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Abstract. Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of
energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg
peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the
sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order
to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable
homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam
have to be quite close to each other or the longitudinal peak shape needs to be broaden at least
few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in
conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the
numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall
irradiation times.

We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP
region by means of Monte Carlo simulations, implemented using the package Geant4. We
simulated the beam delivery line supporting both proton and carbon ion beams using different
energies of the beams. We compared the effect of different kind of ripple filters and their
advantages.

1. Introduction
In the field of hadrontherapy two kinds of charged beams are used: proton and carbon ion beams.
Two main irradiation techniques are also used: passive and active. The passive technique is
widely used both with carbon ion beams (Japan) and with proton beams (Loma Linda).

The passive technique requires a significant effort in the definition of the modulating devices
along the beam delivery line to reach a 3D-conformal dose distribution. The active scanning
technique is more sophisticated: in the most straightforward application the beam is sequentially
steered to each voxel of the target volume with millimeter precision. The transverse position
is aimed with a pair of dipole magnets, whilst the longitudinal position of the Bragg peak is
modulated by changing the beam energy.
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Figure 1. Beam delivery system including the scanning magnets , monitoring system and the ripple
filter

With a synchrotron accelerator at each cycle the beam is ramped to a given energy. Typically
a cycle lasts a few seconds and during the cycle the energy of the extracted beam is fixed. On the
other hand with a cyclotron the Bragg peak can be displaced by degrading the beam energy with
absorbers of different thicknesses. The energy changeover is then obtained with a mechanical
operation which is timewise much shorter than a synchrotron cycle. Being the cyclotron a
continuous machine the time required to perform the full treatment is almost independent on
the number of energy switches.

With a synchrotron accelerator, even if it is possible to provide any number of kinetic energies,
the constraint on the treatment time forces to reduce the number of energy steps. The problem
is then to deliver a uniform longitudinal dose within specification with a small number of energy
steps. This is especially true at the beginning of the accelerator operations when one has to deal
with a limited set of available energies. The request can be satisfied by broadening longitudinally
the peak of the Bragg curve with a ripple filter see ([ii,iii,iv]).

The idea of a ripple filter consists in defining a transfer function that, once applied to
the hadron beams, favors a small spread around the Bragg peak and preserves a gaussian
approximation of the shape near the maximum of the Bragg curve.

In this work it is reported the design and the simulation of the ripple filters for the beam
delivery lines (BDL) of the CNAO (Centro Nazionale di Adroterapia Oncologica), which is
located in Pavia, Italy. We discuss two applications: the first one is dedicated to proton beams
and the second one is for carbon ion beams.

2. Monte Carlo beam delivery simulation
The beam has been simulated from the vacuum before the exit window ( figure 1), through the
BDL, and up to the water tank phantom. The BDL is composed by the monitoring system and
the ripple filter. The monitoring system consists of an ensemble of ionization chambers with an
equivalent water thickness of 1.1 mm. The ripple filter is placed right in front of the water tank
at a distance of 50 cm from the isocenter.

The Monte Carlo simulation is implemented with Geant4.7.2[i] and it is linked to Root
interface[i] which provides also an online follow-up of the events generated during the simulation.
Parent particles are followed along the path as the energy degrades both for Coulomb and nuclear
scattering up to the stopping point. Daughter particles, produced by fragmentation processes,
are followed as well. Originally the goal of the simulations was the study of the effect of the
monitoring system and of the ripple filter on the therapeutic beams mainly concerning the
geometrical parameter of beam. We simulated both proton and carbon ion beams and we check
for both beams the 3D distribution of deposited dose in a water tank. In this paper we discuss
only the impact of the ripple filter.
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Figure 2. a) Sections of a ripple filter as described by Weber et al [??] of 2 mm and 3 mm, b) Ripple
filter structure as implemented in the Monte Carlo simulation.

Figure 3. a) Comparison with the analytical method of the ripple filter type (B) as described by Weber
et al. and type (A); b)-c) Section of ripple filter type (B) and (A) respectively and the corresponding
transfer function X ′(t).

3. Method and materials
We designed two different shapes of ripple filters with similar dimensions. The first one (type
A) has a simplified section (triangular section) and a thin base of plexiglass (200 mm × 200 mm
× 0.3 mm) and a total thickness respectively of 2 mm and 3 mm (see Figure 3,c). The second
shape (type B) has a sigmoidal section as described by Weber et al[ ii] and reported in Figure 2
and 3,b. The sigmoidal shape of the type (B) filter satisfies the requisite of having a gaussian
shape of the filtered Bragg peaks that permits the best uniformity when they are added up in
a SOBP. Type (A) filter has a shape which can be easily machined and does not require special
tooling.

In our study we used a plexiglass (PMMA) plates of 1.19 g/cm3 density. The momentum
spread for both protons and carbon ions was fixed at ∆p/p = 0.05%.

The shape of the Bragg peak resulting from the passage of the ion beam through the BDL
is strongly dependent on the scattering and the straggling processes that affect the final spatial
distribution of the beam energy loss. In fact, as we will see in details in the following section,
proton beams, that have higher straggling and scattering effects than carbon ions, are deflected
and broadened easily and they are less sensitive to the precise shape of the ripple filter. Carbon
ion beams needs more accuracy in the design and mechanical production of the ripple filter.

Third McGill International Workshop IOP Publishing
Journal of Physics: Conference Series 102 (2008) 012002 doi:10.1088/1742-6596/102/1/012002

3



Figure 4. a) Comparison of the spreading of the Bragg peak with ripple filter type (A) respectively of
2 mm and 3 mm. b) Total energy loss in depth for proton beams of 70 MeV, without and with a ripple
filter type (A) of 2 mm, and the corresponding lateral distribution at 37.4 mm (peak position with ripple
filter).
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3.1. Analytical pre-simulation
The full Monte Carlo simulation through the passive elements and the water phantom requires a
fairly amount of CPU time, and the iteration over different shapes and dimensions of the ripple
filter is a lengthy procedure. To shorten this time and get an approximated solution we studied
an algorithm to solve analytically the problem. By convoluting the shape of the non-filtered
Bragg curves with the filter transfer function one can predict the energy deposition curves as
modified by the ripple filter. The transfer function was derived from the profiles of the ripple
filters while the non-filtered Bragg curves were obtained from a Monte Carlo simulation of the
full beam line and water phantom but without filter. With this technique, which has been briefly
introduced, one can quickly estimate the effects of the different filter shapes for any given set of
proton beam energies. Applying the method to the two types of filters (an example is reported
in Figure 3) one can observe that the profiles of the filtered peaks are very similar and that the
differences are less than 3% at the maximum dose.

In the next sections we discuss the impact of the ripple filters on the longitudinal energy
deposition curves obtained with a full simulation for both proton and carbon ion beams.

4. Proton beams
In this study we considered only type (A) filters with total thickness of 2 mm and 3 mm
respectively (see Figure 4,a). The tooling necessary to machine this type of filters is quite
modest and this consideration has driven the choice. For different configurations we compared
the longitudinal Bragg peak width (sigma), the beam width in the transverse plane, and the
dose uniformity at the SOBP.

4.1. Variation of the width of the Bragg peak
The kinetic energies used in proton-therapy with active scanning covers the range between 70
and 250 MeV. As expected the present study shows that the effects of the ripple filter is more
critical for low kinetic energies. At 70 MeV the sigma of the dose deposition curve along the beam
direction is almost doubled by the insertion of the ripple filter, whilst the difference between
2 and 3 mm thick filter is of the order of 10%. For beam energies greater than 100 MeV the
insertion of the ripple filter gives a marginal increase of the sigma ( ¡ 10%), which has already
a value of several millimeters. The Bragg peak sigma values are reported for three different
energies in Table 1. In the same table are given the widths for the 2 and 3 mm thick type
(A) filters respectively. Even at low energies, the impact on the width of the peaks due to the
two ripple filters is negligible (¡ 10%). However at 70 MeV the shape of Bragg peak falloff (see
Figure 4,a) is quite affected by the filter, even if the width does not change by more than 10 %.

In Figure 4,b the longitudinal and transverse energy deposition curves are shown at three
beam energies (70, 160, and 200 MeV) for a 2 mm thick type(A) filter and without filter. The
energy deposition curves in the transverse plane with respect to the beam direction refer to the
longitudinal position of the Bragg peak for the filtered case.

Table 1. Sigma values in [mm] from gaussian fits performed on a ±1σ range around the Bragg peak

70 MeV 160 MeV 200 MeV

No ripple filter 0.8 3 4.3
Ripple filter of 3 mm 1.9 3.3 4.4
Ripple filter of 2 mm 1.6 3.0 4.3
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Figure 5. Spread out of the Bragg peak for proton beam of 70 MeV respectively without ripple filter
and with ripple filter type(A) of 3 mm.

Figure 6. a) Geant4 simulations of energy losses as functions of depth for different setting of ripple
filters in the proton beam path before the water tank; b) Comparisons between depth-dose curve simulated
with respectively one and two ripple filters for carbon ion beam of 100 MeV/u.

4.2. SOBP dose uniformity
To evaluate the SOBP dose uniformity we overlap several curves as obtained with the simulation
of a specific energy to mimick the dose delivery technique. Each curve has been displaced by
a given amount with respect to the adjacent one and the dose delivered has been adjusted to
obtain a flat average dose deposition. A sketch of the procedure is depicted in Figure 5 We used
10 different positions fixing the step between Bragg peaks as a function of the kinetic energy
used.

With this technique we compared the dose uniformity on the SOBP with and without the
ripple filter. The study was done with the ripple filter type (A) of 3 mm. For 70 MeV protons
with the ripple filter and using a step of 3.36 mm the peak-to-peak dose uniformity is found to
be ±1% error (see Figure 5). Without ripple filter the deviation increases to ±15% even if the
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step has been drastically reduced to 2 mm. The situation is less critic when the beam energy
is above 100 MeV. In fact at 160 MeV, using the ripple filter we have a dose uniformity within
±2% and ±3.5% without filter for a scanning step of 6 mm both. For beam energy of 200 MeV
the dose uniformity is not depending any more on the use of the ripple filter: we evaluated a
peak-to-peak dose uniformity of ±2% with or without filter for scanning steps ranging from 3
mm to 7.6 mm.

5. Carbon ion beams
It is well known that for Carbon ion beams the Bragg peak is narrower than for the proton
beams. Similar consideration applies also to the transverse plane. While for protons the effect
of a deviation of the ripple filter shape from the ideal one tends to be washed out by the relatively
large straggling, the Carbon ion Bragg curve is far more sensitive to the shape of the ripple filter.

Furthermore in the Carbon ion beam case it can be necessary to enlarge the Bragg peak
width by using a configuration with two ripple filters.

5.1. Double filter study
To enhance the impact of the filtering on the widening of the Bragg peak we simulated a setup
with an aligned double filter.

We compared the effect of different longitudinal positions and different way of coupling two
type (A) ripple filters of 2 mm to optimize the conditions of the double filtering.

As shown the impact of the filter on proton beams is marginal above 100 MeV, thus we
checked the effect of the double filter only at 70 MeV. In Figure 6 we compare the Bragg peaks
obtained with a configuration without filter to several other configurations: type (A) 2mm thick
single filter, and two same type double filter configurations. In one case the filters are 2 cm
apart close to the patient and in another case one filter of the pair is placed right after the exit
window and the second in front of the patient (30 cm apart). With a double filter the shape of
the resulting Bragg peak is more regular and is a better approximation of a gaussian than the
single filtered peak.

We deduce that one way to enlarge the Bragg peak preserving the gaussian shape of the peak
with a ripple filter of type (A) is to use a double filtering where the first filter should be at the
exit windows of the beam and the second one as far as possible from the first. This configuration
corresponds to the convolution of two linear transfer functions giving as a results a non-linear
transfer function.

5.2. Results
With Carbon ion beams, the energies clinically used and simulated in this study range from 100
MeV/u up to 400 MeV/u.

Similarly to what we did in section 5.1, we simulated a double filter, with the first filter placed
just after the exit window and the second ripple filter at 30 cm from the first at the end of the
monitoring system, right before the water tank. The two filters simulated are both of type (A) 2
mm thick. For comparison we investigated the single ripple filter setup which increases to about
1 mm the sigma at the Bragg peak at 100 MeV/u.

In Table 2) we see the effects of the simple and double filtering of the beam and the accuracy
(normalized χ2) of the gaussian fit. from gaussian fits performed on a ±1σ range around the
Bragg peak

From the normalized χ2 of the fit and as expected the compatibility of the longitudinal
dose deposition shape and a gaussian curve improves as the beam energy increase. But a good
fit is obtained only with a double filter. Thus, for a Carbon ion beam we conclude that the
configuration with double filtering results in a shape which is closer to a gaussian curve with
respect to the single filter. With a separate simulation, we probed the single type (B) filter and
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Figure 7. Spread out Bragg peak of carbon ion beam of 100 MeV/u with: (a) pristine Bragg curve
using 8 spots at 0.5 mm step, (b) Bragg curve after passing through one ripple filter type (A) of 2 mm,
using 14 single spots at 1 mm step, and (c) Bragg curve after passing through two ripple filters type(A)
distant 30 cm, using 8 single spots with step of 2.2 mm.

Table 2. Sigma value in [mm] from gaussian fits performed on a ±1σ range around the Carbon ion
Bragg peak and the corresponding value of the normalized χ2 of the fit.

100 MeV/u 270 MeV/u 360 MeV/u

No ripple filter 0.2 0.7 1.1
σ (One ripple filter of 2 mm) 1.1 1.4 1.6
χ2 (One ripple filter of 2 mm) 185 35 19
σ (Two ripple filters of 2 mm) 1.6 1.9 2.1
χ2 (Two ripple filters of 2 mm) 26 2.6 1.0

we found results very similar to the double filtering with type (A). This observation substantiates
the original hint that the filter shape, for Carbon ions, has a enormous impact on the resulting
Bragg curve.

In Figure 7 we compare the SOBP profile for three different cases: a) no ripple filter and 0.5
mm steps; b) 2 mm type (A) filter and 1 mm steps; c) double 2 mm type (A) filter and 2.2 mm
steps. One can clearly appreciate the improvement of the uniformity going from a) to c) even if
the steps are increased from 0.5 mm to 2.2 mm.

6. Conclusion
In hadrontherapy the active scan technique requires the use of a filtering technique to reduce
the number of energy steps necessary to match the tumour volume. In this study we
compared several filter configurations adopting as a reference the shape described in ?? but
the investigation focus on easy-to-machine shapes: we found that a triangular shape (type (A))
was a good compromise.

We conclude that 2 mm thick type (A) is adequate for low energy proton beams, while
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for protons above 100 MeV is not strictly necessary. In the case of carbon ion beams it is
required a more structured solution like a double filter installed at a fairly large distance. A first
investigation shows that the ripple filter type (B) and the double type (A) filter give comparable
results, confirming that postion and shapes of the filters play an important role. Finally an
analytical algorithm to quickly evaluate the impact of the filter is necessary, and in this paper it
only has been only marginally introduced, to optimize the design of this vital part of the beam
modeling system for active beam scanning with synchrotron accelerators.
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