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Abstract
Beauvericin (BEA) is a member of the enniatin family of mycotoxins which has received increasing interest because of frequent
occurrence in food and feed. By its ionophoric properties, BEA is able to alter membrane ion permeability uncoupling oxidative
phosphorylation. It was also shown to alter oocyte mitochondrial function. In this study, the effects of BEA at 0.5, 1, ,3 and 5
μmol/L on expression of genes coding for key proteins of the mitochondrial chain in ovine oocytes and cumulus cells were
evaluated at different time points of in vitro maturation (IVM), germinal vesicle (GV; t = 0), metaphase I (MI; t = 7 h), and
metaphase II (MII; t = 24 h). The expression of nuclear (TFAM, NDUFA12, UQCRH, COX4, ATP5O) and mitochondrial (ND1,
COX1, COX2, ATP6, ATP8) genes coding for proteins of Complexes I, III, IV, and V was analyzed by qRT-PCR. After BEA
exposure, perturbed expression of all genes was observed in cumulus cells and in oocytes at the MI stage (7 h IVM). Expression
of ND1, UQCRH, COX4 and ATP5O was downregulated in cumulus cells and upregulated in oocytes starting from 0.5 μmol/L
BEA. Expression of TFAM, NDUFA12, COX1, COX2, ATP6, and ATP8 was upregulated starting from 1 μmol/L in cumulus
cells and from 3 μmol/L in oocytes. Cumulus cells and oocytes displayed different gene expression patterns upon BEA exposure.
The downregulation in cumulus cells of four genes coding for proteins of mitochondrial complexes could represent a major toxic
event induced by BEA on the cumulus-oocyte complex which may result in mitochondrial functional alteration.
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ABC ATP-binding cassette

ATP Adenosine triphosphate
ATP5O ATP synthase O subunit
ATP6 ATP synthase 6
ATP8 ATP synthase 8
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EFSA European Food Safety Authority
GV Germinal vesicle
IVM In vitro maturation
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MII Metaphase II
mtDNA Mitochondrial DNA
ND NADH dehydrogenase
NDUFA12 NADH: ubiquinone oxidoreductase subunit A12
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TFAM Mitochondrial transcription factor A
UQCRH Ubiquinol-cytochrome c reductase hinge
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Introduction

Beauvericin (BEA) is an is an enniatin-type depsipeptide my-
cotoxin which is not routinely included in mycotoxin analy-
ses, most likely because no specific regulations for this group
of toxins in food and feed exist. Nevertheless, its frequency of
analysis is rapidly increasing leading to more frequent reports
of its occurrence (Vaclavikova et al. 2013; Gruber-Dorninger
et al. 2017). In recent years, BEA has gained interest in the
scientific community due to its high frequency of occurrence
in food and feed and consequent potential toxicity in humans
and animals (Luz et al. 2017). BEA is produced by various
fungi, including several Fusarium species, in different regions
throughout the world and the contamination of BEA has been
reported as a serious problem in Southern Europe (Santini
et al. 2012; Luz et al. 2017). It has been detected in 80% of
analyzed food items and in 79% of feed (Maranghi et al.
2018). In food, it is usually found in cereal grains and
cereal-based products as well as in eggs, nuts, dried fruits,
coffee, and medicinal herbs (Mallebrera et al. 2018).
Concentrations of BEA in grains may range from a few mi-
crograms to over 500 mg/kg (Luz et al. 2017). There is a
concern for infants exposed to BEA through the daily con-
sumption of human breast milk, in which BEA has been re-
ported at concentrations up to 0.019 ng/mL (Braun et al.
2018). In feed, it is found in cereals (Gruber-Dorninger et al.
2017; Tolosa et al. 2019) and maize silage (Reisinger et al.
2019), in a concentration ranging from a few micrograms to
milligrams per kilograms (Streit et al. 2013). The common use
of the above raw materials as ingredients in feed formulations
therefore also potentially exposes livestock to BEA.

BEA is produced by Fusarium species (Wu et al. 2018). It is
a cyclic hexadepsipeptide, that consists of an alternating se-
quence of three D-a-hydroxy-isovaleric acid-(2-hydroxy-3-
methylbutanoic acid) and three N-methyl-L-phenylalanine moi-
eties (Taevernier et al. 2016). It is a lipophilic molecule with
ionophoric properties, capable of being incorporated into mam-
malian cell membranes where it can form a structure acting as a
cation-selective channel (Mallebrera et al. 2018). BEA can
form a sandwich structure complex with cations and it increases
ion permeability in biological membranes, thus affecting ionic
homeostasis and cytoplasmic pH (Luz et al. 2017; Mallebrera
et al. 2018). By its channel-forming ability, BEA can selective-
ly direct a flux of calcium ions into the cells, thus activating
apoptotic signaling pathways (Wu et al. 2018). In different cell
systems, BEA led to disturbed mitochondrial function and ap-
optosis (Jow et al. 2004; Kouri et al. 2005; Tonshin et al. 2010;
Prosperini et al. 2013; Mallebrera et al. 2016). A transcriptomic
study by Escrivá et al. (2018) reported that BEA alters the
expression of several genes related to respiratory chain function
in Jurkat cells, a human T lymphocyte cell line. Recently, ox-
idative phosphorylation (OXPHOS) proteins were reported as
the main target for BEA action (Alonso-Garrido et al. 2020).

BEA shows ambivalent biological activities, since it not
only exerts cytotoxic effects on many cell lines but also has
anti-inflammatory, anticancer, antimicrobial, insecticidal, and
nematocidal properties (Mallebrera et al. 2018; Wu et al.
2018; Wu et al. 2019). Due to these beneficial effects, BEA
has the potential to be developed as a drug or as a pesticide
(Wu et al. 2018; Wu et al. 2019; Caloni et al. 2020). Thus,
since its use in medicine and agriculture is foreseeable in the
near future, detailed studies on the consequences of its expo-
sure in humans and animals need to be conducted in depth.
For these reasons, the European Food Safety Authority
(EFSA) paid attention to BEA toxicity. The EFSA panel con-
cluded that acute exposure to BEA should not be a concern to
human health, although it solicited to undertake new relevant
in vivo toxicity studies necessary to state the effects of BEA
chronic exposure (EFSA - European Food Safety Authority,
Panel on Contaminants in the Food Chain 2014).

Following exposure, BEA accumulates in biological fluids
and tissues in lower concentrations than those in contaminated
food and feed (Luz et al. 2017). This could be due to limited
absorption in the gastrointestinal tract (Prosperini et al. 2012),
and efflux into gut lumen, mainly mediated by ATP-binding
cassette (ABC) transporters (Fraeyman et al. 2017). BEA can
accumulate in the serum, muscle, colon, fat, brain, kidney and
liver in its unmetabolized form (Rodriguez-Carrasco et al.
2016). In 2018, Maranghi et al. reported that, in rodents,
BEA targeted the thyroid, kidneys and reproductive systems
in both sexes whereas the spleen is affected in male mice only,
and adrenals and duodenum in female mice only.

Regarding reproduction, Maranghi et al. (2018) reported
that BEA can target specific organs in both sexes and that
males are more susceptible than females to repeated oral
BEA exposure. In this study, in a repeated-dose oral toxicity
test, BEA did not affect ovarian histo-pathological and histo-
morphometric parameters, but it induced genotoxic effects on
ovaries not associated with modifications of serum levels of
sexual steroids. In vitro studies reported direct toxic effects of
BEA on female reproductive cells in livestockmodels, such as
pigs (Santos et al. 2015; Schoevers et al. 2016), cattle
(Albonico et al. 2017), and sheep (Mastrorocco et al. 2019).
Exposure of porcine granulosa cells to BEA decreased their
proliferation in vitro, inhibited mRNA expression of aroma-
tase and upregulated ABC subfamily G member 2 (ABCG2)
expression, both playing a role in steroidogenesis (Santos
et al. 2015); in vitro exposure to BEA strongly decreased
bovine granulosa cell viability by impairing their progesterone
and estradiol production capacity by suppressing of cyto-
chrome P450 family 11 subfamily A member 1 (CYP11A1)
and aromatase mRNA transcription respectively (Albonico
et al. 2017); in addition, BEA impaired cumulus cell function
leading to abnormal oocyte meiosis (Schoevers et al. 2016). In
addition, BEA exposure altered the expression and function of
the multidrug resistance protein 1 (MDR1) by reducing

2 Mycotoxin Res (2021) 37:1–9



adenosine triphosphate (ATP) levels (Schoevers et al. 2016).
Mastrorocco et al. (2019) demonstrated that ovine oocytes
exposed to BEA during in vitro maturation (IVM) underwent
abnormal meiotic progression related to cumulus cell apopto-
sis and damage of mitochondrial arrangement and functional-
ity with carry-over effects on sperm-induced fertilization, em-
bryo development, and blastocyst quality. Considering expo-
sure potential of livestock to BEA, investigations in these
species are of double utility, allowing to obtain data useful
for animal production industry and with translational rele-
vance for human reproductive medicine. In particular, the
sheep is a suitable animal model as it shares many aspects of
reproductive physiology with humans, including basic mech-
anisms controlling ovarian follicle development (Baird 1983;
Ledda et al. 1997; Noakes et al. 2001), oocyte structure, size
andmaturation (Campbell et al. 2003; Leoni et al. 2007; Leoni
et al. 2015), and bioenergetic status during oogenesis
(Cotterill et al. 2013).

Even though previous studies have identified the mito-
chondria as a major cell target of BEA-induced toxicity
(Schoevers et al. 2016; Mastrorocco et al. 2019), no informa-
tion is available to date on the effects of this mycotoxin on the
expression of genes encoding for key proteins of the mito-
chondrial respiratory chain. Therefore, the aim of this study
was to determine whether BEA affects the expression profiles
of genes coding for key proteins of the mitochondrial chain,
both in oocytes and their surrounding cumulus cells, at differ-
ent time points of IVM culture corresponding tomajor meiotic
stages. Genes that code for subunits of the major mitochon-
drial chain complexes I, III, IV, and V were analyzed.
Whenever possible, per each analyzed complex, the expres-
sion of a nuclear and a mitochondrial gene was examined in
order to determine whether BEA may act differently on tran-
scription levels of genes from nuclear or mitochondrial DNA.

Materials and methods

Chemicals

All chemicals for in vitro cultures and analyses were pur-
chased from SIGMA-ALDRICH (Milan, Italy) unless other-
wise indicated. BEA (SIGMA cod. B7510—5 mg—purity >
97%) was dissolved in Dimethyl sulfoxide (DMSO, SIGMA
cod. 276855; 99.9% purity). In order to check the toxin quan-
tity in the vial, BEA has been weighed twice, solubilized in
DMSO and vortexed thoroughly. A 50 mmol/L stock solution
was obtained. Aliquots of this stock solution were stored at −
20 °C. On the day of experiments, the stock solution was
diluted to the final concentrations in a culture medium
(Schoevers et al. 2016; Mastrorocco et al. 2019). All experi-
ments were conducted using a single vial.

Collection of ovaries

Ovaries were recovered at a local slaughterhouse from adult
ewes (< 1 year) subjected to routine veterinary inspection in
accordance with the specific health requirements stated in
Council Directive 89/556/ECC and subsequent modifications.
Ovaries were transported to the laboratory at room tempera-
ture within 4 h from slaughtering.

Oocyte retrieval

For cumulus-oocyte complex (COC) retrieval, ovaries
underwent follicular fluid aspiration using an 18 G needle
followed by slicing (Martino et al. 2012). Follicular contents
were released in sterile Petri dishes containing phosphate-
buffered saline (PBS). Only COCswith several intact cumulus
cell layers and homogeneous cytoplasm were selected for cul-
ture. For each experimental condition (a specific BEA con-
centration or control and a specific IVM time point), 3 repli-
cates (= wells) were performed. In each well, 25 COCs were
cultured and analyzed. After culture, COCs were processed as
described below. In order to obtain the t = 0 samples, part of
COCs were denuded immediately after collection, as de-
scribed below, and oocytes and their related cumulus cells
were stored at − 80 °C in lysis buffer until molecular analysis.

In vitro maturation

In vitro maturation (IVM) was performed as previously re-
ported (Martino et al. 2012). Briefly, TCM-199 medium with
Earle’s salts was used, buffered with 5.87 mmol/L-(2-
hydroxyethyl)-1piperazineethanesulphonic acid (HEPES)
and 33.09 mmol/L sodium bicarbonate and supplemented
with 0.1 g/L L-glutamine, 2.27 mmol/L sodium pyruvate, cal-
cium lactate pentahydrate (1.62 mmol/L Ca2+ and 3.9 mmol/L
lactate), 50 μg/mL gentamicin, 20% (v/v) fetal calf serum
(FCS), gonadotropins (10 μg/mL ovine follicle-stimulating
hormone (FSH), and 20 μg/mL ovine luteinizing hormone
(LH) and 1 μg/mL 17β estradiol. COCs were placed in 400
μL of IVM culture medium/well of a four-well dish (Nunc
Intermed, Roskilde, Denmark), covered with pre-equilibrated
lightweight paraffin oil and cultured in vitro for 24 h at 38.5
°C under 5% CO2 in air. On the day of experiments, BEA
stock solution was diluted to the final concentrations of 0.5, 1,
3, and 5 μmol/L in IVM medium. These concentrations were
selected on the basis of previous studies reporting the in vitro
effect of BEA in several cell lines (Mallebrera et al. 2018;
Maranghi et al. 2018), porcine, and ovine oocytes
(Schoevers et al. 2016; Mastrorocco et al. 2019) and in the
study from Escrivá et al. (2018) on effects of BEA on expres-
sion of genes involved in the OXPHOS and electron transport
chain in Jurkat cells. Moreover, an in vivo study (Mei et al.
2009) reported the same concentrations of BEA in rat plasma
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after oral ingestion of BEA-contaminated feed. Seven and
24 h after IVM, COCs underwent cumulus cell and oocyte
separation by incubation in TCM-199 with 20% FCS contain-
ing 80 IU hyaluronidase/mL and aspiration in and out of finely
drawn glass pipettes. Oocytes denuded at 24 h were evaluated
under a stereomicroscope and only those showing the first
polar body extruded (MII oocytes) and their corresponding
cumulus cells were selected and analyzed separately.
Samples were stored at − 80 °C in a lysis buffer for subsequent
use.

RNA extraction

Total RNAs from control and BEA-exposed oocytes and cu-
mulus cells were isolated using the RNAeasy Mini Kit
(Qiagen, Valencia CA, USA) as per manufacturer’s instruc-
tions. Total RNA (18 μL from each sample) was kept at 70 °C
for 5 min and then chilled on ice. Tenmicroliters of RNAwere
used for reverse transcription-polymerase chain reaction (RT-
PCR). Reverse transcription was performed in a volume of 20
μL, consisting of 10 μL of samples and 10 μL of a mastermix
containing 4 μL 5 × 1st strand buffer, 0.4 μL random primers
(0.09 IU/ml), 0.2 μL RNAse (40 IU/ml), 0.75 μL Superscript
III (200 IU/ml) (Invitrogen, Groningen, The Netherlands), 2
μL dithiothreitol (0.1 mol/L), 1 μL dNTP mix (10 mmol/L),
and 1.65μLH2O. The mixture was incubated at 50 °C for 1 h.
As a negative control, reverse transcriptase was replaced by

H2O (-RT blanks). Samples were subsequently kept at 80 °C
for 15 min and stored at − 20 °C.

Quantitative real-time PCR assay

The list of genes selected for the study, with an indication of
their nuclear or mitochondrial DNA localization, and their
coded protein, is indicated in Table 1. Gene-specific primers
were designed using Primer-BLAST (http://www.ncbi.nlm.
nih.gov/tools/primer-blast) using software default criteria
with predicted products ranging from 100 to 400 bp. Primer
sequences used in the qRT-PCR analyses are presented in
Online Resource 1. Primer amplification efficiency was deter-
mined from standard curves generated by serial dilutions of
cDNA (5-fold each) for each gene in triplicate. Real-time am-
plification reactions were performed in 96 well plates using
SYBR Green detection chemistry and run in triplicate using
the real-time PCR detection system (MyiQ Single-color, Real-
Time Detection System; Bio-Rad). Reactions were prepared
in a total volume of 25 μL containing the following: 1 μL
cDNA, 0.125 μL forward and reverse primers (0.5 μmol/L
each; Isogen, Maarssen, The Netherlands), 12.25 μL iQ
SYBR Green supermix (Bio-Rad Laboratories, Hercules,
CA, USA), and 11.25 μL H2O. Non-template controls were
also included for each primer pair, replacing the template by
H2O. The cyclic conditions were set as follows: initial dena-
turation step of 95 °C for 3 min to activate the DNA

Table 1 Mitochondrial activity–related genes: gene symbol, description, corresponding protein site and role and chromosomal location on ovine
genome

Gene
Symbol

Gene name Protein site and role Location

TFAM Mitochondrial transcription factor A Maintenance and stability of the mitochondrial genome, initiation, and regulation of
mTDNA transcription

Chr. 25

MT-ND1 Mitochondrially encoded NADH
dehydrogenase 1

Subunit of the hydrophobic membrane arm of the complex I. Participation in proton
translocation from the mitochondrial matrix to the inter-membrane space

mTDNA

NDUFA12 NADH: ubiquinone oxidoreductase
subunit A12

Accessory subunit of complex I. Required either as a late step in the assembly of
complex I or in the stability of complex I itself

Chr. 3

UQCRH Ubiquinol-cytochrome c reductase
hinge protein

Subunit 6 of the complex III, also known as mitochondrial hinge protein.
Essential for cytochrome c1 and cytochrome c complex formation

Chr. 1

MT-COX1 Mitochondrially encoded cytochrome c
oxidase I

Subunits forming the catalytic core of the complex IV together with COX3.
Containing the redox metal active centers of the enzyme.

mTDNA

MT-COX2 Mitochondrially encoded cytochrome c
oxidase II

Subunits forming the catalytic core of the complex IV together with COX3.
Containing the redox metal active centers of the enzyme.

mTDNA

COX4 Cytochrome c oxidase subunit 4 Subunit of the complex IV. Involved in the optimization of the electron transfer chain
under different conditions

Chr. 14

MT-ATP6 Mitochondrially encoded ATP synthase
6

Subunit within the non-catalytic transmembrane Fo portion of the complex V. Key
role in the coupling of the proton flow across the membrane with the rotation

mTDNA

MT-ATP8 Mitochondrially encoded ATP synthase
8

Core subunit of the Fo component of the complex V. mTDNA

ATP5O ATP synthase, H+ transporting,
mitochondrial F1 complex, O subunit

Subunit of complex V.
Transmission of conformational changes and proton conductance.

Chr. 1

Chr, chromosome; mT, mitochondrial
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polymerase, followed by 40 cycles of denaturation at 95 °C
for 15 s, and annealing at a specific temperature for each
primer for 10 s and 72 °C for 20s. Melting curves were gen-
erated by temperature increments of 0.5 °C from 65 to 95 °C at
steps of 5 s. Standard curves made on cDNA dilutions were
used to calculate the relative starting quantity of each experi-
mental sample. Data normalization was performed by using
the ratio of the relative starting quantity of the target gene with
the reference gene glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH).

Statistical analysis

Gene expression data were compared by ANOVA one-way
using a threshold of p < 0.05. Per each gene, data obtained
in control conditions (absence of BEA) were compared
among the three time points (GV vs MI vs MII). To eval-
uate the effects of BEA, per each meiotic stage (MI and
MII), data were compared between BEA-exposed and
controls.

Results

In the absence of BEA (controls), cumulus cells and oo-
cytes showed a different pattern of gene expression during
meiosis. In cumulus cells, the expression of almost all
genes dramatically increased from the GV stage to the MI
stage but subsequently decreased at the MII stage (Fig. 1a).
This was observed for all genes except NDUFA12 that
showed a similar pattern of expression but with no statisti-
cally significant difference. Instead, in oocytes, the expres-
sion of the same genes increased continuously from the GV
through MI to the MII stage (Fig. 1b). This was observed
for all genes except ATP8 which did not show statically
significance. In detail, the highest increases of mRNA rel-
ative abundance (p < 0.001) were recognized for TFAM,
ND1, ATP6, and ATP5O in cumulus cells and for TFAM,
NDUFA12, ATP6, and ATP5O in oocytes. Intermediate up-
regulation (p < 0.01) was observed for UQCRH and COX1
in cumulus cells and for ND1, UQCRH, COX1, and COX2
in oocytes. Finally, a mild increase (p < 0.05) was observed
for COX2, COX4, and ATP8 in cumulus cells and for COX4
in oocytes.

Upon BEA exposure, the expression of all examined genes
was altered, and this occurred only at the MI stage. The most
serious damage was recorded in cumulus cells, in which the
expression of four genes (ND1,UQCRH, COX4, and ATP5O)
was significantly downregulated (Fig. 2a) and the expression
of six genes (TFAM, NDUFA12, COX1, COX2, ATP8, and
ATP6) was significantly upregulated compared with the ex-
pressions of the control at the MI stage (Fig. 2a). Interestingly,
for downregulated genes, the described scenario was observed

starting from the lowest tested concentration (0.5 μM) where-
as, for upregulated genes, starting from the concentration of 1
μM. In cumulus cells, the highest overexpression levels oc-
curred at 3 μM.

In oocytes, the expression of all genes was significantly
upregulated in exposed MI oocytes versus controls. In detail,
ND1, UQCRH, COX4, and ATP5O were upregulated even at
the lowest tested BEA concentration (Fig. 2b). Interestingly,
these genes were the same which were found downregulated
in cumulus cells. In addition, in oocytes, the expression of
TFAM, NDUFA12, COX1, COX2, ATP8, and ATP6 was up-
regulated starting from 3 μM BEA (Fig. 2b). Noteworthy,
TFAM was found to be the most significantly upregulated
gene, either in cumulus cells (three times) and in oocytes (four
times). The expression of all the tested genes did not signifi-
cantly vary, both in oocytes and cumulus cells, between ex-
posed MII COCs versus controls (data not shown).

Discussion

Recent studies have highlighted the increased scientific inter-
est in BEA which resulted in more analyses of its presence in
food and feed, in terms of variety of contaminated food and
feed ingredients or in terms of concentrations. Moreover, due
to its dual nature, BEA is considered a potential drug in med-
icine and agriculture. Therefore, humans and animals could
become exposed to high levels of BEA underlining the need to
fill the gap in knowledge relative to its reproductive toxicolo-
gy. In particular, concerning female reproduction, it is impor-
tant to clarify BEA effects on COC mitochondrial functional-
ity since mitochondria are main targets of BEA. Functional
changes in mitochondria, induced by mycotoxins, can disturb
metabolic programming during oocyte maturation. In the
present study, we demonstrated that BEA-induced impaired
expression of genes encoding for key proteins of the mito-
chondrial respiratory chain in the two components, somatic
(cumulus cell) and germinal (oocyte), of the COC. In control
conditions, during meiosis, in cumulus cells, the highest ex-
pression levels of such genes were recorded at the MI stage
and, subsequently, their expression levels regressed to lower
values at the MII stage. These data are in line with the well-
known role of cumulus cells which, at the MI stage, provide
support to the oocyte with the supply of energetic nutrients,
ATP and regulatory factors required during the maturation.
Conversely, in oocytes, the expression of the same genes in-
creased progressively, from the GV to the MII stage. This
different transcriptional behavior is in line with the concept
that, at this stage, the female gamete needs energy to face
fertilization and embryo development. To the best of our
knowledge, this is the first study examining the expression
of genes coding for proteins of the mitochondrial chain in
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ovine oocytes and cumulus cells at different time points of
IVM culture.

Upon BEA exposure, the expression of genes coding for
proteins of complexes I, III, IV, and V was altered, both in
oocytes and in cumulus cells. This evidence brings greater
relevance to mitochondria as a target site for BEA-induced
cytotoxicity in the female reproductive cell (Schoevers et al.
2016; Mastrorocco et al. 2019). In particular, in cumulus cells,
the expression of four genes (ND1, UQCRH, COX4, ATP5O)
was downregulated at the MI stage when cumulus cells are
characterized by physiologically high mitochondrial activity,
necessary to sustain oocyte meiosis resumption. These results
are consistent with those by Escrivá et al. (2018) who reported
that BEA downregulates several genes related to respiratory
chain functionality in Jurkat cells including those of the ATP
synthase subunits. ND1 expression is essential in complex I
formation (Lim et al. 2016). The failure of complex I can lead
to a block of the electron and proton transfer (Duchen 2004).
Protons that leak back across the mitochondrial inner mem-
brane and into the matrix reduce the inner membrane potential
(Lemarie and Grimm 2011). Downregulation of the UQCRH
gene, essential for cytochrome c1 and cytochrome c complex
formation, may lead to a reduction of electron and proton
transfer (Park et al. 2017). Interestingly, apart from the four
downregulated genes in cumulus cells, upregulation was

observed for all other genes both in oocytes and in cumulus
cells. Particularly, in oocytes, all examined genes were found
as upregulated. This may be interpreted as a protective re-
sponse of the COC against a damage occurring at a crucial
step of oocyte maturation, the MI stage, when the oocyte must
gather all its energy to perform the crucial task of genome
haploidization. Given the ionophoric BEA properties and giv-
en its known ability to create micropores in the inner mito-
chondrial membrane (Mallebrera et al. 2018), BEA can pos-
sibly cause direct damage to respiratory complex structures
and thus the COC may respond with an overexpression of
the genes coding for such complexes. The expression of
TFAM was found to be upregulated at the MI stage, both in
cumulus cells and oocytes. These observations suggest that
the upregulation of this gene during the MI stage is necessary,
at least for increasing the production of OXPHOS proteins, to
stabilize and protect mtDNA from oxidative damage (Xu et al.
2009; Chakrabarty et al. 2014). It is important to note that the
increased expression of TFAM had no compensatory effect on
the expression of the mitochondrial gene ND1 probably be-
cause this gene undergoes additional mechanisms of transcrip-
tion regulation or because damage directly to mtDNA oc-
curred at the expense of this gene.

In conclusion, BEA indistinctly changed the expression of
nuclear and mitochondrial genes and coding for all the four

Fig. 1 Relative expression of
genes of the respiratory chain in
control cumulus cells (a) and
oocytes (b) at different time
points (t = 0, GV stage, t = 7 hMI
stage and t = 24 h MII stage) of
IVM culture. In each histogram,
data are derived from 3 replicates
and, in each replicate, 25 cumuli
(a) and 25 oocytes (b) were
analyzed. One-way ANOVA: per
each gene, data were compared
between GV and the other stages
(MI and MII); *p < 0.05, **p <
0.01, and ***p < 0.001
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mitochondrial chain complexes. A major toxic event induced
by BEA on the COC is the downregulation of the expression
of genes ND1, UQCRH, COX4, and ATP5O in cumulus cells
which may result in an alteration of the electron transport
chain. The other genes were found to be upregulated possibly
as an effort of the COC to counteract the damage, avoid au-
tophagy, and keep constant ATP levels. The results of the
present study provide a contribution to the knowledge of the
mechanisms of BEA effects in the COC.
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