
problem

In correspondence to constitutive equations, a fractional
Maxwell fluid can be obtained by using appropriate

initial and boundary conditions. For this purpose, initi-
ally we formulate the constitutive equations for the flow
of a classical Maxwell fluid and then revelent reversal are
made to get the constitutive equations for the fractional
Maxwell fluids. The (2.1) will fulfil the equation of con-
tinuity and (

→

⋅∇)

→

≡W W 0. With the help of (2.1), (2.2), and
(2.4) along with initial conditions (2.5), (2.3) becomes for
all >t 0,
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The momentum (2.6) for an ordinary Maxwell fluid by
(2.1) and (2.7) will be
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The appropriate IBC’s are
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(2.9)
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(2.10)

where U0 is the amplitude and ω the frequency of the
velocity of edge. The IBVP governing the flow of the
ordinary Maxwell fluid is given by (2.8)–(2.10). We will
obtain the governing equations for the fractional
Maxwell fluids by carrying out the same motion by inter-
changing the inner time derivatives with the Caputo
fractional time derivatives ∂t

α for < ≤ <α0 1. Precisely,
we entertain the following model with same initial-
boundary conditions:
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(2.11)

where
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∫( ) =
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is the Capouto’s fractional derivative [8] and (⋅)Γ is the usual
Gamma function. Note that the exponent α on λ is written in
order to collaborate the dimensions of various terms in (2.11).
Introducing the following dimensionless quantities to (2.11)
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By (2.12), the IBVP (2.11) becomes as, using the same
notation for dimensionless quantities and without ⁎ sign,
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or
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3 Calculation for the velocity field

3.1 The case ( ) = ( ) =ξ y t ξ y t0, ̲ , 1, ̲ ,
( ) = ( ) = ( )ξ x t ξ x t ωt̲ , 0, ̲ , 1, sin

Multiplying both sides of (2.13) by ( ) ( )α x β ysin ̲ sin ̲i j , then

integrating with respect to x ̲ and y̲ over [ ] × [ ]0, 1 0, 1 ,

and utilizing the transformed initial and boundary con-
ditions, we obtain
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is the double Fourier transform of ( )ξ x y t̲, ̲, . Now taking
the Laplace transform to (3.1) and utilizing the appro-
priate transformed conditions, we obtain the expression
for ( )ξ qr̄s as
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Denoting by
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we get following, by applying the inverse Laplace trans-
form to the above relation,
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( )A q¯rs can be written in more simpler form with the help
of relations given in the Appendix of ref. [23].
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The inverse Laplace transform of above expression is
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where (− )
− +
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, , 1 is the generalized G-function
and for the explicit expression of the generalized G-func-
tion see ref. [7]. The transformed velocity can be rewritten
as
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We will get the following equation by implementing the
inverse Laplace transform to the (3.4),
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The dimensionless tangential stresses T1 and T2 corre-
sponding to the fractional Maxwell fluid in such motions
are given by
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Taking the partial derivative of ( )ξ x y q̲ ̲, ̲, with respect to
x, then putting into the (3.8), we will obtain
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Following relation can be obtained by implementing the
inverse Laplace transform to the (3.9)
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we can get the expression for ( )ξ qr̄s by implementing the
Laplace transform to (3.10) and utilizing the appropriate
transformed conditions,
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we get following equation by taking the inverse Laplace
transform of the above equation
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The transformed velocity can be marked as
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By implementing the inverse Laplace transform to the
(3.12), we will obtain
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By implementing the inverse Fourier transform to (3.13)
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simply, the above equation can be rewritten as
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We can obtain the associated expressions for the tangential
stresses by using the same method of the above section:
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4 Limiting cases

4.1 Classical Maxwell fluid

Considering →α 1 into (2.13), we can get similar solution
[18] of velocity distribution and the associated tangential
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stresses of both the cases for unsteady flows of an
ordinary Maxwell fluid via oscillatory rectangular duct,
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4.2 Generalized Maxwell fluid without
magnetic and porosity parameters

Considering =M K, 0 into (2.13), we can get similar solu-
tion [16] of velocity distribution and the associated tan-
gential stresses of both the cases for unsteady flows of the
generalized Maxwell fluid without magnetic and porosity
parameters via oscillatory rectangular duct,
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5 Numerical results

The present section aims to show the impact of various
physical parameters with respect to time on the flow
of MHD generalized Maxwell fluid via porous rectangular
duct.

Figure 1 represents the influence of fractional para-
meter α on the fluid motion with respect to time; from this
figure, it is observed that velocity of the fluid increases
(absolute values) as fractional derivative parameter
approaches to 1 for both sine and cosine oscillation.

Figure 2 shows the effects of parameter K on the fluid
motion with respect to time, as expected fluid velocity
increases as value of K increases.

Figure 3 represents the effect of magnetic parameter
M on fluid velocity. From Figure 4, it is clear that velocity
of the fluid decreases with the strength of magnetic force.

Figure 4 shows the influence of the relaxation para-
meter on the fluid motion. From this figure, it is observed
that velocity of the fluid decreases for cosine oscillation,
but increases for the sine oscillation.

Figure 5 shows the same behavior as that of frac-
tional parameter α on the fluid motion when =K M, 0.

In Figures 6 and 7, we show the effect of frequency
parameter ω on the dimensionless fluid velocity and
shear stress. From Figures 6 and 7, it is clear that the
velocity of the fluid and shear stress decreases with the
strength of frequency parameter.

Figure 1: The dimensionless velocity profile of sine and cosine oscillation at =ω π
4 , =λ 2, =K 0.5, =M 0.8, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 2: The dimensionless velocity profile of sine and cosine oscillation at =ω π
4 , =λ 2, =α 0.7, =M 0.8, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.
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Figure 3: The dimensionless velocity profile of sine and cosine oscillation at =ω π
4 , =λ 2, =α 0.7, =K 0.5, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 4: The dimensionless velocity profile of sine and cosine oscillation at =ω π
4 , =M 0.8, =α 0.9, =K 0.5, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 5: The dimensionless velocity profile of sine and cosine oscillation at =ω π
4 , =M 0, =K 0, =γ 0.54, =x ̲ 0.5, and =y ̲ 0.005.
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Figure 6: The dimensionless velocity profile of sine and cosine oscillation at =λ 2, =M 0.8, =K 0, 5, =γ 0.54, =x ̲ 0.5, and =y ̲ 0.005.

Figure 7: The dimensionless tangential stress profile of sine and cosine oscillation at =ω π
4 , =λ 2, =K 0.5, =M 0.8, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 8: The dimensionless tangential stress profile of sine and cosine oscillation at =ω π
4 , =λ 2, =α 0.7, =M 0.8, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.
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Figure 9: The dimensionless tangential stress profile of sine and cosine oscillation at =ω π
4 , =λ 2, =α 0.7, =K 0.5, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 10: The dimensionless tangential stress profile of sine and cosine oscillation at =ω π
4 , =M 0.8, =α 0.9, =K 0.5, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.

Figure 11: The dimensionless tangential stress profile of sine and cosine oscillation at =ω π
4 , =M 0, =K 0, =γ 0.54, =x ̲ 0.5,

and =y ̲ 0.005.
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In Figure 8, the dimensionless shear stress repre-
sented for different values of fractional parameter α.
The stress on the fluid increases for both sine and cosine
oscillation as the values of fractional parameter α
increase.

Figure 9 shows the effects of parameter K on the
dimensionless shear stress, as expected fluid velocity
increases with the increase in K.

In Figures 10 and 11, we show the effect of Magnetic
parameter M and relaxation time on the dimensionless
shear stress, both sine and cosine oscillation decrease
as the Magnetic parameter M and relaxation parameter
increase.

In Figure 12, the effect of fractional parameter α
is shown on dimensionless shear stress when =K M, 0;
both sine and cosine oscillation increase for the increasing
value of α.

6 Conclusion

In this article, the incompressible, unsteady flow mixed
initial-boundary value problem for incompressible frac-
tional Maxwell fluid model through oscillatory porous
rectangular duct is studied. The solution is derived by
using the techniques of Laplace and double finite sine
Fourier transforms for the cosine and sine oscillation of
the rectangular duct. The solutions are presented in terms
of series form and the generalized G functions. The
similar solutions of classical Maxwell fluid and general-
ized Maxwell fluid without magnetic and porosity para-
meters are recovered as a limiting case of the general
solutions. Finally, the graphical influence of fractional

parameters, magnetic parameter, porosity parameter, and
relaxation time on the fluid motion is discussed.
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