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1. Introduction

In 1880 [1] Appell introduced and widely studied sequences of n-degree polynomials
An(x), n = 0, 1, . . . (1)

satisfying the recursive relations
dAn(x)
dx
= nAn−1(x), n = 1, 2, . . . . (2)

In particular, Appell noticed the one-to-one correspondence of the set of such sequences {An(x)}n and the set of numerical
sequences {αn}n , α0 6= 0 given by the explicit representation

An(x) = αn +
(n
1

)
αn−1x+

(n
2

)
αn−2x2 + · · · + α0xn, n = 0, 1, . . . . (3)

Eq. (3), in particular, shows explicitly that for each n ≥ 1 An(x) is completely determined by An−1(x) and by the choice of
the constant of integration αn. Furthermore Appell provided an alternative general method to determine such sequences of
polynomials that satisfy (2). In fact, given the power series:

a(h) = α0 +
h
1!
α1 +

h2

2!
α2 + · · · +

hn

n!
αn + · · · , α0 6= 0 (4)

with αi i = 0, 1, . . . real coefficients, a sequence of polynomials satisfying (2) is determined by the power series expansion
of the product a(h)ehx, i.e.:

a(h)ehx = A0(x)+
h
1!
A1(x)+

h2

2!
A2(x)+ · · · +

hn

n!
An(x)+ · · · . (5)

The function a(h) is called the ‘generating function’ of the sequence of polynomials An(x).
Well known examples of sequences of polynomials verifying (2) or, equivalently (3) and (5), now called Appell Sequences,

are:
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(1) the sequences of growing powers of variable x

1, x, x2, . . . , xn, . . . ,

as already stressed in [1];
(2) the Bernoulli sequence Bn(x) [2,3];
(3) the Euler sequences En(x) [4,3];
(4) the Hermite normalized sequences Hn(x) [5];
(5) the Laguerre sequences Ln(x) [5].

Moreover, further generalizations of above polynomials have been considered [5–7].
Sequences of Appell polynomials have been well studied because of their remarkable applications in Mathematical

and Numerical Analysis, as well as in Number theory, as both classic literature [1,8,9,5,10] and more recent literature
[11–15,6,7,16] testify.
In a recent work [17], a new approach to Bernoulli polynomials was given, based on a determinantal definition.

The authors, through basic tools of linear algebra, have recovered the fundamental properties of Bernoulli polynomials;
moreover the equivalence, with a triangular theorem, of all previous approaches is given.
The aim of thiswork is to propose a similar approach formore general Appell polynomials, for the followingmotivations:

(i) the algebraic approach provides a unifying theory for all classes of polynomials considered in (1)–(5) and their very
natural generalization;

(ii) it is possible to compute the coefficients or the value in a chosen point, for particular sequences of Appell polynomials,
through an efficient and stable Gaussian algorithm;

(iii) this theory is simpler that the classical analytic approaches based, for example, on the method of generating functions;
(iv) the proposed algebraic approach allows the solution of the following remarkable general linear interpolation problem,

which is in an advanced phase of study and will appear later:
Let Pn be the space of univariate polynomials of degree ≤n and L a linear functional defined on Cn[a, b] such that

L(1) 6= 0. Let ω0, ω1, . . . , ωn ∈ R. Then, there exists a unique polynomial Pn(x) ∈ Pn such that

L

(
di

dxi
Pn(x)

i!

)
= ωi i = 0, 1, . . . , n.

The solution can be expressed, using the determinantal form, by a basis of Appell polynomials. Relevant examples are:
(a) L(f ) =

∫ 1
0 w(x)f (x)dx, wherew(x) is a general weight function. In this case the basis is realized in [2] or generalized

Bernoulli polynomials [7].
(b) L(f ) = w1f (1)+w2f (0)

w1+w2
,w1, w2 > 0. In this case the basis is realized in [4] or generalized Euler polynomials (4.4).

The work is organized as follows:
In Section 2 we introduce the new approach and we establish its equivalence with previous characterizations through a

circular theorem. In Section 3we give general properties by employing basic tools of linear algebra. In Section 4, we consider
classic examples, in particular Bernoulli, Euler, Hermite and Laguerre polynomials and their possible generalizations not
studied in the literature so far. Finally, in Section 5, we provide explicitly the same classes of Appell polynomials, by using
an ad hoc Mathematica code based on the new definition.

2. A determinantal definition

Let us consider Pn(x), n = 0, 1, . . . the sequence of polynomials of degree n defined by

P0(x) =
1
β0

Pn(x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · ·

(
n− 1
1

)
βn−2

(n
1

)
βn−1

0 0 β0 · · · · · ·

(
n− 1
2

)
βn−3

(n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n
n− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . .
(6)

where β0, β1, . . . , βn ∈ R, β0 6= 0.



1530 F.A. Costabile, E. Longo / Journal of Computational and Applied Mathematics 234 (2010) 1528–1542

Then we have

Theorem 1. The following relation holds

P ′n(x) = nPn−1(x) n = 1, 2, . . . . (7)

Proof. Using the properties of linearity we can differentiate the determinant (6), expand the resulting determinant with
respect to the first column and recognize the factor Pn−1(x) after multiplication of the i-th row by i − 1, i = 2, . . . , n and
j-th column by 1j , j = 1, . . . , n. �

Theorem 2. The polynomials Pn(x), defined in (6), can be written in the form:

Pn(x) = αn +
(n
1

)
αn−1x+

(n
2

)
αn−2x2 + · · · + α0xn, n = 0, 1, . . . (8)

where

α0 =
1
β0
, (9)

αi =
(−1)i

(β0)
i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi

β0

(
2
1

)
β1 · · · · · ·

(
i− 1
1

)
βi−2

(
i
1

)
βi−1

0 β0 · · · · · ·

(
i− 1
2

)
βi−3

(
i
2

)
βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
i
i− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, 2, . . . , n. (10)

Proof. The desired result follows by expanding the determinant Pn(x)with respect to the first row. �

Corollary 3. For the polynomials Pn(x) we have

Pn(x) =
n∑
j=0

(
n
j

)
Pn−j(0)xj, n = 0, 1, . . . . (11)

Proof. Taking into account

Pi(0) = αi, i = 0, 1, . . . , n, (12)

relation (11) is a consequence of (8). �

Remark 4 (Computation). For computation we can observe that αn is a n-order determinant of an upper Hessenberg matrix
and it is known that the algorithm of Gaussian elimination without pivoting for computing the determinant of an upper
Hessenbergmatrix is stable [18, p. 27].With the same algorithm, from (6), we can calculate the value of an Appell polynomial
in a fixed point, without the explicit calculation of the coefficients.

Theorem 5. For the coefficients αi in (8) the following relations hold

α0 =
1
β0
, (13)

αi = −
1
β0

i−1∑
k=0

(
i
k

)
βi−kαk, i = 1, 2, . . . , n. (14)

Proof. Set αi = (−1)i (β0)i+1 αi for i = 1, 2, . . . , n. From (10) αi is a determinant of an upper Hessenberg matrix of order i
and for that [17] we have

αi =

i−1∑
k=0

(−1)i−k−1hk+1,iqk(i)αk, (15)
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where

hl,m =


βm for l = 1,(
m
l− 1

)
βm−l+1 for 1 < l ≤ m+ 1,

0 for l > m+ 1,

l,m = 1, 2, . . . , i, (16)

and

qk(i) =
i∏

j=k+2

hj,j−1 = (β0)i−k−1 , k = 0, 1, . . . , i− 2, (17)

qi−1(i) = 1. (18)

By virtue of the previous setting, (15) implies

αi =

i−2∑
k=0

(−1)i−k−1
(
i
k

)
βi−k (β0)

i−k−1 αk +

(
i
i− 1

)
β1αi−1

= (−1)i (β0)i+1
(
−
1
β0

i−1∑
k=0

(
i
k

)
βi−k

1
(−1)k (β0)k+1

αk

)

= (−1)i (β0)i+1
(
−
1
β0

i−1∑
k=0

(
i
k

)
βi−kαk

)
and the proof is concluded. �

Theorem 6. Let Pn(x) be the sequence of Appell polynomials with generating function a (h) as in (4) and (5). If β0, β1, . . . , βn,
with β0 6= 0, are the coefficients of Taylor series expansion of function 1

a(h) we have

P0(x) =
1
β0

(19)

Pn(x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · ·

(
n− 1
1

)
βn−2

(n
1

)
βn−1

0 0 β0 · · · · · ·

(
n− 1
2

)
βn−3

(n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n
n− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . . (20)

Proof. Let Pn(x) be the sequence of Appell polynomials with generating function a(h) i.e.

a(h) = α0 +
h
1!
α1 +

h2

2!
α2 + · · · +

hn

n!
αn + · · · (21)

and

a(h)ehx =
∞∑
n=0

Pn(x)
hn

n!
. (22)

Let b(h) be such that a(h)b(h) = 1. We can write b(h) as its Taylor series expansion (in h) at the origin, that is

b(h) = β0 +
h
1!
β1 +

h2

2!
β2 + · · · +

hn

n!
βn + · · · . (23)

Then, according to the Cauchy-product rules, we find
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a(h)b(h) =
∞∑
n=0

n∑
k=0

(n
k

)
αkβn−k

hn

n!

by which

n∑
k=0

(n
k

)
αkβn−k =

{
1 for n = 0,
0 for n > 0.

Hence
β0 =

1
α0
,

βn = −
1
α0

(
n∑
k=1

(n
k

)
αkβn−k

)
, n = 1, 2, . . . .

(24)

Let us multiply both sides of Eq. (22) by 1
a(h) and, in the same equation, replace functions e

hx and 1
a(h) by their Taylor series

expansion at the origin; then (22) becomes

∞∑
n=0

xnhn

n!
=

∞∑
n=0

Pn(x)
hn

n!

∞∑
n=0

hn

n!
βn. (25)

By multiplying the series on the left hand side of (25) according to the Cauchy-product rules, the previous equality leads to
the following system of infinite equations in the unknown Pn(x), n = 0, 1, . . .

P0(x)β0 = 1,
P0(x)β1 + P1(x)β0 = x,

P0(x)β2 +
(
2
1

)
P1(x)β1 + P2(x)β0 = x2,

...

P0(x)βn +
(n
1

)
P1(x)βn−1 + · · · + Pn(x)β0 = xn,

....

(26)

The special form of the previous system (lower triangular) allows us to work out the unknown Pn(x) operating with the first
n+ 1 equations, only by applying the Cramer rule:

Pn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 1
β1 β0 0 · · · 0 x

β2

(
2
1

)
β1 β0 · · · 0 x2

...
. . .

...

βn−1

(
n− 1
1

)
βn−2 · · · · · · β0 xi−1

βn

(n
1

)
βn−1 · · · · · ·

(
n
n− 1

)
β1 xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 0
β1 β0 0 · · · 0 0

β2

(
2
1

)
β1 β0 · · · 0 0

...
. . .

...

βn−1

(
n− 1
1

)
βn−2 · · · · · · β0 0

βn

(n
1

)
βn−1 · · · · · ·

(
n
n− 1

)
β1 β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
1

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 1
β1 β0 0 · · · 0 x

β2

(
2
1

)
β1 β0 · · · 0 x2

...
. . .

...

βn−1

(
n− 1
1

)
βn−2 · · · · · · β0 xi−1

βn

(n
1

)
βn−1 · · · · · ·

(
n
n− 1

)
β1 xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By transposition of the previous, we have

Pn(x) =
1

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn−1 βn

0 β0

(
2
1

)
β1 · · ·

(
n− 1
1

)
βn−2

(n
1

)
βn−1

0 0 β0
...

...
. . .

...

0 0 0 · · · β0

(
n
n− 1

)
β1

1 x x2 · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, . . . (27)

that is exactly (20) after n circular row exchanges: more precisely, the i-th row moves to the (i + 1)-th position for
i = 1, . . . , n− 1, the n-th row goes to the first position. �

Theorems 1, 2 and 6 concur to assert the validity of the following

Theorem 7 (Circular). For Appell polynomials we have

(2 and 3) −→ (4 and 5)
↖ ↙

(6)
(28)

Proof.

(2 and 3)⇒ (4 and 5) Follows from Appell’s proof [1].
(4 and 5)⇒ (6) Follows from Theorem 6.
(6)⇒ (2 and 3) Follows from Theorems 1 and 2. �

Therefore we can give, now, the following

Definition 8. The Appell polynomial of degree n, denoted by An(x), is defined by

A0(x) =
1
β0

(29)

An(x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · ·

(
n− 1
1

)
βn−2

(n
1

)
βn−1

0 0 β0 · · · · · ·

(
n− 1
2

)
βn−3

(n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n
n− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . (30)

where β0, β1, . . . , βn ∈ R, β0 6= 0.
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3. General properties of Appell polynomials

By elementary tools of linear algebrawe can prove general properties of Appell polynomials, some of themknown, others
not known.

Theorem 9 (Recurrence). For Appell sequence An(x) we have

An(x) =
1
β0

(
xn −

n−1∑
k=0

(n
k

)
βn−kAk(x)

)
, n = 1, 2, . . . . (31)

Proof. The claimed thesis follows by observing that An(x) is a determinant of an upper Hessenberg matrix of order n + 1
[17] as for Theorem 5. �

Corollary 10. If An(x) is an Appell polynomial then

xn =
n∑
k=0

(n
k

)
βn−kAk(x), n = 0, 1, . . . . (32)

Proof. The result follows from (31). �

Let us consider two sequences of Appell polynomials

An(x), Bn(x) n = 0, 1, . . .

and indicate with (AB)n(x) the polynomial that is obtained replacing in An(x) powers x0, x1, . . . , xn, respectively, with the
polynomials B0(x), B1(x), . . . , Bn(x). The following theorem can be proven.

Theorem 11. The sequences

(i) λAn(x)+ µBn(x), λ, µ ∈ R,
(ii) (AB)n(x)

are sequences of Appell polynomials again.

Proof. (i) follow from the property of linearity of determinant.
(ii) by definition we have

(AB)n(x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0(x) B1(x) B2(x) · · · · · · Bn−1(x) Bn(x)
β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · ·

(
n− 1
1

)
βn−2

(n
1

)
βn−1

0 0 β0 · · · · · ·

(
n− 1
2

)
βn−3

(n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n
n− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding the determinant (AB)n(x)with respect to the first row we obtain

(AB)n (x) =
(−1)n

(β0)
n+1

n∑
j=0

(−1)j (β0)j
(
n
j

)
αn−jBj(x)

=

n∑
j=0

(−1)n−j

(β0)
n−j+1

(
n
j

)
αn−jBj(x), (33)
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where

α0 = 1,

αi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi

β0

(
2
1

)
β1 · · · · · ·

(
i− 1
1

)
βi−2

(
i
1

)
βi−1

0 β0 · · · · · ·

(
i− 1
2

)
βi−3

(
i
2

)
βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
i
i− 1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, 2, . . . , n.

We observe that

Ai(0) =
(−1)i

(β0)
i+1 αi, i = 1, 2, . . . , n

and hence (33) becomes

(AB)n(x) =
n∑
j=0

(
n
j

)
An−j(0)Bj(x). (34)

Differentiating both hand sides of (34) and since Bj(x) is a sequence of Appell polynomials, we deduce

((AB)n(x))′ =
n∑
j=0

(
n
j

)
An−j(0)B′j(x)

=

n∑
j=1

j
(
n
j

)
An−j(0)Bj−1(x)

= n
n∑
j=1

(
n− 1
j− 1

)
An−j(0)Bj−1 (x)

= n
n−1∑
j=0

(
n− 1
j

)
An−1−j(0)Bj (x)

= n(AB)n−1(x). �

Theorem 12 ([10, p. 27]). For Appell polynomials An(x) we have

An (x+ y) =
n∑
i=0

(n
i

)
Ai (x) yn−i, n = 0, 1, . . . . (35)

Proof. Starting with the definition in (30) and using the identity

(x+ y)i =
i∑
k=0

(
i
k

)
ykxi−k, (36)

we infer

An (x+ y) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (x+ y)1 · · · (x+ y)n−1 (x+ y)n

β0 β1 · · · βn−1 βn

0
. . .

...
...

. . .
...

0 · · · · · · β0 β1

(
n
n− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

n∑
i=0

(−1)nyi

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0
(
i
i

)
· · ·

(
n− 1
i

)
xn−1−i

(n
i

)
xn−i

β0 β1 · · · βi−1 βi · · · βn−1 βn

0 β0 · · · βi−2

(
i− 1
1

)
βi−1

(
i
1

)
· · · βn−2

(
n− 1
1

)
βn−1

(n
1

)
...

. . .
. . .

...
...

. . . β0 β1

(
i
i− 1

)
· · · βn−i+1

(
n
i− 1

)
... 0 β0 · · · βn−i

(n
i

)
... 0

. . .
...

0 · · · · · · · · · · · · 0 β0 β1

(
n
n− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∑
i=0

yi
(−1)n−i

(β0)
n−i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
i
i

) (
i+ 1
i

)
x1

(
i+ 2
i

)
x2 · · ·

(
n− 1
i

)
xn−i−1

(n
i

)
xn−i

β0 β1

(
i+ 1
i

)
β2

(
i+ 2
i

)
· · · βn−i−1

(
n− 1
i

)
βn−i

(n
i

)
0 β0 β1

(
i+ 2
i+ 1

)
· · · βn−i−2

(
n− 1
i+ 1

)
βn−i−1

(
n
i+ 1

)
... β0

...
...

. . .
...

0 · · · · · · 0 β0 β1

(
n
n− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We divide, now, each j-th column, j = 2, . . . , n − i + 1, for
(
i+j−1
i

)
and multiply each h-th row, h = 3, . . . , n − i + 1, for(

i+h−2
i

)
. Thus we finally obtain

An (x+ y) =
n∑
i=0

(
i+1
i

)
· · ·
( n
i

)(
i+1
i

)
· · ·

(
n−1
i

)yi (−1)n−i
(β0)

n−i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 · · · xn−i−1 xn−i

β0 β1 β2 · · · βn−i−1 βn−i

0 β0 β1

(
2
1

)
· · · βn−i−2

(
n− i− 1
1

)
βn−i−1

(
n− i
1

)
... β0

...
...

. . .
...

0 . . . . . . 0 β0 β1

(
n− i
n− i− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∑
i=0

(n
i

)
An−i(x)yi =

n∑
i=0

(n
i

)
Ai(x)yn−i. �

Corollary 13 (Forward Difference). For Appell polynomials An(x) we have

∆An(x) ≡ An (x+ 1)− An (x) =
n−1∑
i=0

(n
i

)
Ai(x), n = 0, 1, . . . . (37)

Proof. The desired result follows from (35) with y = 1. �

Corollary 14 (Multiplication Theorem). For Appell polynomials An(x) we have

An (mx) =
n∑
i=0

(n
i

)
Ai (x) (m− 1)n−i xn−i,

n = 0, 1, . . . ,
m = 1, 2, . . . . (38)

Proof. The desired result follows from (35) with y = x (m− 1). �
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Theorem 15 (Symmetry). For Appell polynomials An(x) the following relation holds(
An (h− x) = (−1)nAn(x)

)
⇔
(
An(h) = (−1)nAn(0)

)
,

h ∈ R
n = 0, 1, . . . . (39)

Proof. (⇒) Follows from the hypothesis with x = 0
(⇐) Using (35) we find

An (h− x) =
n∑
i=0

(n
i

)
Ai (h) (−x)n−i

= (−1)n
n∑
i=0

(n
i

)
Ai (h) (−1)ixn−i

= (−1)n
n∑
i=0

(n
i

)
An−i(h) (−1) n−ixi.

Therefore, using the assumptions and (11), we have

An (h− x) = (−1)n
n∑
i=0

(n
i

)
An−i(0)xi

= (−1)nAn(x). �

Lemma 16. For the numbers α2n+1 and β2n+1 we have

(α2n+1 = 0)⇐⇒ (β2n+1 = 0) , n = 0, 1, . . . . (40)

Proof. As in (24), we know that
β0 =

1
α 0
,

βn = −
1
α0

(
n∑
k=1

(n
k

)
αkβn−k

)
, n = 1, 2, . . . .

Hence
β1 = −

1
α0
α1β0,

β2n+1 = −
1
α0

(
2n+ 1
1

)
α1β2n −

1
α0

(
n∑
k=1

[(
2n+ 1
2k

)
α2kβ2(n−k)+1 +

(
2n+ 1
2k+ 1

)
α2k+1β2(n−k)

])
,

n = 1, 2, . . .

and

α2n+1 = 0, n = 0, 1, . . .

⇒


β1 = 0

β2n+1 = −
1
α0

n∑
k=1

(
2n+ 1
2k

)
α2kβ2(n−k)+1, n = 1, 2, . . .

⇒ β2n+1 = 0, n = 0, 1, . . . .

In the same way, again from (24), we have
α0 =

1
β0

αn = −
1
β0

(
n−1∑
k=0

(n
k

)
αkβn−k

)
, n = 1, 2, . . . .

As a consequence
α1 = −

1
β0
α0β1,

α2n+1 = −
1
β0

(
n−1∑
k=0

[(
2n+ 1
2k

)
α2kβ2(n−k)+1 +

(
2n+ 1
2k+ 1

)
α2k+1β2(n−k)

])
−
1
β0

(
2n+ 1
2n

)
α2nβ1,

n = 1, 2, . . .
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and

β2n+1 = 0, n = 0, 1, . . .

⇒


α1 = 0,

α2n+1 = −
1
β0

n−1∑
k=0

(
2n+ 1
2k+ 1

)
α2k+1β2(n−k), n = 1, 2, . . .

⇒ α2n+1 = 0, n = 0, 1, . . . . �

Theorem 17. For Appell polynomials An(x) the following relation holds(
An (−x) = (−1)nAn(x)

)
⇐⇒ (β2n+1 = 0) , n = 0, 1, . . . . (41)

Proof. By Theorem 15 with h = 0 and Lemma 16, we find

(An (−x) = (−1)nAn(x))⇐⇒ (An(0) = (−1)nAn(0))⇐⇒ (A2n+1(0) = 0)⇐⇒ (α2n+1 = 0)⇐⇒ (β2n+1 = 0) . �

Theorem 18. For each n ≥ 1 it is true that∫ x

0
An(x)dx =

1
n+ 1

[An+1(x)− An+1(0)] (42)

and ∫ 1

0
An(x)dx =

1
n+ 1

n∑
i=0

(
n+ 1
i

)
Ai(0). (43)

Proof. Equality (42) follows from (7). Moreover, for x = 1 we find∫ 1

0
An(x)dx =

1
n+ 1

[An+1(1)− An+1(0)] (44)

and, using (35) with x = 0 and y = 1, we obtain

An+1(1) =
n+1∑
i=0

(
n+ 1
i

)
Ai(0), (45)

so, by (45), relation (44) becomes∫ 1

0
An(x)dx =

1
n+ 1

[
n+1∑
i=0

(
n+ 1
i

)
Ai(0)− An+1(0)

]

=
1
n+ 1

n∑
i=0

(
n+ 1
i

)
Ai(0). �

4. Examples

In this section we present some examples.

4.1. Bernoulli polynomials

Placing

β0 = 1, (46)

βi =
1
i+ 1

, i = 1, . . . , n, (47)

in (29) and (30), the resulting Appell polynomial is known as Bernoulli polynomial [2]. The determinantal form of this
polynomial has been considered in [17] and the fundamental properties have also been obtained through elementary
algebraic tools.
Moreover the following identity can, now, be derived.
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Theorem 19. For Bernoulli polynomials Bn(x) we have

mn−1
m−1∑
i=0

Bn

(
x+

i
m

)
=

n∑
i=0

(n
i

)
Bi(x) (m− 1)n−i xn−i,

n = 0, 1, . . . ,
m = 1, 2, . . . . (48)

Proof. It is known [19] that

Bn (mx) = mn−1
m−1∑
i=0

Bn

(
x+

i
m

)
,

n = 0, 1, . . . ,
m = 1, 2, . . . (49)

and hence from (38) and (49) the proof is concluded. �

4.1.1. Generalized Bernoulli polynomials
By direct inspection of (46) and (47) we deduce

βi =

∫ 1

0
xidx, i = 0, 1, . . . , n. (50)

Analogously, we can consider the weighted coefficients

βwi =

∫ 1

0
w(x)xidx, i = 0, 1, . . . , n, (51)

wherew(x) is a general weight function.
In particular by taking the classical Jacobi weight,w(x) = (1− x)α xβ , α, β > −1, we obtain

βwi =
Γ (α + 1)Γ (β + i+ 1)
Γ (α + β + i+ 2)

, i = 0, 1, . . . , n. (52)

The relative Appell polynomials, called now Bernoulli–Jacobi, are not considered in the literature to our knowledge, except
for the case α = β = 0, for which we find again the Bernoulli polynomials. For the case α = β = −1/2 it is useful to
normalize by setting

βwi =
1
π

Γ (α + 1)Γ (β + i+ 1)
Γ (α + β + i+ 2)

, i = 0, 1, . . . , n. (53)

4.2. Hermite normalized polynomials

Assuming

β0 = 1, (54)

βwi =
1
√
π

∫
+∞

−∞

e−x
2
xidx =


0 for i odd
(i− 1)(i− 3) · · · · · 3 · 1

2
i
2

for i even , i = 1, . . . , n, (55)

in (29) and (30), the related Appell polynomials coincide with the well-known Hermite normalized polynomials [5].
It is known [9] that Hermite normalized polynomials are the only oneswhich are, at the same time, orthogonal and Appell

polynomials.
The Hessenberg determinantal form does not seem to be known in literature.

4.2.1. Generalized Hermite polynomials
Assuming

βwi =
1
√
π

∫
+∞

−∞

e−|x|
α
xidx =


0 for i odd i = 0, 1, . . . , n,
2

α
√
π
Γ

(
i+ 1
α

)
for i even α > 0, (56)

in (29) and (30), we obtain a wider class of Appell polynomials.
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4.2.2. Generalized Laguerre polynomials
Placing

βi =

∫
+∞

0
e−sxxidx =

1
s
Γ

(
i+ 1
s

)
, s > 0, i = 1, . . . , n, (57)

in (29) and (30), we obtain a new class of Appell polynomials, called now Appell–Laguerre, that does not seem to be known
in literature, except for the case s = 1 [5].

4.3. Euler polynomials

Placing

β0 = 1, (58)

βi =
1
2
, i = 1, . . . , n, (59)

in (29) and (30), the resulting Appell polynomials are known as Euler polynomials [4]. The determinantal form seems new.
In fact we have

E0(x) = 1, (60)

En(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

1
1
2

1
2

· · · · · ·
1
2

1
2

0 1
1
2

(
2
1

)
· · · · · ·

1
2

(
n− 1
1

)
1
2

(n
1

)
0 0 1 · · · · · ·

1
2

(
n− 1
2

)
1
2

(n
2

)
...

. . .
...

...
...

. . .
...

...

0 · · · · · · · · · 0 1
1
2

(
n
n− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . . . (61)

Concerning Euler polynomials, all the properties proved in general for Appell polynomials hold. In particular we have the
following result.

Theorem 20. For Euler polynomials En(x) we have

En(x) = xn −
1
2n

n−1∑
k=0

(n
k

)
Ek(x), n = 1, 2, . . . . (62)

Proof. The claimed thesis follows from (31). �

Theorem 21. For Euler polynomials En(x) we have

n∑
i=0

(n
i

)
Ei(x) (m− 1)n−i xn−i =


mn

m−1∑
i=0

(−1)iEn

(
x+

i
m

)
,

n = 0, 1, . . . ,
m = 1, 3, . . . ,

−
2
n+ 1

mn
m−1∑
i=0

(−1)iBn+1

(
x+

i
m

)
,
n = 0, 1, . . . ,
m = 2, 4, . . . .

(63)

Proof. In literature [19] it is known that

En (mx) =


mn

m−1∑
i=0

(−1)iEn

(
x+

i
m

)
,

n = 0, 1, . . . ,
m = 1, 3, . . . ,

−
2
n+ 1

mn
m−1∑
i=0

(−1)iBn+1

(
x+

i
m

)
,
n = 0, 1, . . . ,
m = 2, 4, . . .

(64)

and therefore, from (38) and (64), the desired result follows. �
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4.4. Generalized Euler polynomials

From (59) we can write

βi = Mxi, i = 1, . . . , n, (65)

whereMf = f (1)+f (0)
2 . In a similar way, we can consider the weighted coefficients

βwi = M
wxi, i = 1, . . . , n, (66)

whereMwf = w1f (1)+w2f (0)
w1+w2

, w1, w2 > 0, i.e.:

βwi =
w1

w1 + w2
, i = 1, . . . , n. (67)

5. Numerical examples

By the choice of the coefficients βi in definition (30) we can compute, using a Mathematica code, the relative Appell
polynomial

An(x) = c0 + c1x+ · · · + cnxn. (68)

5.1. Bernoulli–Jacobi/Tchebycheff polynomials

Placing in (53) α = β = − 12 we have

c0 c1 c2 c3 c4 c5 c6 c7 c8
n = 0 1

n = 1 −
1
2

1

n = 2
1
8

−1 1

n = 3
1
16

3
8

−
3
2

1

n = 4 −
7
128

1
4

3
4

−2 1

n = 5 −
13
256

−
35
128

5
8

5
4

−
5
2

1

n = 6
71
1024

−
39
128

−
105
128

5
4

15
8

−3 1

n = 7
187
2048

497
1024

−
273
256

−
245
128

35
16

21
8
−
7
2

1

n = 8 −
5479
32768

187
256

497
256

−
91
32

−
245
64

7
2

7
2
−4 1

5.2. Generalized Laguerre polynomials

Setting in (57) s = 1 we have the normalized Appell–Laguerre polynomials [5]
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

n = 0 1
n = 1 −1 1
n = 2 0 −2 1
n = 3 0 0 −3 1
n = 4 0 0 0 −4 1
n = 5 0 0 0 0 −5 1
n = 6 0 0 0 0 0 −6 1
n = 7 0 0 0 0 0 0 −7 1
n = 8 0 0 0 0 0 0 0 −8 1
n = 9 0 0 0 0 0 0 0 0 −9 1
n = 10 0 0 0 0 0 0 0 0 0 −10 1
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5.3. Generalized Euler polynomials

Placing in (67)w1 = 1
2 , w2 =

1
3 we find

c0 c1 c2 c3 c4 c5 c6 c7 c8
n = 0 1

n = 1 −
3
5

1

n = 2
3
25

−
6
5

1

n = 3
33
125

9
25

−
9
5

1

n = 4 −
141
625

132
125

18
25

−
12
5

1

n = 5 −
267
625

−
141
125

66
25

6
5

−3 1

n = 6
2751
3125

−
1602
625

−
423
125

132
25

9
5

−
18
5

1

n = 7
20109
15625

19257
3125

−
5607
625

−
987
125

231
25

63
25

−
21
5

1

n = 8 −
448761
78125

160872
15625

77028
3125

−
14952
625

−
1974
125

1848
125

84
25

−
24
5

1
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