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bstract

ential element of this paper is to research the porous and squeezed characteristics of time varying h

dify the flow speed and enhance the refrigerating /boiling performance of the materials, optimize

flows and minimalize instability in the non-Newtonian fluids. In the presence of no-slip velocity

ive circumstances, squeezing disks tempting laminar, unstedy and incompressible non-Newtonian fl

vective formulation for the equations of Navier Stokes, energy and concentration are modelled on

investigate and execute both analytical and numerical analysis of heat flow and mass transfer, w

ted further into extremely non-linear system of ordinary differential equation with the help of simil

mations. Regarding smears, self-similar equations with adequate starting estimates and suppor

ters are resolved by utilizing the Homotopy Analysis Method (HAM) to generate an expedited

eed convergence procedure. Comparisons between HAM and the BVP4c numerical solver prog

trate the validity and precision of HAM results. It is found by increasing or decreasing the Hart

reduces the capillary area, making the Lorentz force influence quite visible for small non-Newto

ter. The concentration rate at the lower end disk rises rapidly as the thermal diffusivity rises. The ra

also declines because of the rise in the outflow rate from the flow domains. The suction param

lines. Additionally, increasing the parameter of non-Newtonian enhances the flow of temperature/m

n friction. In the suction / injection case, all physical factors have a reverse influence upon fluid

s.

words: Squeeze flow, Contracting channels, Second-grade viscoelastic fluid, Lorentz Force, HAM, BV

esponding Author: hijaz555@gmail.com
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troduction

ating the characteristics and distinctive qualities of non-Newtonian fluids and addressing its nume

tions, including the reduction and friction of non-Newtonian fluids, friction reduced by oil pipe

ale heating and refrigeration applications, increase capacity and flow tracers, etc [1]-[10]. Expand

an emergent technology with a big promises in district and building heating and cooling system

energy savings. A very efficient flow tracer has been produced by combining non-Newtonian feat

or scheme. They are used to make a tracer fluid (with a coloration), which may then be unloaded

ip to the turbulent flow in order to prevent dispersal and breakdown of the fluid flow. Squeeze flu

ype where the fluid is compressed between two parallel disks and compressed radially.

ng flow is widely applied for manufacturing technology, including compression and injuction mold

ow caused by vessel expansion and contraction, moving pistons in engines, hydraulic brakes, lubrica

terial processing, among others. In the late 20th century, the geometry of squeezing flow attra

ts’ interest and a lot of research is being done on this. Serth was the first to produce the BVP solu

[11][12] deprived of limiting the size of k, for the parameter of visco-elastic fluid. He saw somew

ing tendency to stress upon its wall as k′s value grew sharply. Flow of electrically conducting

ian fluid is a very important phenomenon as in most of the practical situations we have to deal

of conducting fluid which exhibits different behaviors under the influence of magnetic forces. In t

agneto hydro dynamic (MHD) aspect of the flow is also needed to be considered. Homotopy perturba

for Two-dimensional MHD squeezing flow between parallel plates has been determined in [13]-[15]

e the generic form of second-grade fluid, in [18] Khan used laplacian and Fourier transform met

fluid substance. For both elastic and viscous fluid material, a fitting model is proposed to incorpo

tional calculus method for the constitutive framework. Hayat [17] studied the oscillating flow prob

rous half-space of an incompressible magneto hydrodynamic (MHD) second-grade fluid. To gradu

he solutions of sine and cosine, the Laplace transformation method is applied. Considering here

ymmetric at y = 0 and satisfies the no-slip condition at the top surface, approximate results are fo

t order. Hayat [17] also explored the detail study of oscillating fluid flow of 2nd grade incompres

o-hydro-dynamic (MHD) fluid in a permeable half space. To develop detailed solutions for sine

scillations, the Laplace transformation method is applied. For a 2nd grade fluid Gupta provide

al solution in [19] between two parallel plates using energy methods. For fixed amplitude disrupt

ility of above flow is studied. In [20] Hayat studied the effect of 2nd grade fluid using the techn

n transformation. In [16], under the assumption that the magnetic field is applied perpendicular

d flow, the authors simplify the navier-stokes equations among two endless surfaces to a fourth o

tial equations. The flow at y = 0 is symmetric and satisfies the no-slip condition at the top la

mate results are found upto 1st order. The non-Newtonian, laminar, incompressible visco-elastic fl

pendent temperature and concentration between contracting disks in the polar coordinates has not

d so far. This show that the present work on this problem to be the first such analysis in the litera

nt study, the squeezing fluid flow is time dependent between parallel disks wherein the bottom di

and stationery while the above disk moves toward lower disk. The design dilemma has been reso

which proposed by Liao given in [10]. For data simulation the HAM BVPh 2.0 and BVP4c Kits

he residual error has been set to 10−40, and the analysis are done using a 40th order approximatio

e the error and to obtain feasible outcomes.

athematical Formulation
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Figure 1: Geometry of the Problem.

r a non-Newtonian fluid between parallel disks seperated by a distance h(t) = H(1− ζt)0.5, both d

eezed unless they meet at , t = ζ−1 for +ve value of ζ and separated for −ve value of ζ [5] . The

conducted out by electric currents with the insertion of the magnetic-field B(t) = B0(1 − ζt)−0.5
ced-magnetic-field will be considered. The polar co-ordinate system (r, θ, z) is selected for examina

uid. The azimuthal component Vθ of the velocity field
−→
U = (Vr, Vθ, Vz) is taken zero because of

of rotational movement of the disks i.e ∂Vθ
∂θ = 0. The central point of the bottom disk is fixed as

ith the use of cylindrical coordinates. At uniform temperatures Tl and Tu, both the top and bot

e preserved. The turbulent, axisymmetric, inconsistent governing equations in polar coordinates sy

ation of Mass Equation [3, 4, 8]:

1

r

∂(rVr)

∂r
+

1

r

∂Vθ
∂θ

+
∂Vz
∂z

= 0

component of the Momentum Equation [3, 4, 8]:

∂Vr
∂t

+ Vr
∂Vr
∂r

+ Vθ(
1

r

∂Vr
∂θ
− Vθ

r
) + Vz

∂Vr
∂z

=
−1

ρ

∂p

∂r
+

1

ρ

[
1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
τrθ +

∂

∂z
τrz −

1

r
τθθ

]

hal-component of the Momentum Equation [3, 4, 8]:

∂Vθ
∂t

+ Vr
∂Vθ
∂r

+ Vθ(
1

r

∂Vθ
∂θ

+
Vr
r

) + Vz
∂Vθ
∂z

= − 1

rρ

∂p

∂θ
+

1

ρ

[
1

r2
∂

∂r
(r2τθr) +

1

r

∂

∂θ
τθθ +

∂

∂z
τθz

]

omponent of the Momentum Equation [3, 4, 8]:

∂Vz
∂t

+ Vr
∂Vz
∂r

+ Vθ
Vθ
r

∂Vθ
∂θ

+ Vz
∂Vz
∂z

=
−1

ρ

∂p

∂z
+

1

ρ

[
1

r

∂

∂r
(rτzr) +

1

r

∂

∂θ
τzθ +

∂

∂z
τzz

]

ergy Equation [13-15]:

∂T

∂t
+ Vr

∂T

∂r
+
Vθ
r

∂T

∂θ
+ Vz

∂T

∂z
=

k

ρCp

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

)
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nsport Equation [13-15]:

∂C

∂t
+ Vr

∂C

∂r
+ Vθ

Vθ
r

∂Vθ
∂θ

+ Vz
∂C

∂z
= D

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

)

stitutive equation of second-grade viscoelastic fluid [22] is

τ = µA1 + β∗1A2 + β∗2A
2
1

∗
1 , β∗2 are material constants and A1 and A2 are Rivlin-Ericksen tensors, such that

A1 = L+ LT ; L =
−→∇ .−→u and A2 =

dA1

dt
+A1L+ LTA1

oundary Conditions

lowing physical boundary conditions are considered

Vr = 0, Vθ = 0, Vz =
dh

dt
, T = Tu, C = Cu, at z = h(t)

Vr = 0, Vθ = 0, Vz =
−Vz0√
1− ζt , T = Tl, C = Cl, at z = 0

ij are the stress components, ρ is fluid density, Vr, Vθ, Vz are velocity components, similarly κ, p, C

Tl, Tu, D, Tm and µ are the thermal diffusivity, pressure, concentration variable, temperature vari

ration and heat at lower and upper disks, diffusion coefficient, mean fluid temperature and dyn

y of the fluid respectively.

he shear stress components and velocity field, the components of the Momentum equation are re

ollowing form:

component:

Vr
∂t

+ Vr
∂Vr
∂r

+ Vz
∂Vr
∂z

=
−1

ρ

∂p

∂r
+ ν

[
∂2Vr
∂r2

+
1

r

∂Vr
∂r

+
∂2Vr
∂z2

+
∂2Vz
∂r∂z

− 1

r2
Vr

]

+
β

ρ

[
2
∂Vr
∂z

∂2Vr
∂z∂r

+
1

r
(
∂Vr
∂z

)2 +
2

r

∂Vz
∂z

∂Vr
∂r

+ 4
∂2Vz
∂z∂r

∂Vr
∂r

+ 2
∂Vz
∂z

∂2Vr
∂r2

+
2

r
(
∂Vr
∂r

)2 + 4
∂Vr
∂r

∂2Vr
∂r2

+
2

r

∂2Vr
∂r∂t

+ 2
∂3Vr
∂r∂t∂r

+ 2
∂Vr
∂z

∂2Vz
∂z2

+ 2
∂2Vr
∂z2

∂Vz
∂z

+
∂3Vr
∂z∂t∂z

+ 2
∂2Vr
∂r∂z

∂Vz
∂r
− 2

r2
∂Vr
∂t
− 2

r2
Vr
∂Vz
∂z

+
∂Vr
∂r

∂2Vz
∂r∂z

− 2
∂Vz
∂r

∂2Vz
∂r2

− 2

r2
Vr
∂Vr
∂r

]

omponent:

∂Vz
∂t

+ Vr
∂Vz
∂r

+ Vz
∂Vz
∂z

=
−1

ρ

∂p

∂z
+ ν

[
∂2Vz
∂r2

+
1

r

∂Vz
∂r

+
∂2Vr
∂r∂z

+
1

r

∂Vr
∂z

+
∂2Vz
∂z2

]

+
β

ρ

[
2

r

∂Vr
∂z

∂Vz
∂z

+ 2
∂2Vr
∂z2

∂Vz
∂z

+ 2
∂Vr
∂z

∂2Vz
∂z∂r

+
1

r

∂2Vr
∂z∂t

+
∂3Vr
∂z∂t∂r

+
2

r

∂Vr
∂r

∂Vz
∂r

+ 2
∂2Vr
∂r2

∂Vz
∂r

+ 2
∂Vr
∂r

∂2Vz
∂r2

+
∂3Vz
∂r∂t∂r

+ 4
∂Vz
∂z

∂2Vz
∂z2

− 2
∂Vr
∂z

∂2Vr
∂z2

+ 2
∂Vr
∂r

∂2Vz
∂z2

+ 2
∂Vz
∂z

∂2Vr
∂r∂z

+ 2
∂Vz
∂r

∂2Vr
∂r∂z

+ 2
∂Vz
∂r

∂2Vz
∂r∂z

+ 2
∂3Vz
∂z∂t∂z

]
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ert the above system of partial differential equations into a system of ordinary differential equat

ilarity transformations are applied [9],

Vr = ζr(1− ζt)−1f ′(η), Vz = −ζH(1− ζt)−0.5f(η), η = zH−1(1− ζt)−0.5

B(t) = B0(1− ζt)−0.5, θ = (T − Tu)(Tl − Tu)−1, φ = (C − Cu)(Cl − Cu)−1

ss conservation equation is identically satisfied and the Momentum equation, the heat equation

s equation are converted into the following form

d4f

dη4
− ξsq[η

d3f

dη3
+ 3

d2f

dη2
− 2f(η)

d3f

dη3
]− ξ2M

d2f

dη2
+

β[η
d5f

dη5
+ 6

d4f

dη4
− 4

df

dη

d4f

dη4
− 4

d3f

dη3
d2f

dη2
] = 0

d2θ

dη2
+ ξsqξpr[2f(η)

dθ

dη
− η dθ

dη
] = 0 (

d2φ

dη2
+ ξsqξL[2f(η)

dφ

dη
− ηdφ

dη
] = 0 (

ndary conditions are reduced to

f(0) = ξα, f ′(0) = 0, θ(0) = 1, φ(0) = 1

f(1) =
1

2
, f ′(1) = 0, θ(1) = 0, φ(1) = 0

M =

√
σB2

0H
2

ν is the Hartman number, ξsq = ζH2

2ν is squeeze number, ξα = w0

ζH is suction/blo

ter, ξpr = ν
β is Prandtl number and ξL = ν

D is the Lewis number.

nalytic Solution by Parametric Continuation Method

tion of the parametric continuation method to the system of nonlinear equations (12 − 14),

ry conditions (18), and optimal choice of continuation parameter, is made in this section. The follo

ral algorithm is a sequence of steps to be followed for an application of the method through matl

anonical form of a BVP as a first order ODE

o convert eqs. (12− 14), into first order ODE, we suppose the following

f = F1, f ′ = F2, f ′′ = F3, f ′′′ = F4

f ′′′′ = F5, θ = F7, θ′ = F8 φ = F10, φ′ = F11

qs. (12− 14), becomes

ηF ′5 =
Sq
β

[
ηF4 + 3F3 − 2F1F4

]
− F4 −M2F3 − 6F5 + 4F2F5 + 4F4F3

F ′7 = −SqPr
[
2F1F7 − ηF7

]

F ′9 = −SqPr
[
2F1F9 − ηF9

]

d the boundary conditions becomes

F1(0) = ξα, F2(0) = 0, F6(0) = 1, F8(0) = 1,

F1(1) = 0.5, F2(1) = 0, F7(1) = 0, F9(1) = 0,
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troduction of a parameter p and imbed obtained ODE in a p-parameter family:

o obtain ODE in a p-parameter family, let us introduce p-parameter in eqs.(22− 26) and so,

ηF ′5 =
Sq
β

[
ηF4 + 3F3 − 2F1F4

]
− F4 −M2F3 − 6(F5 − 1)p+ 4F2F5 + 4F4F3

F ′7 = −SqPr
[
2F1(F7 − 1)p− ηF7

]

F ′9 = −SqPr
[
2F1(F9 − 1)p− ηF9

]

ifferentiation by p, arrives at the following system with respect to sensitivities to

arametr p:

ifferentiate eqs. (21− 23), with respect to p

V ′1 = A1V1 +R1

here A1 is a coefficient matrix, R1 is a remainder and V1 = dhi
dτ , 1 ≤ i ≤ 16.

pplication of the supposition principle and specify Cauchy problem for each compone

V1 = aU +W1

ere UandW1 denote unknown vector functions. Solving the following two Cauchy problems for

mponent, we then satisfy the original ODE automatically

(aU +W1)
′

= A1(aU +W1) +R1

d leave the boundary conditions.

umerical solution of Cauchy problem

o solve the problem, we use an implicit scheme, defined as below.

U i+1 − U i
4η = A1U

i+1

W i+1 −W i

4η = A1W
i+1 +R1

election of corresponding blend coefficient

nce, boundary conditions are applied only for hi, where 1 ≤ i ≤ 16. Solving ODE for sensitivities

ed to apply V2 = 0, which in matrix form looks as

J1.V1 = 0 or J1.(aU +W1) = 0

here a = −J1.W1

J1.U

rror Analysis

yze the current problem, an error analysis is made by PCM and HAM BVPh 2.0 kit, with a maxim

esidual-error is used. Analysis is performed via approximations of the 40th order. To achieve

ve optimum convergence the minimize command is used. Table 1 provides the optimum value

ing parameters and the minimum values for the over-all average residual-error according to the var

f approximation whic show that as the order of approximation increase so as the optimal values

Jo
ur

na
l P

re
-p

ro
of
6



Figure β =

0.01, 0.

Table 1 sq =

0.01, ξα

getting ions

utilizing xed

values o ises,

the ave dary

conditio 10th

order o ) in

Table ( for

differen = 1,

ξα = 2 ease

in the v sical

parame

Journal Pre-proof
2: Average residual-error of f(η), θ(η) and φ(η) with different values of visco-elastic parameter

001 and ξsq = 0.01, ξα = 2, ξM = 0.1, ξL = 1, ξpr = 2

m hf hθ hφ εtm

2 −0.994234 −1.00354 −1.00156 5.37113× 10−9

3 −0.992433 −1.00048 −1.00013 3.23957× 10−13

4 −0.993395 −0.997935 −0.995064 −1.48837× 10−15

5 −0.970283 −0.981944 −1.036390 4.01980× 10−14

6 −1.06583 −1.075180 −0.942538 −6.19490× 10−15

: Different order of approximation versus optimal values of convergence control parameters at ξ

= 2, ξM = 0.1, ξL = 1, ξpr = 2, β = 0.001 .

close to 1.Table 2 demonstrates the specific average residual-error at various orders of approximat

the optimum outputs of Table 1. Moreover, the errors curves for the various values of m and fi

f ξM , ξL, ξα, ξpr and ξsq are exposed in Fig 2. It is apparent because, as the approximation order r

rage squared-errors and the overall average squared-errors are reduced. Authentications of boun

ns is shown through Table 3. Through this study, it would seem that the results are nearly in the

f approximations. For further validation we add the numerical results of f ′′(0), −θ′(0) and −φ′(0
4 − 6) which shows that the convergence is up to tenth-order. Convergence of Homotopy solution

t orders of approximation for f ′′(0), −θ′(0) and −φ′(0) when ξsq = 0.01, ξM = 0.1, ξpr = 2, ξL

and different values of β = 0.001, 0.01, 0.05 are depicted in Tables (4−6). It is observed that by incr

isco-elastic parameter, the skin-friction, heat and mass fluxes are also increases. The effects of phy

ters on the skin friction, heat flux and mass flux are also studied and depicted in Tables (7− 9).
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Table 2 .001,

ξL = 1

η

(η)

0 1

0.1001 99581

0.3003 98611

0.5005 97929

0.7007 97756

0.8008 97920

0.9009 98464

1 0

Table 3 =

0.1, ξL =

Journal Pre-proof
m εfm εθm εφm CPUtime

2 3.5× 10−6 4.7× 10−10 1.1× 10−8 2 sec

5 2.8× 10−17 4.8× 10−18 4.3× 10−176 8.5 sec

10 3.7× 10−24 3.2× 10−25 1.1× 10−22 15.3 sec

15 4.4× 10−30 3.2× 10−33 3.3× 10−30 30.6 sec

20 3.9× 10−35 2.1× 10−36 6.3× 10−34 46.8 sec

25 3.1× 10−35 2.3× 10−36 5.8× 10−34 80.4 sec

30 3.1× 10−35 1.9× 10−36 5.9× 10−34 123.5 sec

35 3.1× 10−35 1.7× 10−36 5.8× 10−34 270.3 sec

40 3.1× 10−35 1.9× 10−36 6.7× 10−34 401.4 sec

: Total Residual Error at different order of approximation at ξsq = 0.01, ξM = 0.1, ξpr = 2, β = 0

and ξα = 2

HAM BVP4c PCM

f(η) θ(η) φ(η) f(η) θ(η) φ(η) f(η) θ(η) φ

2 1 1 2 1 1 2 1

0.014101 0.899947 0.899520 0.014101 0.899947 0.899518 0.014295 0.899019 0.8

0.108528 0.699840 0.698602 0.108528 0.699838 0.698602 0.108677 0.699961 0.6

0.250757 0.499701 0.497915 0.250757 0.499700 0.497914 0.250899 0.499823 0.4

0.392641 0.297737 0.297737 0.392641 0.29772 0.297736 0.392345 0.297855 0.2

0.448480 0.197930 0.197930 0.448480 0.197930 0.197927 0.448519 0.197920 0.1

0.486265 0.098346 0.098346 0.486266 0.098346 0.098345 0.486300 0.098357 0.0

0.5 0 0 0.5 0 0 0.5 0

: HAM, BVP4c and PCM results comparison of f(η), θ(η) and φ(η) at ξsq = 0.01, ξα = 2, ξM

1, ξpr = 2, β = 0.001.Jo
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m f ′′(0) −θ′(0) −φ′(0)

4 −9.05372854 1.02760954 1.01376504

8 −9.05374433 1.02796615 1.01390527

12 −9.05374433 1.02796615 1.01390527

16 −9.05374433 1.02796615 1.01390527

20 −9.05374433 1.02796615 1.01390527

24 −9.05374433 1.02796615 1.01390527

28 −9.05374433 1.02796615 1.01390527

32 −9.05374433 1.02796615 1.01390527

36 −9.05374433 1.02796615 1.01390527

40 −9.05374433 1.02796615 1.01390527

: HAM solution for different orders of approximation for f ′′(0), −θ′(0) and −φ′(0) at ξsq =

.1, ξpr = 2, β = 0.001, ξL = 1 and ξα = 2

m f ′′(0) −θ′(0) −φ′(0)

4 −9.03829731 1.15231781 1.14532672

8 −9.03835429 1.15251239 1.14571876

12 −9.03835429 1.15251239 1.14571876

16 −9.03835429 1.15251239 1.14571876

20 −9.03835429 1.15251239 1.14571876

24 −9.03835429 1.15251239 1.14571876

28 −9.03835429 1.15251239 1.14571876

32 −9.03835429 1.15251239 1.14571876

36 −9.03835429 1.15251239 1.14571876

40 −9.03835429 1.15251239 1.14571876

: HAM solution for different orders of approximation for f ′′(0), −θ′(0) and −φ′(0) at ξsq =

.1, ξpr = 2, β = 0.01, ξL = 1 and ξα = 2

esults and Discussions

ore and investigate the impacts of porosity and squeezing phenomena in the presence of fluctua

ture on flow rate, optimise the system’s heating/cooling process, reduce non-Newtonian fluid tu

nd scale-up flow tracers. By using non-Newtonian flow created by compressing discs, which is lam

e, and incompressible in the presence of no-slip velocity and convective surface boundary condition

ate and provides an analytical and numerical study of the flow for heat and mass transfer. The e

arious flow parameters are addressed visually for the case of suction (ξα < 0) and injection (ξα

vely. The effect of the flow parameters is shown for the axial f(η) and radial f ′(η) componen

field, variation of temperature θ(η) and for the variation of mass transfer φ(η) respectively. In

the impact of injection/suction parameter ξα, squeeze Reynold number ξsq, Prandtl number ξpr, L

ξL, Hartman number ξM and non-Newtonian parameter β respectively are analyzed and discusse

If ξsq is +ve, it shows the top of the disk moves far from the bottom disk and when ξsq is −v
he top of the disk moves close to the bottom disk. However, it is visible that an increment in ξsq

ed as an increase over the top disk velocity or in the gap among the two-discs [12-15].

d findings for the injection/suction parameter ξα are presented in figures (3− 10) to explore its e
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Table 6 0.01,

ξM = 0

Pr

)

0.1 96

1 03

2 22

2.5 91
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impact ther
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m f ′′(0) −θ′(0) −φ′(0)

4 −9.00956247 1.38725923 1.45889274

8 −9.00998752 1.38776257 1.45899982

12 −9.00998752 1.38776257 1.45899982

16 −9.00998752 1.38776257 1.45899982

20 −9.00998752 1.38776257 1.45899982

24 −9.00998752 1.38776257 1.45899982

28 −9.00998752 1.38776257 1.45899982

32 −9.00998752 1.38776257 1.45899982

36 −9.00998752 1.38776257 1.45899982

40 −9.00998752 1.38776257 1.45899982

: HAM solution for different orders of approximation for f ′′(0), −θ′(0) and −φ′(0) at ξsq =

.1, ξpr = 2, β = 0.05, ξL = 1 and ξα = 2

HAM BVP4c PCM

f ′′(0) −θ′(0) −φ′(0) f ′′(0) −θ′(0) −φ′(0) f ′′(0) −θ′(0) −φ′(0
3.404551 0.980413 1.153067 3.404550 0.980413 1.153067 3.404633 0.980592 1.1531

3.404551 0.918726 1.159177 3.404550 0.918726 1.159177 3.404611 0.918870 1.1592

3.404551 0.844146 1.166561 3.404550 0.844141 1.166563 3.404633 0.844294 1.1666

3.404551 0.804209 1.170511 3.404550 0.804192 1.170517 3.404633 0.804359 1.1706

3.404551 0.763560 1.173853 3.404550 0.762300 1.174664 3.404646 0.763601 1.1739

: HAM, BVP4c and PCM result comparison for the computations of f ′′(0), −θ′(0) and −φ′(0
, ξM = 1, ξL = 2, ξα = 2, ξsq = 0.2 and different values of ξpr.

velocity field components, heat, and mass transfers. It is evident from figure 3 that an increase in

/injection parameter ξα = −5,−10,−15 decreases the radial velocity due to the increase in the

ow from the flow domain. On the other hand, an increase in the injection parameter ξα = 5, 1

he fluid to enter the flow domain which increases the radial velocity near the lower disk. It can

rved that by rising the non-Newtonian parameter β = 0.2, 0.4, 0.6, 0.8, parabolic curves are found

ction and injection. Figure 4 is made to depict the 3D-behavior of the effect of ξα and β on the ra

ent of the velocity field. The physics of the figure 3 implies that the increase in the suction/injec

ter will increase the axial velocity due to the suction of the fluid from the lower disk, same but opp

r is noted during injection of the fluid between the gap of the two disks. This phenomenon coul

from figures 5 and 6. The influence of ξα on heat and mass transfer is depicted in figures (7 −
the effect of suction and injection parameter on θ(η) and φ(η) are observed identical. Secondly

n for higher values are smooth in φ(η) and θ(η). An increase in the rate of suction ξα = 0.5, 1

s the rate of outflow from the flow domain due to which the fluid temperature and mass transfer

e but opposite behavior is noted in the case of fluid injection. Figure 8 and 10 are drawn to obs

nomenon in 3D shape.

pact of ξM and β on f ′(η) and f(η) are seen at figures (11 − 14). Hartmann number is the

romagnetic force to viscous force, by increasing ξM and skipping Hartman number a vascular ar

It could be observed that during the injection of the fluid, radial velocity increase near the two d

he decrease in the viscous force. This phenomenon is opposite near the center of the fluid domain.

of ξM during the suction of the fluid is negligible, It also describes that Lorentz-force has a smoo
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HAM BVP4c PCM

f ′′(0) −θ′(0) −φ′(0) f ′′(0) −Θ′(0) −φ′(0) f ′′(0) −θ′(0) −φ′(0
5.731321 0.998768 1.009664 5.731321 0.998768 1.009664 5.731461 0.998867 1.0097

3.425398 0.990088 1.077669 3.425399 0.990088 1.077668 3.425480 0.990196 1.0777

3.404551 0.980413 1.153067 3.404550 0.980413 1.153067 3.404699 0.980525 1.1531

3.474725 0.970731 1.227853 3.474725 0.970730 1.227853 3.474859 0.970825 1.2278

3.565737 0.961063 1.301666 3.565737 0.961063 1.301666 3.565844 0.961124 1.3017

: HAM, BVP4c and PCM results comparison for the computations of f ′′(0), −g′(0), −Θ′(0) and −φ
0.1, ξM = 1, ξL = 2, ξα = 2, ξpr = 2 and different values of ξsq.

HAM BVP4c PCM

f ′′(0) −θ′(0) −φ′(0) f ′′(0) −θ′(0) −φ′(0) f ′′(0) −θ′(0) −φ′(0
4.354185 0.999448 1.004323 4.354185 0.999448 1.004323 4.354273 0.999357 1.0044

8.388572 0.999249 1.005891 8.388587 0.999249 1.005891 8.388629 0.999361 1.0059

15.08649 0.998920 1.008476 15.08649 0.998920 1.008476 15.08653 0.998041 1.0085

24.40871 0.998467 1.012038 24.40871 0.998467 1.012038 24.40944 0.998585 1.0121

36.30043 0.997897 1.016526 36.30045 0.997897 1.016526 36.30191 0.997937 1.0166

: HAM, BVP4c and PCM results comparison for the computations of f ′′(0), −θ′(0) and −φ′(0
, ξM = 1, ξsq = 2, ξα = 2, ξpr = 1 and different values of ξL.

n β = 0.2, 0.4 0.6, 0.8 and greater values. For the axial velocity, the velocity increase near the l

cause of the injection of the fluid which mobilizes the fluid to move in the axial direction. This e

ly decreases due to a decrease in the viscous force and hence from the middle region, the velocity s

ease. Figures 12 and 14 are made to observe the effect of ξM in 3D geometries. Figures 15 an

the impact of the Prandtl number on the heat transfer. Prandtl number is the ratio of momen

ity to thermal diffusivity. Figure 15 explains the impact of Prandtl number ξpr on temperature.

hat while in suction, the flow temperature increases with an increase in the amount of Prandtl and

astic parameter because of the increase in momentum diffusivity, although this behavior is inve

ional during injection of the fluid between the disks. For variable β and ξsq figures (16−23) are plo

files of velocity components plotted in figure 16 show that initially, the redial part of the velocity

e increase of ξsq when the fluid is injected, but, as the fluid flow reached the central area it gradu

he maximal decrements for the lower values of ξsq can be observed on the radial-velocity. Velo

s with the increase in ξsq on the left of the bottom disk, whereas velocity decreases for the same

e right of the top disk. Furthermore, the squeeze-parameter effect is not visible for the large β, bu

s noticeable as the top of the disk is heading away from the bottom disk. In figure 16 also demonst

ocity changes are negligible by increasing space between disks during injection of the fluid. In a suc

, it would be noticeable that the effects of f ′(η) are relatively greater when β is small. It may als

d that for small squeezing parameters, f ′(η) abruptly rises close to the bottom disk afterward begin

e to meet boundary conditions. The effect of ξsq = −0.1, −1, −1 on axial velocity profile could als

graphical representation in figure 18. The minor impact of ξsq observed on the velocity profile for

l amount of β but for larger β this effect is negligible. The effect of suction on velocity is the opposi

n. Figures 20 depicts that as the fluid slips from the disk’s region the temperature of the fluid decr

y due to suction, however, this behavior is the opposite in the case of injection. A similar scenario c

for the mass transfer in figure 22.
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3: Impact of suction/Injection parameter ξα = ±5,±10,±15 and β = 0.2, 0.4, 0.6, 0.8 on f ′(η)

ξM = 10, ξpr = 1, ξL = 1.5

pact of Lewis number is presented in figures 24 and 25. Lewis number is the ratio of thermal diffus

diffusivity. An increase in the Lewis number means an increase in the thermal diffusivity of the fl

d be observed that for greater Lewis number, φ(η) abruptly falls close to the bottom disk afterw

to decrease to meet boundary conditions. The minor impact of ξL was observed on the concentra

or the minimal amount of β but for larger β this effect is negligible. Figure 25 presents the 3D vie

ct of Lewis number on mass transfer.

onclusion

research Non-Newtonian fluid is examined as a turbulent squeezing flow amongst two parallel d

he Parametric Continuation Method (PCM) and BVP4c for the numerical solution to solve the der

tial equations given in equations (13-15). At just 10th-order analytical solution, a good averaged resi

produced. During the analysis, the following results were achieved. In the case of suction and injec

ct of different flow parameters are examined visually. For velocity field, heat, and mass transfer

e of the flow parameters is presented. During this study, the results obtained are:

he current problem is limited to two-dimensional geometry, which can be changed to three-dimensi
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Figure 1.5

Figure with

ξsq = 5,

Journal Pre-proof
4: 3D-representation of f ′(η) for ξα = ±5,±10,±15, β = 0.6, 0.8, ξsq = 5, ξM = 10, ξpr = 1, ξL =

5: Impact of suction/Injection parameter ξα = ±5,±10,±15 and β = 0.2, 0.4, 0.6, 0.8 on f(η)

ξM = 10, ξpr = 1, ξL = 1.5
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Figure 1.5

Figure and

ξsq = 1,

Journal Pre-proof
6: 3D-representation of f(η) for ξα = ±5,±10,±15, β = 0.6, 0.8, ξsq = 5, ξM = 10, ξpr = 1, ξL =

7: Impact of suction/Injection parameter ξα = ±0.5,±1,±1.5 on θ(η) with β = 0.2, 0.4, 0.6, 0.8

ξM = 5, ξpr = 1, ξL = 1.5
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Figure 1.5

Figure and

ξsq = 1,

Journal Pre-proof
8: 3D-representation of θ(η) with ξα = ±0.5,±1,±1.5, β = 0.6, 0.8, ξsq = 1, ξM = 5, ξpr = 1, ξL =

9: Impact of suction/Injection parameter ξα = ±0.5,±1,±1.5 on φ(η) with β = 0.2, 0.4, 0.6, 0.8

ξM = 5, ξpr = 1, ξL = 1.5
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Figure = 1,

ξL = 1.

Figure 1 = 5,

ξL = 1,

Journal Pre-proof
10: 3D-representation of φ(η) with ξα = ±0.5,±1,±1.5, β = 0.2, 0.4, 0.6, 0.8, ξsq = 1, ξM = 5, ξpr

5

1: Impact of Hartmann number ξM = 0, 5, 10 and β = 0.2, 0.4, 0.6, 0.8 on f ′(η) with ξsq = 0.1, ξpr

ξα = ±2
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Figure with

ξsq = 0.

Figure = 5,

ξL = 1,

Journal Pre-proof
12: 3D-representation of Hartmann number ξM = 0, 5, 10 and β = 0.2, 0.4, 0.6, 0.8 on f ′(η)

1, ξpr = 5, ξL = 1, ξα = ±2

13: Impact of Hartmann number ξM = 0, 5, 10 and β = 0.2, 0.4, 0.6, 0.8 on f(η) with ξsq = 0.1, ξpr

ξα = ±2
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Figure with

ξsq = 0.

Figure = 5,

ξL = 1,

Journal Pre-proof
14: 3D-representation of Hartmann number ξM = 0, 5, 10 and β = 0.2, 0.4, 0.6, 0.8 on f(η)

1, ξpr = 5, ξL = 1, ξα = ±2

15: Impact of Prandtl number ξpr = 1, 5, 10 and β = 0.2, 0.4, 0.6, 0.8 on θ(η) with ξsq = 0.1, ξM

ξα = ±2
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Figure = 5,

ξpr = 2

Figure ′(η)

with ξM

Journal Pre-proof
16: Impact of squeezing parameter ξsq = −0.1, −1, −2 with β = 0.2, 0.4, 0.6, 0.8 on f ′(η) and ξM

, ξL = 1, ξα = ±2

17: 3D-representation of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on f

= 5, ξpr = 2, ξL = 1, ξα = ±2
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Figure = 5,

ξpr = 2

Figure with

ξM = 5

Journal Pre-proof
18: Impact of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on f(η) with ξM

, ξL = 1, ξα = ±2

19: 3D-representation of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on f(η)

, ξpr = 2, ξL = 1, ξα = ±2
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Figure = 5,

ξpr = 2

Figure 2 with

ξM = 5

Journal Pre-proof
20: Impact of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on θ(η) and ξM

, ξL = 1, ξα = ±2

1: 3D-representation of squeezing parameter ξsq = −0.1, −1, −2 with β = 0.2, 0.4, 0.6, 0.8 on θ(η)

, ξpr = 2, ξL = 1, ξα = ±2
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Figure = 5,

ξpr = 2

Figure with

ξM = 5

Journal Pre-proof
22: Impact of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on φ(η) with ξM

, ξL = 1, ξα = ±2

23: 3D-representation of squeezing parameter ξsq = −0.1, −1, −2 and β = 0.2, 0.4, 0.6, 0.8 on φ(η)

, ξpr = 2, ξL = 1, ξα = ±2
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Figure 10,

ξpr = 1

Figure = 5,

ξM = 1

Journal Pre-proof
24: Impact of Lewis number ξL = 0.1, 1, 2 and β = 0.2, 0.4, 0.6, 0.8 on φ(η) with ξsq = 5, ξM =

, ξL = 1.5, ξα = ±2

25: 3D-representation of Lewis number ξL = 0.1, 1, 2 and β = 0.2, 0.4, 0.6, 0.8 on φ(η) with ξsq

0, ξpr = 1, ξL = 1.5, ξα = ±2
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ometry by rotating the discs in a certain way. Because of the boundary conditions, the gover

uations of this issue are changed from PDEs to ODEs. A suitable numerical methodology coul

ed to discover adequate boundary conditions and solve the PDEs.

vascular area is observed by increasing or avoiding the Hartman number. During the injection, ra

elocity may be observed to rise in the vicinity of the two disks as the viscous force decreases.

he radial velocity is decreased when the rate of output from the flow area increases in the

on/injection parameter. Parabolic contours for both suction and injection of fluid can also be not

enhancing the non-Newtonian parameter.

is also observed that Increasing the number of Hartman reduces the vascular area and so the Lor

rce impact for small values of the non-Newtonian parameter is clearly shown.

he influence on the flow field patterns is opposite in the suction and injection case of all phy

rameters. The influence all these parameters on temperature profiles remains same.

suction, the temperature is directly proportional to Non-Newtonian parameters and Prandtl num

d vice versa for injection.

he small impact of Lewis numbers on the concentration profile is observed for minimum value of N

ewtonian parameter, but it is negligible for the greater value of this parameter.

he skin friction and heat/mass flow rate raise as the non-Newtonian parameter is increased.

is noticed that the influnce of Hartman number during liquid suction is minimal and also shows

e Lorentz-force has a more smooth influence on the non-Newtonian parameter.

is determined that in the suction scenario, raise in the non-Newtonian parameter and squeeze Reyn

mber have no influence on velocity profile throughout the flow field.

he concentration rate near the bottom disc rises steadily as the thermal diffusiveness increases.

rise in non-Newtonian parameter value has a minor influence on the flow field’s radial and a

mponent.
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menclature

pressure(N.m−2) C dimensional concentration

, z cylindrical polar coordinates ~r radius vector of the disc

radial velocity(m.s−1) ~V velocity vector

azimuthal velocity(m.s−1) Greeksymbols

axial velocity(m.s−1) ω rotation vector

time(s) Ωl lower disc angular velocity

temperature at upper disc(K) κ thermal conductivity(W/m

temperature at lower disc(K) µ dynamic viscosity (PaS)

concentration at upper disc ν kinematic viscosity(kg/mS

concentration at lower disc σ relative angular velocity
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molecular diffusion coefficient u fluid condition on upper di

thermal diffusion ratio l fluid condition on lower dis

mean fluid temperature(K) Superscript
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stress components ′ derivative w.r.t η

,A2 Rivlin-Ericksen tensors
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 To examine Non-Newtonian fluid as a turbulent squeezing flow amongst two parallel 

discs

 To use the Parametric Continuation Method and BVP4c for the numerical solution

 To present the influence of the flow parameters for velocity field, heat, and mass transfer
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