370

TIME COURSE OF TREATMENT-RELATED ADVERSE EVENTS (TRAES) DURING DOSTARLIMAB THERAPY IN THE GARNET TRIAL

¹Bhavana Pothuri*, ²Dominique Berton, ³Victor Moreno, ⁴Ana Oaknin, ⁵Jose Manuel Trigo Perez, ⁶Giuseppe Curigliano, ⁷Susan Ellard, ⁸Joanna Pikiel, ⁹Susana Banerjee, ¹⁰Maria-Pilar Barretina-Ginesta, ¹¹Rowan Miller, ¹²Anna Tinker, ¹³Andrea Jewell, ¹⁴Ruth Plummer, ¹⁵Florence Joly, ¹⁶Jennifer Veneris, ¹⁶Tao Duan, ¹⁷Thierry Andre. ¹Gynecologic Oncology Group (GOG) and Department of Obstetrics/Gynecology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA; ²GINECO and Institut de Cancerologie de l'Ouest, Centre René Gauducheau, Saint-Herblain, France; ³START Madrid-FJD, Fundación Jiménez Diaz Hospital, Madrid, Spain; ⁴Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁵Medical Oncology Department, Hospital Virgen de la Victoria IBIMA, Málaga, Spain; ⁶Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, and University of Milano, Milan, Italy; ⁷BC Cancer-Kelowna, British Columbia, Canada; ⁸Regional Center of Oncology, Gdansk, Poland; ⁹The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; 10 Institut Català d'Oncologia, Hospital Universitari Dr. J. Trueta, Girona, Spain; ¹¹University College London, St. Bartholomew's Hospital London, London, UK; ¹²BC Cancer, Vancouver, British Columbia, Canada: 13 University of Kansas Medical Center, Kansas City, KS, USA; 14 Northern Institute for Cancer Research Medical School, University of Newcastle upon Tyne, London, UK; ¹⁵Medical Oncology Department, Centre Francois Baclesse, Caen, France; ¹⁶GlaxoSmithKline, London, UK; ¹⁷Sorbonne University and Saint-Antoine Hospital, Paris, France

Background Dostarlimab is a humanized programmed death 1 (PD-1) receptor monoclonal antibody that blocks interaction with the ligands PD-L1 and PD-L2. Dostarlimab is approved as a monotherapy in adult patients (pts) with mismatch repair deficient (dMMR; US) or dMMR/microsatellite-instability high (EU) recurrent or advanced endometrial cancer that has progressed progressing on or following prior treatment with a platinum-containing regimen. GARNET is a phase 1 study assessing antitumor activity and safety of dostarlimab monotherapy in pts with solid tumors.

Methods Pts with dMMR solid tumors, mismatch repair proficient endometrial cancer, and non-small cell lung cancer that progressed on or after prior therapy received 500 mg of dostarlimab IV every 3 weeks (Q3W) for 4 cycles, then 1000 mg IV every 6 weeks (Q6W) for up to 2 years or until disease progression or discontinuation. Here, we report TRAEs by cycle.

Results A total of 515 pts were included. Of these pts, 60 (11.7%) experienced TRAEs leading to treatment interruption, and 25 (4.9%) experienced TRAEs leading to discontinuation. TRAEs of any grade with overall incidence of \geq 10% of pts are shown (table 1). The majority of TRAEs occurred during cycles 1–3, with highest incidence during cycle 1. Grade 3 or 4 TRAEs were rare; those seen in \geq 1% of pts are shown. Immune-related (ir) TRAEs of any grade with overall incidence of \geq 2% of pts are shown. Most cases (96.9%) of irTRAEs occurred during cycles 1–8. The peak incidence of hypothyroidism occurred during cycles 1–8. The peak incidence of hypothyroidism occurred during cycles 5–8, compared with cycles 1–4. No deaths were attributed to dostarlimab.

Abstract 370 Table 1	Time course of adverse events in the
GARNET trial	

Preferred term, n (%)	Overall N=515	500 mg Q3W				1000 mg Q6W			
		C1 N=515	C2 N=468	C3 N=421	C4 N=382	C5 N=322	C6 N=250	C7 N=214	C8 N=195
		Any-gra	de TRAEs o	curring in ≥1	0% of pts				
Fatigue	77 (15.0)	34 (6.6)	11 (2.4)	7 (1.7)	4 (1.0)	3 (0.9)	5 (2.0)	2 (0.9)	0
Diarrhea	66 (12.8)	27 (5.2)	15 (3.2)	9 (2.1)	4 (1.0)	2 (0.6)	3 (1.2)	3 (1.4)	0
Asthenia	59 (11.5)	27 (5.2)	12 (2.6)	7 (1.7)	6 (1.6)	2 (0.6)	2 (0.8)	1 (0.5)	1 (0.5)
Nausea	56 (10.9)	23 (4.5)	12 (2.6)	8 (1.9)	5 (1.3)	3 (0.9)	2 (0.8)	1 (0.5)	1 (0.5)
		Grade	≥3 TRAEs o	curring in ≥1	% of pts				
Anemia	9 (1.7)	2 (0.4)	3 (0.6)	1 (0.2)	1 (0.3)	0	1 (0.4)	0	0
Fatigue	8 (1.6)	2 (0.4)	1 (0.2)	1 (0.2)	0	3 (0.9)	0	0	0
Lipase increased	7 (1.4)	0	2 (0.4)	2 (0.5)	0	1 (0.3)	0	0	0
Alanine aminotransferase increased	5 (1.0)	2 (0.4)	0	0	1 (0.3)	1 (0.3)	0	0	1 (0.5)
Diarrhea	5 (1.0)	0	1 (0.2)	2 (0.5)	1 (0.3)	0	1 (0.4)	0	0
		Any-gra	ide irTRAEs o	occurring in ≥	2% of pts				
Hypothyroidism	34 (6.6)	0	2 (0.4)	3 (0.7)	13 (3.4)	2 (0.6)	5 (2.0)	5 (2.3)	3 (1.5)
Diarrhea	19 (3.7)	3 (0.6)	8 (1.7)	2 (0.5)	3 (0.8)	0	2 (0.8)	0	0
	11 (2.1)	4 (0.8)	0	0	3 (0.8)	2 (0.6)	1 (0.4)	0	1 (0.5)

Conclusions No new safety signals were detected with dostarlimab compared to other anti–PD-1 inhibitors. Most TRAEs were low grade. The majority of TRAEs and grade ≥3 TRAEs occurred in the first 3 cycles (first 12 weeks), but some cases occurred later, suggesting a need for ongoing monitoring. Few increases in the incidence of TRAEs were seen during cycle 5 following the transition to the 1000-mg Q6W dosing schedule; the TRAEs with increased incidence after the transition were fatigue and lipase increased. An increase in the frequency of the irTRAE hypothyroidism was seen after transitioning to the 1000-mg Q6W schedule.

http://dx.doi.org/10.1136/jitc-2021-SITC2021.370