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Abstract: This paper deals with high frequency analysis of spiral inductors, used in microelectronics
circuits, to optimize their configuration. Software developed, designed, and implemented by the
authors for nano and micrometre spiral inductor high frequency analysis, named ABSIF, is presented
in this paper. ABSIF determines the inductance, quality factor, and electrical parameters for square,
hexagonal, octagonal, and circular spiral inductors and their configuration optimization for energy
efficiency. ABSIF is a good tool for spiral inductor design optimization in high frequency applications
and takes into account the imposed technological limits and/or the designers’ constraints. A set
of spiral inductors are considered and analysed for high frequency values using ABSIF, and the
results are presented in the paper. The validation of ABSIF was completed by comparing the results
with those obtained using a similar commercial software, Sonnet LiteTM, which is dedicated to high
frequency electromagnetic analysis.

Keywords: planar spiral inductors; microelectronic circuits; high frequency; analysis; optimal design;
inductance; quality factor; energy efficiency; electrical and electronic parameters

1. Introduction

Spiral inductors are the main pawns in microelectronic circuits, thanks to the possi-
bility of reducing their dimensions at the micro and nanometre order and increasing their
frequency at the GHz order. For high performance microelectronic circuits, it is necessary
to improve the performance of their essential components, such as spiral inductors [1–3].
Spiral inductors have a crucial role in integrated circuits that work at very high frequencies.
Spiral inductors are especially used in the design of miniature wireless power supply
devices such as mobile or smartwatch chargers, wireless routers, wireless control and moni-
toring devices, wireless communication devices, radiofrequency amplifiers and converters,
filters, antennas, and others [4–11]. Most of the next generation devices, apparatus, and
equipment are based on radiofrequency micrometric integrated circuits. To improve their
performance and to better understand them, the analysis of each constructive element of
the integrated circuit, specifically of the spiral inductors integrated into radiofrequency
microelectronic circuits [12,13], using proper tools and software, is of great interest to
the designers and engineers of these circuits. The accurate calculation and extraction
of spiral inductor electronic and electrical parameters, using adequate methods that do
not require long computation time, excessive computational resources, or high effort, are
necessary. The integrated circuits must be modelled and simulated to understand, study,
and analyse their behaviour as well as highlight the phenomena and effects that occur
at high frequency at micrometric geometries [14–18]. To achieve these, the following
specific research objectives were met in this article: the extraction of inductance, quality
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factor, and electrical parameters for square, hexagonal, octagonal, and circular spiral induc-
tors; the analysis of frequency and geometrical parameters influences on inductance and
quality factor; planar spiral inductors configuration’s optimization for energy efficiency.
For this reason, a software program that was developed, designed, and implemented by
the authors and dedicated to spiral inductors high frequency analysis, named ABSIF, is
presented in this article. The ABSIF software program allows inductance, quality factor,
and electrical parameters extraction for square, hexagonal, octagonal, and circular spiral
inductors and their configuration optimization for energetic efficiency. It is dedicated to
high frequency application.

2. High Frequency Analysis of Spiral Inductors by Means of ABSIF Software

Compact software programs are needed for the analysis, design, and optimization of
spiral inductors because the available software (i.e., Sonnet LiteTM [19]) typically does not
allow analysis and optimization of spiral inductors in high frequency applications. The
ABSIF software developed, implemented, and designed by the authors is a compact soft-
ware program that can be used for high frequency spiral inductor analysis, optimization,
and to determine the electronic and electrical parameters, inductance, and quality factor,
optimizing their configuration for high performance applications. ABSIF allows the imple-
mentation of square, hexagonal, octagonal, and circular spiral inductors for high frequency
analysis; these spiral inductor shapes are frequently used in radiofrequency microelectronic
circuits [20]. The ABSIF software program has four modules: two modules for inductance,
quality factor, and electronic/electrical parameters computation and two modules for spiral
inductor optimization in high frequency applications. The first module of the program,
CPEPDC, is dedicated to inductance, quality factor, and electronic/electrical parameter
extraction for constant descriptive parameters. The second module, CPEPDV, extracts
the inductance, quality factor, and electronic/electrical parameters for variable descrip-
tive parameters. The third module, OCBSIM, optimizes the spiral inductor configuration
for maximum inductance, and the fourth one, OCBSFCM, optimizes the spiral inductor
configuration and maximizes the quality factor, aiming at their energy efficiency.

The ABSIF software is based on: analytical expressions for low frequency inductance
calculations, based on the current sheet method [21–27]; analytical expressions for electrical
parameters and for high frequency were set up by the authors using the π equivalent
electrical circuit method. This method implies the use of π models with concentrated
parameters for each side of the spiral inductor [28–34]. For example, a square inductor
with N turns has 4N sides; each turn is formed of four lines and a π equivalent circuit with
concentrated parameters, such as the one represented in Figure 1.
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The model includes the following: the spiral series inductance, L; the series resistance,
R; the capacitance between the spiral and the underpass, C; the capacitance between the spi-
ral and the oxide layer, Cox; the substrate capacitance, Csub; the substrate resistance, Rsub.

The resistances and capacitances of the equivalent circuit have simple, intuitive,
physical analytical expressions; only the inductance of the entire inductor implemented on
the integrated circuit has no exact expression in high frequency and is determined by using
the other parameters and frequency, based on the equivalent circuit reported in Figure 1.
There is a difference between the spiral inductance, L, and the inductor high frequency
inductance, Lf [35–39]. For high frequency applications, it is not enough to calculate the
inductance of the spiral, as it is being placed in the air, so all the electrical parameters
that appear (Figure 1) and, obviously, the frequency value must be considered. The high
frequency inductor is characterized by its inductance, Lf, given by:

Lf =
=m(1/Y11)

ω
=
=m(1/Y11)

2πf
, (1)

and its quality factor, Q, determined by:

Q =
=m(1/Y11)

<e(1/Y11)
, (2)

whereω is the pulsation, f is the frequency, and Y11 is the input admittance:

Y11 =
I1
U1

∣∣∣∣
U2=0

, (3)

when the port 2 is short circuited; then, due to the symmetry of the oxide layer and substrate
geometries,Y11 = Ys + Y1 and Y22 = Ys + Y2. The admittances of the element represented
in Figure 1 are Y1, Y2, and Ys.

The spiral admittance, Ys, refers to the series admittances of the spiral inductor,
composed of the inductors’ inductances and resistances in the series connection, and
the capacitance between the spiral and underpass in parallel connection. The following
expression is utilized for this admittance:

Ys =
R + jω

[
R2C− L

(
1−ω2LC

)]
R2 + ω2L2 , (4)

Y1 and Y2 are the admittances equivalent to the elements of the oxide layer and
substrate. The admittance Y1 is:

Y1 =
ω2RsubC2

ox + jωCox

[
1 + ω2CsubR2

sub(Csub + Cox)
]

1 + ω2R2
sub(Csub + Cox)

2 , (5)

We calculate Y2 in a similar manner.
The admittance Y11 is:

Y11 =
R + jω

[
R2C− L

(
1−ω2LC

)]
R2 + ω2L2 +

ω2RsubC2
ox + jωCox

[
1 + ω2CsubR2

sub(Csub + Cox)
]

1 + ω2R2
sub(Csub + Cox)

2 , (6)

The optimal design procedure is formulated as an objective problem, which allows
us to find the electrical parameters of the spiral inductors, the inductance, and quality
factor. The objective is to find the optimal configuration of the spiral inductor, at maximum
inductance L and quality factor Q, by satisfying the proper objective functions.

The objective function for the first optimization module is:

f(N, f, w, s, t, tC, to, ts) = Lfmax , (7)
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and for the second optimization module is:

f(N, f, w, s, t, tC, to, ts) = Qmax, (8)

where Lf max and Qmax are calculated using the above expressions.

2.1. CPEPDC Module

The module for the computation of the electrical parameters of spiral inductors, uti-
lized in microelectronic circuits for constant descriptive parameters, the CPEPDC module,
allows us to determine, for a high frequency analysis, the following parameters: spiral
inductance, L; resistance, R; capacitance, C; oxide capacitance, Cox; substrate resistance,
Rsub; capacitance, Csub; spiral inductor high frequency inductance, Lf; quality factor, Q.

The following are used as input data for the geometrical definition of the inductor in
the module: the spiral shape; the number of turns, N; the turn’s width, w; the distance
between turns, s; the external diameter, de; the internal diameter, di; the turn’s thickness,
t; the via thickness, tc; the oxide thickness, to; the substrate thickness, ts. The frequency
and the materials for each component of the spiral inductor must be properly set. The
computed values of the electrical parameters, the inductance, and the quality factor are
displayed in a window with the equivalent circuit, on which the parameter that is selected
to be displayed is automatically highlighted.

A set of designed spiral inductors was analysed for high frequency values using our
ABSIF software. All the spiral inductors were designed to be utilized on microelectronic
circuits on the same area of 0.25 mm2. The geometrical parameters are the same for all the
designed spiral inductors: the external diameter is 500 µm, the distance between the turns is
5 µm, the turn width is 10 µm, the turn thickness is 2 µm, the oxide layer thickness is 6 µm,
the substrate thickness is 380 µm, the via thickness is 2 µm, and the underpasses thickness
is 2 µm. We considered turn numbers from one to sixteen and frequencies from one to
ten GHz for all the analyses. We assumed the use of copper for the spiral, silicon dioxide
for the oxide layer, and silicon for the substrate. The CPEPDC module was implemented
to compute the values of the electrical parameters of the spiral inductors, the inductance,
and the quality factor for constant descriptive parameters, frequency, and number of turns.
Table 1 shows the results obtained for the analysis of the set of designed square spiral
inductors analysed at 4 GHz.

Table 1. Results of analysed square spiral inductors at 4 GHz.

Turns
Electrical Parameters

L, nH R, Ω C, fF Cox, fF Rsub, MΩ Csub, fF Lf, nH Q

1 1.807 3.793 1.726 135.362 88.126 2.717 1.816 11.915
2 5.5820 6.092 3.453 217.410 54.868 4.364 5.738 22.395
3 10.526 8.588 5.179 306.447 38.926 6.151 11.373 28.501
4 16.149 10.964 6.906 391.241 30.490 7.853 18.974 31.483
6 28.080 15.227 10.359 543.353 21.954 10.907 44.795 28.990
8 39.347 18.788 13.812 670.412 17.793 13.458 119.398 17.244
12 55.314 23.747 20.718 847.379 14.077 17.010 179.706 17.868
16 60.063 25.802 27.625 920.677 12.956 18.481 81.589 42.778

The ABSIF gives the results, immediately, for all the interest inductor’s parameters
for the desired frequency. The spiral inductance increases with the number of inductor’s
turns, but not with the inductor’s inductance, which depends on frequency and reaches its
maximal value at its resonance frequency. In high frequency, there is not a linear increment
of the inductance with the number of turns because of the different frequency resonance of
each inductor. All the layers on which the spiral is constructed have an influence on the
planar inductor parameters in high frequency, and all of these must be properly calculated
and considered in their design and optimization.
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Table 2 shows the results obtained for the analysis of the set of designed square spiral
inductors analysed at 10 GHz. In this way, using our program, the inductor’s parameters
can be properly found for a wide range of frequencies.

Table 2. Results of analysed square spiral inductors at 10 GHz.

Turns
Electrical Parameters

L, nH R, Ω C, fF Cox, fF Rsub, MΩ Csub, fF Lf, nH Q

1 1.807 5.374 1.726 135.362 88.126 2.717 1.865 20.469
2 5.5820 8.631 3.453 217.410 54.868 4.364 6.727 33.697
3 10.526 12.166 5.179 306.447 38.926 6.151 19.697 29.002
4 16.179 15.532 6.906 391.241 30.490 7.853 224.300 4.471
6 28.080 21.572 10.359 543.353 21.954 10.907 21.0488 108.437
8 39.347 26.616 13.812 670.412 17.793 14.458 12.3147 293.174
12 55.314 33.642 20.718 847.379 14.077 17.010 7.718 722.663
16 60.063 36.552 27.625 920.677 12.956 18.481 6.099 988.178

2.2. CPEPDV Module

The CPEPDV module of ABSIF for electrical parameters, inductance, and quality factor
computation for variable descriptive parameters is similar to the CPEPDC module, and it
also analyses the electrical parameters, the inductance, and the quality factor variations in
terms of variable frequency, number of turns, and other descriptive geometrical parameters
for the same shapes of the spiral inductor. This module of the program computes and
displays, in a table, the inductance value and the quality factor value with reference
to the parameter selected as variable. By using this module, it is possible to obtain the
inductance and quality factor variation at high frequency without the necessity of a separate
implementation and analysis of each inductor, and then, it is possible to directly collect
the results and plot the desired variations. The designed spiral inductors are also analysed
in this module to plot the inductance and the quality factor variations, directly, in the
graphical representation module, with it not being necessary to use other programs to plot
the results. The inductance is plotted in terms of frequency for the square spiral inductor
with 3 turns in Figure 2a and for the one with 8 turns in Figure 2b.
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At a frequency variation between 1 and 10 GHz, as can be seen in Figure 2, the
inductors each reach at a single or multiple resonance frequency, where the higher value
of the inductance is found. If high-performance inductors are desired, they must also be
properly analysed in terms of frequency. In ABSIF, these types of analyses are possible, for
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the all the inductors that were analysed in our research activities, we consider the frequency
variation between 1 and 10 GHz, with the step 0.025 GHz. If it is desired, the step can be
also smaller or higher than this. Each researcher can choose it in terms of the accuracy he
wants for the results.

The quality factor variation, in terms of frequency, can also be plotted, directly, in this
module of the software. For example, the quality factor is plotted, in terms of frequency,
for the square spiral inductor, with 2 turns in Figure 3. The frequency varies between 1 and
10 GHz, with step 0.5. The frequency at which the quality factor is maximal can be found
for inductor’s energy efficiency.
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2.3. OCBSIM Module

The module for the optimization of the spiral inductor configuration for maximal
inductance, the OCBSIM module, is dedicated to finding the optimal configuration of spiral
inductors for the maximum inductance, given a particular area of implementation, on the
microelectronic circuit.

The input data in this module are the spiral inductor shape (square, hexagonal,
octagonal, or circular), the type of material, and the exterior diameter, de. This module of
the program enables the use of additional optimization options. The software displays the
value of maximal inductance, the frequency, and details about the optimal configuration
that is found for the maximum inductance. The module automatically draws the cross
section and top view of the optimal configuration.

The optimization module of the ABSIF program is a useful tool for spiral inductor
design and optimization; it has a very friendly interface that facilitates the implementation,
and the optimization process is easy to use. It also has short running time compared to
similar programs.

Square spiral inductors with an exterior diameter of 10 µm, 50 µm, 100 µm, 200 µm,
300 µm, 500 µm, 700 µm, and 800 µm were optimized, and the optimal solution was
found for each one to achieve the maximum inductance for a frequency range 1–10 GHz.
Keeping the same shape of spiral inductors and the above detailed materials, the optimal
configuration of these spiral inductors was found. The results are given for the analysed
inductors in Table 3.

For these optimization processes, additional optimization options were considered.
The program automatically draws the optimal configuration found for each implementa-
tion, so the designer can obtain the optimal configuration of the spiral inductor.
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Table 3. The optimal configuration for maximal inductance in 1–10 GHz frequency domain.

de, µm Lmax, nH f, GHz
Optimal Configuration of Spiral Inductors

w, µm s, µm di, µm N, turns t, µm tc, µm to, µm ts, µm

10 0.037 9 1 1 4 2 1 1 1 1
50 4.606 9 1 1 4 12 1 1 1 1
100 133.753 9 1 1 38 16 1 1 7 5
200 317.771 3 1 1 138 16 1 1 5 9
300 377.834 3 1 1 254 12 1 1 9 9
500 712.4 1 1 1 438 1 1 1 9 9
700 582.067 1 1 1 654 12 1 1 9 9
800 494.63 1 1 1 762 10 1 1 9 9

2.4. OCBSFCM Module

OCBSFCM is the module dedicated to the optimization of spiral inductor configuration
for the maximum quality factor and energy efficiency. Given the area on which the spiral
inductor will be implemented on the microelectronic circuit, this module of ABSIF helps
obtain the optimal configuration of the inductor that has the maximum quality factor with
high energy efficiency and high performance.

With the OCBFCM module of ABSIF, by using the same input data, the optimal
solution for each spiral inductor in terms of high energy efficiency is obtained. For exterior
diameters of 10 µm, 50 µm, 100 µm, 200 µm, 300 µm, 500 µm, 600 µm, and 800 µm,
the optimal configuration for the maximum quality factor was obtained. The results for
analysed inductors are shown in Table 4.

Table 4. The optimal configuration for maximal quality factor in 1–10 GHz frequency domain.

de, µm Q f, GHz
Optimal Configuration of Spiral Inductors

w, µm s, µm di, µm N, turns t, µm tc, µm to, µm ts, µm

10 1.842 9 1 1 4 2 5 1 1 1
50 5.932 9 1 1 4 12 5 1 1 1
100 1.026 9 1 1 38 16 5 3 9 1
200 0.971 3 1 1 138 16 5 9 9 1
300 1.192 3 1 1 254 12 5 1 9 9
500 1.124 1 1 1 438 16 5 1 9 5
600 1.149 1 1 1 546 14 5 1 9 7
800 1.009 1 1 1 762 12 5 1 5 9

3. Results and Discussion

The ABSIF software was validated by comparing the results with those obtained
by using a similar commercial software, Sonnet LiteTM [19], for high frequency electro-
magnetic analysis. Different types of spiral inductors were implemented by using these
software programs [21,22]. We intend, in the near future, to also validate our program
with experimental measurements. We constructed some of the inductors analysed in our
research activities and presented in this article, and we want to measure their Q and L by
using a Network Analizer GHz.

This section presents the analysis for the designed set of square spiral inductors, with
the dimensions and material properties given above. The inductance and the quality factor
variations are analysed in the frequency domain 1–10 GHz. In Table 5, the results obtained
by means of ABSIF are shown and compared to those obtained by Sonnet LiteTM for the
set of square spiral inductors with 1–16 turns at 4 GHz frequency.

The frequency analysis for the square spiral inductor with 2 turns was initially com-
pared. The results obtained by using the two similar software programs, for inductance
and quality factor variation is terms of frequency, are reported in Table 6.
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Table 5. Comparison of the results obtained by ABSIF and Sonnet at 4 GHz.

Square Spiral Inductor LABSIF, nH LSonnet, nH QABSIF QSonnet

1 turn 1.81667 1.605376 11.9152 11.78124
2 turns 5.7382 4.866895 22.39523 16.64678
3 turns 11.37367 10.49286 28.50145 17.15152
4 turns 18.97421 19.43089 31.48352 16.41239
5 turns 29.43674 38.00863 31.57406 12.47133
6 turns 44.79571 83.67156 28.99092 7.485075
8 turns 119.39874 −234.313 17.24493 3.512818
12 turns −179.706 −66.5797 17.8686 19.48071
16 turns −81.5899 −58.8932 42.7782 33.70341

Table 6. L and Q vs. f for 2 turns spiral inductor at 4 GHz: comparison of the results obtained by
ABSIF and Sonnet.

Frequency, GHz LABSIF, nH LSonnet, nH QABSIF QSonnet

1 5.591 4.582481 8.3 7.835281
2 5.620 4.623863 14.07 12.5581
3 5.669 4.716134 18.64 15.30015
4 5.738 4.866895 22.4 16.64678
5 5.830 5.088538 25.51 17.00251
6 5.946 5.401603 28.07 16.66686
7 6.090 5.840430 30.14 15.85112
8 6.265 6.464510 31.75 14.68275
9 6.475 7.384216 32.93 13.21468
10 6.727 8.82726 33.7 11.43541

It is also very important to make the next comparison for a more complex spiral
inductor and give the results for the square spiral inductor with 16 turns in the analysis of
the inductance, and the quality factor variation in terms of frequency, in Table 7.

Table 7. L and Q vs. f for 16 turns spiral inductor: comparison of the results obtained by ABSIF
and Sonnet.

Frequency, GHz LABSIF, nH LSonnet, nH QABSIF QSonnet

1 67.350 56.40525 18.83 15.61315
2 105.983 88.47989 20.32 17.14319

2.975 1184.864 1220.688 1.89 0.782397
3 1430.291 −230.072 1.12 0.091579

3.025 880.472 −1274.88 0.34 0.986546
3.05 −1101.464 −1057.03 0.46 1.901337

3.075 −1423.381 −809.371 1.27 2.834652
4 −81.590 −58.8932 42.78 33.70341
5 −35.083 −24.4080 34.83 35.44694
6 −20.676 −13.1851 21.8 26.36955
7 −13.920 −8.25221 13.84 13.10635
8 −10.108 −4.50733 10.56 9.586369
9 −7.714 −1.63675 3.11 2.369961

10 −6.1 1.922089 1.18 1.153401

For a better visualization of the good agreements of the results, the results for the
square spiral inductor with 16 turns were plotted separately in Figure 4, those obtained with
ABSIF in Figure 4a, and those with Sonnet in Figure 4b for the same frequency variation
between 1 and 10 GHz.
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The ABSIF implementation immediately yielded the L and Q variations; each inductor
was not analysed separately, as was necessary in the Sonnet software program, so the
running times for ABSIF are much shorter than for similar programs.

The ABSIF program can be used with confidence for high frequencies analysis, mod-
elling, simulation, design, and optimization of microelectronic planar spiral inductors of
millimetre, micrometre and nanometre dimensions that operate at gigahertz order frequen-
cies. The software is dedicated, exclusively, to spiral inductor high frequency analysis,
so it can be used for parameter extraction for parametric inductor’s analysis (inductance
variation in terms of frequency, in terms of some of the geometrical parameter, and so on)
and for optimal design of the planar spiral inductor configuration with square, hexagonal,
octagonal, and circular shapes.
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4. Conclusions

The design of a spiral inductor requires a preliminary analysis for a proper high
frequency to achieve high performance and to avoid errors. It is very important to have a
software tool able to conduct this analysis as simply, easily, and quickly as possible while
maintaining high accuracy.

In the present paper, ABSIF software was proposed, which is a well-assembled and
well-structured software. Each module of the software is set for a specific computation or
optimization to provide opportunities for all the studies that spiral inductor designers must
conduct before, during, and after the construction of the spiral inductors. The geometrical
parameters and materials used for the other components of the microelectronic circuits can
affect the inductance and the quality factor values of spiral inductors and must be properly
analysed to achieve inductors with high performances. Using the ABSIF software the
planar spiral inductor can be very deeply analysed, their electrical parameters (resistances,
capacitances, inductances) can be extracted easy and fast with high accuracy for a wide
range of planar inductor types of millimetre, micrometre, and nanometre dimensions
and in a wide range of high frequencies. The software allows us to directly analyse the
inductor’s parameters variations in terms of frequency and/or in terms of geometrical
parameters by plotting their variation in real time, as was exemplified in Figures 2–4 and
detailed in Tables 6 and 7. A set of spiral inductors were designed to be analysed in high
frequency to validate our ABSIF software and the obtained results, presented in Figure 5,
show their accuracy.

The software program enables the analysis and optimization of a board range of
spiral inductors. It is very good for spiral inductor design because it allows to compute
its inductance, quality factor, and electrical parameters for high frequency applications
with very good accuracy and to optimize the spiral inductor configuration for the imposed
technological limits and/or for the designers’ needs.

In the present paper, we demonstrated that, by comparing the results obtained with
other commercial software, the proposed software is of much help in the design, optimiza-
tion, and verification of spiral inductors.
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