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1 Abstract

The essential element of this paper is to research the porous and squeezed characteristics of time varying heats
that modify the flow speed and enhance the refrigerating /boiling performance of the materials, optimize the
tracers flows and minimalize instability in the non-Newtonian fluids. In the presence of no-slip velocity and
convective circumstances, squeezing disks tempting laminar, unstedy and incompressible non-Newtonian fluid.
The convective formulation for the equations of Navier Stokes, energy and concentration are modelled on flat
disks to investigate and execute both analytical and numerical analysis of heat flow and mass transfer, which
transmuted further into extremely non-linear system of ordinary differential equation with the help of similarity
transformations. Regarding smears, self-similar equations with adequate starting estimates and supporting
parameters are resolved by utilizing the Homotopy Analysis Method (HAM) to generate an expedited and
guaranteed convergence procedure. Comparisons between HAM and the BVP4c¢ numerical solver program
demonstrate the validity and precision of HAM results. It is found by increasing or decreasing the Hartman
number reduces the capillary area, making the Lorentz force influence quite visible for small non-Newtonian
parameter. The concentration rate at the lower end disk rises rapidly as the thermal diffusivity rises. The radial
velocity also declines because of the rise in the outflow rate from the flow domains. The suction parameter
also declines. Additionally, increasing the parameter of non-Newtonian enhances the flow of temperature/mass
and skin friction. In the suction / injection case, all physical factors have a reverse influence upon fluid flow
patterns.
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2 Introduction

Investigating the characteristics and distinctive qualities of non-Newtonian fluids and addressing its numerous
applications, including the reduction and friction of non-Newtonian fluids, friction reduced by oil pipeline,
large-scale heating and refrigeration applications, increase capacity and flow tracers, etc [1]-[10]. Expandable
usage is an emergent technology with a big promises in district and building heating and cooling systems for
massive energy savings. A very efficient flow tracer has been produced by combining non-Newtonian features
in a color scheme. They are used to make a tracer fluid (with a coloration), which may then be unloaded as a
thin strip to the turbulent flow in order to prevent dispersal and breakdown of the fluid flow. Squeeze flux is
a flux type where the fluid is compressed between two parallel disks and compressed radially.

Squeezing flow is widely applied for manufacturing technology, including compression and injuction molding,
blood flow caused by vessel expansion and contraction, moving pistons in engines, hydraulic brakes, lubrication,
and material processing, among others. In the late 20th century, the geometry of squeezing flow attracted
scientists’ interest and a lot of research is being done on this. Serth was the first to produce the BVP solution
given in [11][12] deprived of limiting the size of k, for the parameter of visco-clastic fluid. He saw somewhat
disturbing tendency to stress upon its wall as k's value grew sharply. Flow of electrically conducting non-
Newtonian fluid is a very important phenomenon as in most of the practical situations we have to deal with
the flow of conducting fluid which exhibits different behaviors under the influence of magnetic forces. In these
cases magneto hydro dynamic (MHD) aspect of the flow is also needed to be considered. Homotopy perturbation
solution for Two-dimensional MHD squeezing flow between parallel plates has been determined in [13]-[15]. To
examine the generic form of second-grade fluid, in [18] Khan used laplacian and Fourier transform methods
for the fluid substance. For both elastic and viscous fluid material, a fitting model is proposed to incorporate
the fractional calculus method for the constitutive framework. Hayat [17] studied the oscillating flow problem
in a porous half-space of an incompressible magneto hydrodynamic (MHD) second-grade fluid. To gradually
evolve the solutions of sine and cosine, the Laplace transformation method is applied. Considering here that
flow is symmetric at y = 0 and satisfies the no-slip condition at the top surface, approximate results are found
upto 1st order. Hayat [17] also explored the detail study of oscillating fluid flow of 2nd grade incompressible
magneto-hydro-dynamic (MHD) fluid in a permeable half space. To develop detailed solutions for sine and
cosine oscillations, the Laplace transformation method is applied. For a 2nd grade fluid Gupta provided an
analytical solution in [19] between two parallel plates using energy methods. For fixed amplitude disruptions,
the stability of above flow is studied. In [20] Hayat studied the effect of 2nd grade fluid using the technique
laplacian transformation. In [16], under the assumption that the magnetic field is applied perpendicularly to
the fluid flow, the authors simplify the navier-stokes equations among two endless surfaces to a fourth order
differential equations. The flow at y = 0 is symmetric and satisfies the no-slip condition at the top layer,
approximate results are found upto 1st order. The non-Newtonian, laminar, incompressible visco-elastic fluid,
time-dependent temperature and concentration between contracting disks in the polar coordinates has not been
reported so far. This show that the present work on this problem to be the first such analysis in the literature.
In current study, the squeezing fluid flow is time dependent between parallel disks wherein the bottom disk is
porous and stationery while the above disk moves toward lower disk. The design dilemma has been resolved
by HAM which proposed by Liao given in [10]. For data simulation the HAM BVPh 2.0 and BVP4¢ Kits are

0—40

used. The residual error has been set to 1 , and the analysis are done using a 40" order approximation to

minimize the error and to obtain feasible outcomes.

3 Mathematical Formulation



h(t) = Hy1 -t

Figure 1: Geometry of the Problem.

Consider a non-Newtonian fluid between parallel disks seperated by a distance h(t) = H(1 — (t)?-, both disks
are squeezed unless they meet at ,t = (~! for +ve value of ¢ and separated for —ve value of ¢ [5] . The fluid
will be conducted out by electric currents with the insertion of the magnetic-field B(t) = Bo(1 — (t)~°5 and
no induced-magnetic-field will be considered. The polar co-ordinate system (r, 8, z) is selected for examination
of the fluid. The azimuthal component Vjy of the velocity field ﬁ = (V,,Vy, V) is taken zero because of the
absence of rotational movement of the disks i.e % = 0. The central point of the bottom disk is fixed as the
origin with the use of cylindrical coordinates. At unlform temperatures 7; and Ty, both the top and bottom
disks are preserved. The turbulent, axisymmetric, inconsistent governing equations in polar coordinates system
are:

Conservation of Mass Equation [3, 4, 8]:
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Radial-component of the Momentum Equation [3, 4, 8]:
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Azimuthal-component of the Momentum Equation [3, 4, 8]:
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Axial-component of the Momentum Equation [3, 4, §]:
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The Energy Equation [13-15]:
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The Transport Equation [13-15]:
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The constitutive equation of second-grade viscoelastic fluid [22] is
7= pAs + B As + B3 AT (7)
where 87, 55 are material constants and A; and A, are Rivlin-Ericksen tensors, such that
dA
A= L+L7: L=V.7 and Ay — S+ AL+ LA
4 Boundary Conditions
The following physical boundary conditions are considered
dh
Ve.=0, Vp=0, VZ:E, T=T, C=C, at z=h(t)
8)
o (
Ve=0, Vp=0, V,= , T'=T, C=c(C, t =0
’ Vi-a l A

where 7;; are the stress components, p is fluid density, V;., Vy, V. are velocity components, similarly x, p, C, T,
Cy, Cy, 11, Ty, D, T,, and p are the thermal diffusivity, pressure, concentration variable, temperature variable,
concentration and heat at lower and upper disks, diffusion coefficient, mean fluid temperature and dynamic
viscosity of the fluid respectively.
Using the shear stress components and velocity field, the components of the Momentum equation are reduce
to the following form:
Radial-component:
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Axial-component:
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To convert the above system of partial differential equations into a system of ordinary differential equations

the similarity transformations are applied [9],

Ve=Cr(l=¢t)™' f'(n),  Ve=—CH(A =) f(n), n=zH'(1-¢t)™"?

11
B(t)=Bo(1-¢t) ™%, 0=(T-T)(T -T,)"", ¢=(C—-C,)C —C,) ! )

The mass conservation equation is identically satisfied and the Momentum equation, the heat equation and

the mass equation are converted into the following form

d'f &f L df dEf o
- fsq[UTng + P (n ding] - 53467724‘ 1)
d®f d*f 4dfd4f 4d3fd2f _
0 * Ot ™ Lt )
26 o db
d_772 + gsqur[zf(n)% - % =0 (13)
d*¢ dp — d¢
a? + fsqﬁL[Zf(??)d_ - %] = (14)

and boundary conditions are reduced to

f0)=¢&, f(0)=0, 6(0)=1  ¢0)=1

L, (15)
F=5. FM=0. 61)=0, ¢(1)=0
I . oBZH? . he H ) ! CH? .. ! g ) blowi
where {3 = 1/ —2— is the Hartman number, {,, = %~ is squeeze number, &, = cir s suction/blowing
parameter, &, = % is Prandtl number and £;, = 75 is the Lewis number.

5 Analytic Solution by Parametric Continuation Method

Application of the parametric continuation method to the system of nonlinear equations (12 — 14), with

boundary conditions (18), and optimal choice of continuation parameter, is made in this section. The following

procedural algorithm is a sequence of steps to be followed for an application of the method through matlab.

e Canonical form of a BVP as a first order ODE
To convert eqgs. (12 — 14), into first order ODE, we suppose the following

f:Fls f/:F27 f//:F3a .fl”:Fél

f//// . F 9 . F 9/ . F o F A ) (16)
I =F, 0=IF7, =Fy ¢=Fi, ¢ =1In
Eqs. (12 — 14), becomes
S,
’I]Fé = FI [7]F4 + 3F3 - 2F1F4] - F4 - A/[2F3 - 6F5 + 4F2F5 + 4F4F3 (17)
F; = —S,Pr[2F 1 F; — nF;] (18)
Fé = 7SqP’I’ [2F1Fg - T}Fg] (19)
and the boundary conditions becomes
F1(0) =&, F2(0)=0, Fs(0)=1, F3(0) =1, (20)

Fi(1)=05, Fp(1)=0, F:(1)=0, Fy(1) =0,
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Introduction of a parameter p and imbed obtained ODE in a p-parameter family:

To obtain ODE in a p-parameter family, let us introduce p-parameter in eqs.(22 — 26) and so,

nFL = %[na +3F3 — 2F Fy] — Fy — M°F3 — 6(F5 — 1)p + AF, F; + 4F, Fy (21)
Fy = =S, Pr[2F(F; — 1)p — nFy] @)
Fy = =S, Pr[2Fy(Fy — 1)p — nFy] 39

Differentiation by p, arrives at the following system with respect to sensitivities to the
parametr p:

Differentiate eqs. (21 — 23), with respect to p
Vi=AVi+ Ry (24)

where A is a coefficient matrix, Ry is a remainder and V; = ‘gﬁ, 1<i<16.

Application of the supposition principle and specify Cauchy problem for each component
Vi =al + Wy (25)

Here UandW; denote unknown vector functions. Solving the following two Cauchy problems for each

component, we then satisfy the original ODE automatically
(aU + Wy) = Ay (aU + W1) + Ry (26)
and leave the boundary conditions.

Numerical solution of Cauchy problem

To solve the problem, we use an implicit scheme, defined as below.

1+1 _pri .
% — A1U1+1 (27)
i+ 7 .
% — A1W1+1 + Rl (28)

Selection of corresponding blend coefficient
Since, boundary conditions are applied only for h;, where 1 <i < 16. Solving ODE for sensitivities, we

need to apply Vo = 0, which in matrix form looks as

JLVi=0 or Ji.(aU+Wy) =0 (29)

—J1. Wy

where a = i

Error Analysis

To analyze the current problem, an error analysis is made by PCM and HAM BVPh 2.0 kit, with a maximum

10749 residual-error is used. Analysis is performed via approximations of the 40" order. To achieve the

respective optimum convergence the minimize command is used. Table 1 provides the optimum values of

controlling parameters and the minimum values for the over-all average residual-error according to the various

orders of approximation whic show that as the order of approximation increase so as the optimal values are
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Figure 2: Average residual-error of f(n),0(n) and ¢(n) with different

Order of Approximation

0.01, 0.001 and &g = 0.01, &, =2, &4 = 0.1, &, = 1, & = 2

Order of Approximation

values of visco-elastic parameter § =

m hi ho he et

2 | —0.994234 | —1.00354 | —1.00156 | 5.37113 x 10~°

3 | —0.992433 | —1.00048 | —1.00013 | 3.23957 x 1013
4 | —0.993395 | —0.997935 | —0.995064 | —1.48837 x 1015
5 | —0.970283 | —0.981944 | —1.036390 | 4.01980 x 1014
6 | —1.06583 | —1.075180 | —0.942538 | —6.19490 x 1015

Table 1: Different order of approximation versus optimal values of convergence control parameters at £ =
0.01,&n =2,6m = 0.1, = 1,&,, = 2,5 =0.001 .

getting close to 1.Table 2 demonstrates the specific average residual-error at various orders of approximations
utilizing the optimum outputs of Table 1. Moreover, the errors curves for the various values of m and fixed
values of &, €1, &a,y Epr and &,y are exposed in Fig 2. It is apparent because, as the approximation order rises,
the average squared-errors and the overall average squared-errors are reduced. Authentications of boundary
conditions is shown through Table 3. Through this study, it would seem that the results are nearly in the 10"
order of approximations. For further validation we add the numerical results of f”(0), —6'(0) and —¢’(0) in
Table (4 — 6) which shows that the convergence is up to tenth-order. Convergence of Homotopy solution for
different orders of approximation for f”(0), —6'(0) and —¢’(0) when & = 0.01, & = 0.1, &y = 2, & =1,
&o = 2 and different values of 5 = 0.001,0.01,0.05 are depicted in Tables (4—6). It is observed that by increase
in the visco-elastic parameter, the skin-friction, heat and mass fluxes are also increases. The effects of physical

parameters on the skin friction, heat flux and mass flux are also studied and depicted in Tables (7 — 9).



m el e € CPUtime
2 | 35x107% | 47x107° | 1.1x10°8 2 sec

5 | 28x10717 | 48 x 10718 | 4.3 x 107176 8.5 sec
10 | 3.7x1072* | 32x1072° | 1.1 x 10722 15.3 sec
15 | 44x1073° | 32x 10733 | 3.3x 10730 30.6 sec
20 | 3.9x1073° | 21 x 10736 | 6.3 x1073* | 46.8 sec
25| 3.1x1073 | 23x 10736 | 58 x1073* | 80.4 sec
30 | 3.1x10735 | 1.9x 10736 | 59x 1073 | 123.5 sec
35 [ 3.1x107% | 1.7x 10736 | 5.8 x1073* | 270.3 sec
40 | 3.1x1073 | 1.9x 10730 | 6.7 x1073* | 401.4 sec

Table 2: Total Residual Error at different order of approximation at &, = 0.01, {3 = 0.1, &, = 2, 8 = 0.001,
§L =1 and fa =2

HAM

BVP4c

PCM

f(n)

0(n)

B(n)

J(n)

0(n)

é(n)

f(n)

0(n)

#(n)

0.1001

0.3003

0.5005

0.7007

0.8008

0.9009
1

2
0.014101
0.108528
0.250757
0.392641
0.448480
0.486265

0.5

1
0.899947
0.699840
0.499701
0.297737
0.197930
0.098346

0

1
0.899520
0.698602
0.497915
0.297737
0.197930
0.098346

0

2
0.014101
0.108528
0.250757
0.392641
0.448480
0.486266

0.5

1
0.899947
0.699838
0.499700
0.29772
0.197930
0.098346
0

1
0.899518
0.698602
0.497914
0.297736
0.197927
0.098345

0

2
0.014295
0.108677
0.250899
0.392345
0.448519
0.486300

0.5

1
0.899019
0.699961
0.499823
0.297855
0.197920
0.098357

0

1
0.899581
0.698611
0.497929
0.297756
0.197920
0.098464

0

Table 3: HAM, BVP4c and PCM results comparison of f(n), 6(n) and ¢(n) at &, = 0.01,§, = 2,{y =
0.1,€L = 1,6, = 2,8 = 0.001.




f"(0) —0'(0) —¢'(0)
4 | —9.05372854 | 1.02760954 | 1.01376504
8 | —9.05374433 | 1.02796615 | 1.01390527
12 | —9.05374433 | 1.02796615 | 1.01390527
16 | —9.05374433 | 1.02796615 | 1.01390527
20 | —9.05374433 | 1.02796615 | 1.01390527
24 | —9.05374433 | 1.02796615 | 1.01390527
28 | —9.05374433 | 1.02796615 | 1.01390527
32 | —9.05374433 | 1.02796615 | 1.01390527
36 | —9.05374433 | 1.02796615 | 1.01390527
40 | —9.05374433 | 1.02796615 | 1.01390527

Table 4: HAM solution for different orders of approximation for f”(0), —6'(0) and —¢’(0) at &, = 0.01,

€ =0.1, & =2, B=0.001, &, =1 and &, = 2

f"(0) —0'(0) —¢'(0)
4 | —9.03829731 | 1.15231781 | 1.14532672
8 | —9.03835429 | 1.15251239 | 1.14571876
12 | —9.03835429 | 1.15251239 | 1.14571876
16 | —9.03835429 | 1.15251239 | 1.14571876
20 | —9.03835429 | 1.15251239 | 1.14571876
24 | —9.03835429 | 1.15251239 | 1.14571876
28 | —9.03835429 | 1.15251239 | 1.14571876
32 | —9.03835429 | 1.15251239 | 1.14571876
36 | —9.03835429 | 1.15251239 | 1.14571876
40 | —9.03835429 | 1.15251239 | 1.14571876

Table 5: HAM solution for different orders of approximation for f”(0), —6'(0) and —¢’(0) at &, = 0.01,

Ev=01,&,=2,=001,¢ =1and { =2

7 Results and Discussions

To explore and investigate the impacts of porosity and squeezing phenomena in the presence of fluctuating
temperature on flow rate, optimise the system’s heating/cooling process, reduce non-Newtonian fluid turbu-
lence, and scale-up flow tracers. By using non-Newtonian flow created by compressing discs, which is laminar,
unstable, and incompressible in the presence of no-slip velocity and convective surface boundary conditions, to
investigate and provides an analytical and numerical study of the flow for heat and mass transfer. The effect
of the various flow parameters are addressed visually for the case of suction (£, < 0) and injection (£, > 0)
respectively. The effect of the flow parameters is shown for the axial f(n) and radial f’(n) components of
velocity field, variation of temperature 6(n) and for the variation of mass transfer ¢(n) respectively. In this
section the impact of injection/suction parameter &, squeeze Reynold number £, Prandtl number ., Lewis
number &7, Hartman number £y, and non-Newtonian parameter [ respectively are analyzed and discussed in
detail. If {4 is +wve, it shows the top of the disk moves far from the bottom disk and when &, is —ve, it
shows the top of the disk moves close to the bottom disk. However, it is visible that an increment in £, can
be viewed as an increase over the top disk velocity or in the gap among the two-discs [12-15].

Standard findings for the injection/suction parameter £, are presented in figures (3 — 10) to explore its effect



f"(0) —0'(0) —¢'(0)
4 | —9.00956247 | 1.38725923 | 1.45889274
8 | —9.00998752 | 1.38776257 | 1.45899982
12 | —9.00998752 | 1.38776257 | 1.45899982
16 | —9.00998752 | 1.38776257 | 1.45899982
20 | —9.00998752 | 1.38776257 | 1.45899982
24 | —9.00998752 | 1.38776257 | 1.45899982
28 | —9.00998752 | 1.38776257 | 1.45899982
32 | —9.00998752 | 1.38776257 | 1.45899982
36 | —9.00998752 | 1.38776257 | 1.45899982
40 | —9.00998752 | 1.38776257 | 1.45899982

Table 6: HAM solution for different orders of approximation for f”(0),
€y =01,&, =2, =005, £, =1and &, =2

—0'(0) and —¢'(0) at &, = 0.01,

P, HAM BVP4c PCM
f10) | =0'0) | —¢(0) | f70) | —00) | —¢'(0) | fU0) | -0(0) | —¢'(0)
0.1 | 3.404551 | 0.980413 | 1.153067 | 3.404550 | 0.980413 | 1.153067 | 3.404633 | 0.980592 | 1.153196
1 | 3.404551 | 0.918726 | 1.159177 | 3.404550 | 0.918726 | 1.159177 | 3.404611 | 0.918870 | 1.159203
2 | 3.404551 | 0.844146 | 1.166561 | 3.404550 | 0.844141 | 1.166563 | 3.404633 | 0.844294 | 1.166622
2.5 | 3.404551 | 0.804209 | 1.170511 | 3.404550 | 0.804192 | 1.170517 | 3.404633 | 0.804359 | 1.170691
3 | 3.404551 | 0.763560 | 1.173853 | 3.404550 | 0.762300 | 1.174664 | 3.404646 | 0.763601 | 1.173981

Table 7: HAM, BVP4¢ and PCM result comparison for the computations of f”(0),
B=018&r=1,& =2,& =2, & = 0.2 and different values of &,,.

—0'(0) and —¢'(0) at

on the velocity field components, heat, and mass transfers. It is evident from figure 3 that an increase in the
suction/injection parameter {, = —5, —10, —15 decreases the radial velocity due to the increase in the rate
of outflow from the flow domain. On the other hand, an increase in the injection parameter £, = 5,10,15
allows the fluid to enter the flow domain which increases the radial velocity near the lower disk. It can also
be observed that by rising the non-Newtonian parameter § = 0.2,0.4,0.6, 0.8, parabolic curves are found for
both suction and injection. Figure 4 is made to depict the 3D-behavior of the effect of £, and 8 on the radial
component of the velocity field. The physics of the figure 3 implies that the increase in the suction/injection
parameter will increase the axial velocity due to the suction of the fluid from the lower disk, same but opposite
behavior is noted during injection of the fluid between the gap of the two disks. This phenomenon could be
verified from figures 5 and 6. The influence of £, on heat and mass transfer is depicted in figures (7 — 10).
Firstly, the effect of suction and injection parameter on 6(n) and ¢(n) are observed identical. Secondly the
variation for higher values are smooth in ¢(n) and 6(n). An increase in the rate of suction &, = 0.5, 1, 1.5
increases the rate of outflow from the flow domain due to which the fluid temperature and mass transfer fall.
The same but opposite behavior is noted in the case of fluid injection. Figure 8 and 10 are drawn to observe
this phenomenon in 3D shape.

The impact of £ and 5 on f'(n) and f(n) are seen at figures (11 — 14). Hartmann number is the ratio
of electromagnetic force to viscous force, by increasing £); and skipping Hartman number a vascular area is
noted. It could be observed that during the injection of the fluid, radial velocity increase near the two disks
due to the decrease in the viscous force. This phenomenon is opposite near the center of the fluid domain. The

impact of £; during the suction of the fluid is negligible, It also describes that Lorentz-force has a smoother
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L HAM BVP4c PCM

/0 [ 00 | 90 | 0 | -0 | 90 | /0 | 00 | —¢0)
0.1 | 5.731321 | 0.998768 | 1.009664 | 5.731321 | 0.998768 | 1.009664 | 5.731461 | 0.998867 | 1.009751
1 3.425398 | 0.990088 | 1.077669 | 3.425399 | 0.990088 | 1.077668 | 3.425480 | 0.990196 | 1.077798
2 3.404551 | 0.980413 | 1.153067 | 3.404550 | 0.980413 | 1.153067 | 3.404699 | 0.980525 | 1.153191
3 3.474725 | 0.970731 | 1.227853 | 3.474725 | 0.970730 | 1.227853 | 3.474859 | 0.970825 | 1.227862
4 3.565737 | 0.961063 | 1.301666 | 3.565737 | 0.961063 | 1.301666 | 3.565844 | 0.961124 | 1.301731

Table 8: HAM, BVP4c¢ and PCM results comparison for the computations of f”/(0), —g’(0), —0'(0) and —¢’(0)
at B=0.1, &y =1, &L =2, {0 =2, §pr = 2 and different values of &g.

£r HAM BVP4c PCM

f10) | =60) | =¢'(0) | f"0) | —6'(0) | =¢'(0) | f'(0) | —¢'(0) | —¢'(0)
1 | 4.354185 | 0.999448 | 1.004323 | 4.354185 | 0.999448 | 1.004323 | 4.354273 | 0.999357 | 1.004401
2 | 8.388572 | 0.999249 | 1.005891 | 8.388587 | 0.999249 | 1.005891 | 8.388629 | 0.999361 | 1.005925
3 | 15.08649 | 0.998920 | 1.008476 | 15.08649 | 0.998920 | 1.008476 | 15.08653 | 0.998041 | 1.008525
4 | 24.40871 | 0.998467 | 1.012038 | 24.40871 | 0.998467 | 1.012038 | 24.40944 | 0.998585 | 1.012136
5 | 36.30043 | 0.997897 | 1.016526 | 36.30045 | 0.997897 | 1.016526 | 36.30191 | 0.997937 | 1.016692

Table 9: HAM, BVP4c¢ and PCM results comparison for the computations of f”(0),

—0'(0) and —¢’(0) at

B=01E =1, g =2, {0 =2, & =1 and different values of &,

effect on 8 = 0.2,0.40.6, 0.8 and greater values. For the axial velocity, the velocity increase near the lower
disk because of the injection of the fluid which mobilizes the fluid to move in the axial direction. This effect
gradually decreases due to a decrease in the viscous force and hence from the middle region, the velocity starts
to decrease. Figures 12 and 14 are made to observe the effect of £y in 3D geometries. Figures 15 and 16
present the impact of the Prandtl number on the heat transfer. Prandtl number is the ratio of momentum
diffusivity to thermal diffusivity. Figure 15 explains the impact of Prandtl number &, on temperature. It is
noted that while in suction, the flow temperature increases with an increase in the amount of Prandtl and the
visco-elastic parameter because of the increase in momentum diffusivity, although this behavior is inversely
proportional during injection of the fluid between the disks. For variable 8 and £, figures (16 —23) are plotted.
The profiles of velocity components plotted in figure 16 show that initially, the redial part of the velocity rises
with the increase of &, when the fluid is injected, but, as the fluid flow reached the central area it gradually
falls. The maximal decrements for the lower values of £, can be observed on the radial-velocity. Velocity
increases with the increase in &, on the left of the bottom disk, whereas velocity decreases for the same {44
upon the right of the top disk. Furthermore, the squeeze-parameter effect is not visible for the large 3, but for
tiny [ is noticeable as the top of the disk is heading away from the bottom disk. In figure 16 also demonstrate
that velocity changes are negligible by increasing space between disks during injection of the fluid. In a suction
scenario, it would be noticeable that the effects of f'(n) are relatively greater when § is small. It may also be
observed that for small squeezing parameters, f’(n) abruptly rises close to the bottom disk afterward begins to
decrease to meet boundary conditions. The effect of £, = —0.1, —1, —1 on axial velocity profile could also be
seen its graphical representation in figure 18. The minor impact of £, observed on the velocity profile for the
minimal amount of 8 but for larger 3 this effect is negligible. The effect of suction on velocity is the opposite of
injection. Figures 20 depicts that as the fluid slips from the disk’s region the temperature of the fluid decrease
abruptly due to suction, however, this behavior is the opposite in the case of injection. A similar scenario could

be seen for the mass transfer in figure 22.
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Figure 3: Impact of suction/Injection parameter &, = +5,4+10,+15 and 8 = 0.2,0.4,0.6,0.8 on f’(n) with
fsq =5, 51\/[ = 10, gpr =1, §L =15

The impact of Lewis number is presented in figures 24 and 25. Lewis number is the ratio of thermal diffusivity
to mass diffusivity. An increase in the Lewis number means an increase in the thermal diffusivity of the fluid.
It Could be observed that for greater Lewis number, ¢(n) abruptly falls close to the bottom disk afterward
begins to decrease to meet boundary conditions. The minor impact of £, was observed on the concentration
profile for the minimal amount of [ but for larger [ this effect is negligible. Figure 25 presents the 3D view of

the effect of Lewis number on mass transfer.

8 Conclusion

In this research Non-Newtonian fluid is examined as a turbulent squeezing flow amongst two parallel discs.
Using the Parametric Continuation Method (PCM) and BVP4c for the numerical solution to solve the derived
differential equations given in equations (13-15). At just 10th-order analytical solution, a good averaged residual
error is produced. During the analysis, the following results were achieved. In the case of suction and injection,
the effect of different flow parameters are examined visually. For velocity field, heat, and mass transfer, the

influence of the flow parameters is presented. During this study, the results obtained are:

e The current problem is limited to two-dimensional geometry, which can be changed to three-dimensional

12
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Figure 5: Impact of suction/Injection parameter &, = +5,+10,4+15 and 8 = 0.2,0.4,0.6,0.8 on f(n) with

gsq = 57 fM = 1Oa gpr = 1a §L =15
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Figure 6: 3D-representation of f(n) for &, = £5,4+10,£15, 8 =0.6,0.8, £, =5, & = 10, &pr =1, &1
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with &, = 4£0.5,+1,41.5, 8 = 0.6,0.8, £uy = 1, Ear =5, &pp = 1, &L, = 1.5
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Figure 8: 3D-representation of 6(n
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Figure 12: 3D-representation of Hartmann number &,y = 0,5, 10 and 5 = 0.2,0.4,0.6,0.8 on f’'(n) with
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Figure 14: 3D-representation of Hartmann number £y = 0,5, 10 and 5 = 0.2,0.4,0.6,0.8 on f(n) with
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geometry by rotating the discs in a certain way. Because of the boundary conditions, the governing
equations of this issue are changed from PDEs to ODEs. A suitable numerical methodology could be

used to discover adequate boundary conditions and solve the PDEs.

A vascular area is observed by increasing or avoiding the Hartman number. During the injection, radial

Velocity may be observed to rise in the vicinity of the two disks as the viscous force decreases.

The radial velocity is decreased when the rate of output from the flow area increases in the suc-
tion/injection parameter. Parabolic contours for both suction and injection of fluid can also be noticed

by enhancing the non-Newtonian parameter.

it is also observed that Increasing the number of Hartman reduces the vascular area and so the Lorentz

force impact for small values of the non-Newtonian parameter is clearly shown.

The influence on the flow field patterns is opposite in the suction and injection case of all physical

parameters. The influence all these parameters on temperature profiles remains same.

In suction, the temperature is directly proportional to Non-Newtonian parameters and Prandtl number

and vice versa for injection.

The small impact of Lewis numbers on the concentration profile is observed for minimum value of Non-

Newtonian parameter, but it is negligible for the greater value of this parameter.
The skin friction and heat/mass flow rate raise as the non-Newtonian parameter is increased.

It is noticed that the influnce of Hartman number during liquid suction is minimal and also shows that

the Lorentz-force has a more smooth influence on the non-Newtonian parameter.

It is determined that in the suction scenario, raise in the non-Newtonian parameter and squeeze Reynolds

number have no influence on velocity profile throughout the flow field.
The concentration rate near the bottom disc rises steadily as the thermal diffusiveness increases.

A rise in non-Newtonian parameter value has a minor influence on the flow field’s radial and axial

component.
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Nomenclature

p
r, 0,z

T,
qr
Tij

A17 A2

pressure(N.m~2)

cylindrical polar coordinates
radial velocity(m.s~1)
azimuthal velocity(m.s~1)
axial velocity(m.s™1)

time(s)

temperature at upper disc(K)
temperature at lower disc(K)
concentration at upper disc
concentration at lower disc
Prandtl number(v/k)
Hartman Number

squeezing parameter

Lewis Number

distance between the two discs(m)
induced magnetic field

Soret number
suction/blowing parameter
specific heat of fluid(J/kgK)
molecular diffusion coefficient
thermal diffusion ratio

mean fluid temperature(K)
radiative heat flux(W/m?)
stress components

Rivlin-Ericksen tensors

<t Q

Greeksymbols

r
e
N,
o
e
Subscript

U

l
Superscript

*

/

dimensional concentration
radius vector of the disc

velocity vector

rotation vector

lower disc angular velocity
thermal conductivity (W/mK)
dynamic viscosity (PasS)
kinematic viscosity(kg/msS)
relative angular velocity

fluid density(kg/m?)

positive constant

similarity variable
transformed fluid temperature
stefan-Boltzmann constant
constant number

transformed fluid concentration

mean absorption co-efficient

fluid condition on upper disc

fluid condition on lower disc

dimensionless variable

derivative w.r.t n
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To examine Non-Newtonian fluid as a turbulent squeezing flow amongst two parallel
discs
To use the Parametric Continuation Method and BVP4c¢ for the numerical solution

To present the influence of the flow parameters for velocity field, heat, and mass transfer



E FE E E E FE

E

CRediT author statement
Conceptualization: Aamir Khan
Data curation: Rehan A. Shah
Formal analysis: M. Kamran Alam
Validation: Sajid Rehman and M. Shahzad
Writing - original draft: Sohail Ahmed and M. Sohail Khan
Funding: Abdel-Haleem Abdel-Aty and Mohammed Zakarya

Writing - review editing: Hijaz Ahmad



Declaration of interests

[ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.



	Computational investigation of an unsteady Non-Newtonian and Non-Isothermal Fluid Between Coaxial Contracting Channels: A PCM Approach
	CRediT authorship contribution statement


