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Abstract—Mobile users typically experience better connectivity
if their mobile device performs handover to an available WiFi
network rather than using a cellular network. For a moving
user the window of opportunity is limited and the timing of the
handover is therefore crucial.

In this work we propose two location-based look-ahead han-
dover prediction algorithms that are based on the assumption
that a database of expected throughput for a given location
of all networks is available. The first algorithm uses an ana-
lytical formulation of the handover problem to determine the
optimal sequence of handovers within a time window, which
is computationally feasible for up to 3-4 handovers within the
window. The second algorithm is a heuristic algorithm, which is
computationally feasible for any reasonable number of handovers
within the window. We have used simulations to obtain the
achieved throughput of these algorithms for a mobile user in
an urban scenario with ubiquitous cellular coverage and 250
WiFi APs/km2, and compared the results to a hysteresis-based
greedy algorithm and the case of ”always cellular-connected”.

Our results show that the proposed look-ahead algorithms
outperform the hysteresis-based and ”always cellular-connected”,
but also show that the look-ahead algorithms are highly depen-
dent on accurate movement tracking and movement prediction
systems. The heuristic algorithm is also shown to achieve the
highest throughput for large look-ahead windows.

I. INTRODUCTION

WiFi networks typically provide mobile users with better
connectivity in terms of e.g. throughput than cellular networks,
as shown in the two experimental performance comparisons of
3G and Wi-Fi in [1] and [2]. Here it is clear that if a terminal
is able to use the network that offers the highest throughput
at any given time, an overall performance increase is possible.
To make use of the best network at any given time, the user
terminal needs to handover between the cellular network and
the available WiFi networks. A handover is the process of
switching from one network to another, e.g., from the cellular
network to a WiFi network or between two WiFi networks.
Every such handover involves several steps such as access
point (AP) association, DHCP look-up, and IP configuration,
which require time and leads to a signaling overhead. It is
therefore preferred that the amount of handovers is limited,
which makes it important to choose the networks to use wisely.

This work has been performed in the framework of the ICT project ICT-
248894 WHERE2, which is partly funded by the European Union.

The Telecommunications Research Center Vienna (ftw.) is supported by
the Austrian Government and by the City of Vienna within the competence
center program COMET.

Thus, an important functionality for mobile devices intended
for use in heterogenous network scenarios is the handover
(HO) algorithm, which should maximize the user’s benefit of
the available networks but also limit the number of handovers.
Depending on the user’s preferences and applications, the
benefit could for instance be to achieve a higher throughput
than what the cellular network provides.

In this paper we investigate how the knowledge of location
information can help in the multisystem HO decision. The
main problem we address is how location information can
be used to guide a mobile device’s selection between the
ubiquitous cellular network and any locally available WiFi
networks. A main assumption in this work is the availability of
a database that contains the average throughput of all available
networks at any position for the considered geographical area.

In the literature some HO decision algorithms based on
location information already exist. In [3] the authors present
a survey of vertical HO decision strategies. One example
of exploiting location information is given in [4], where a
Location Server Entity provides information such as coverage
area, bandwidth and latency of nearby wireless networks,
which is used by the mobile terminal for power management
and HO selection. In [5] the authors propose a HO algorithm
based on neural networks. The method is superior compared to
simple RSS threshold and hysteresis-based schemes, however
the algorithm requires substantial training beforehand in form
of RSS traces and desired outputs. Both [4] and [5] are reactive
schemes where the HO decision is based on instantaneous
conditions and does not take into account the expected future
conditions. The authors of [6] and [7] have both formulated the
HO decision as Markov decision processes, taking into account
different parameters such as: connection duration, QoS param-
eters, location information and predicted movements, network
access cost, and the signalling load incurred on the network.
The proposed algorithms are shown to work well compared to
state of the art algorithms. However, in both [6] and [7] the
authors assume that the achievable throughput of the available
networks are constant within the coverage region, which is not
the case in practice [1].

In the present contribution, we propose two HO decision
algorithms that work proactively by using movement predic-
tion to plan the HO ahead in time. Also, the algorithms use
continous throughput functions to accurately determine the
best point for a user terminal to handover along the expected



movement trajectory.

II. SYSTEM MODEL

We consider a single multi RAT terminal with location
X(t) = [x(t), y(t)]T at time t. This location is however not
known, but it is estimated as X̂ using a localization system,
which can be GPS or network-based. The mobile terminal’s
past movement trajectory given by X̂(t ≤ tc), where tc is the
current time, is based on interpolation of previous location
estimates. The mobile terminal’s predicted future movement
trajectory X̂∗(tc ≤ t ≤ tc +W ), where W is a time window
specifying the prediction horizon, is based on an extrapolation
of the past trajectory, th seconds back in time. In the following
we denote W as the look-ahead window.

By connecting to an access point or a base station with index
a, whose coordinates are known a priori, the mobile terminal
at location X̂ , at time t, achieves a throughput Ω:

Ωa(t) = Sa(X(t)) + V (1)

where the random variable V accounts for variations in the
actual throughput, caused by non-deterministic factors such
as small and medium-scale fading. We assume that V is a
zero-mean gaussian stochastic variable, characterized by the
standard deviation σTP.

The expected throughput for a network a is achieved from
the database by the approximation:

Ω∗
a(t) = Sa(X̂

∗(t)) (2)

where Sa(X̂∗(t)) is the expected throughput at the predicted
location X̂∗(t) at time t, given the path-loss of the link
between the terminal and the AP or BS. Notice that currently
the available resources of APs or BSs is determined purely
from the path-loss, and does not depend on the load caused
by other users. This point will be discussed later in this paper.

The mobile terminal can choose to connect to a different
AP/BS by performing a handover (HO). Within the time
window [tc; tc + W ], the terminal may perform a sequence
of HOs H, defined as:

HK ={(ai, ti), i = 1 . . .K}, (3)
ai−1 "= ai,

tc < t1 < t2 < . . . < tK < tc +W

which describes a HO to network ai at time ti, where index
K denotes the number of HOs in the sequence. Notice that the
target network in a handover is never the same as the source
network. Each performed HO in the sequence H, may incur a
cost due to lost connectivity while switching from one network
to another, since this requires steps such as AP association,
Dynamic Host Configuration Protocol (DHCP) look-up, and
Internet Protocol (IP) address configuration. In this work we
assume that this cost denoted Ca is a downtime or handover
delay, where the throughput is zero that depends only on the
target network. The actual handover cost will in practice also
include a certain signaling overhead, which motivates to keep
the number of handovers low. As the achieved throughput
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Fig. 1. Look-ahead prediction algorithm principle. Mreg is the order of
regression, W is the look-ahead window length, th is the look-back window
length, and Mpoly is the polynomial approximation order.

is zero for the duration of each handover, optimizing for
the highest throughput should also result in relatively few
handovers for not too small values of Ca.

In order to experience the best performance in terms of
throughput, the mobile terminal needs to determine when is the
best time to perform HO(s) and which network(s) to connect
to, taking into account the handover cost Ca.

III. LOOK-AHEAD PREDICTION ALGORITHMS

In the following, we will describe the considered HO deci-
sion algorithms. The first two algorithms are so-called look-
ahead prediction algorithms that determine a HO sequence
H, as depicted in Fig. 1. The main assumption for these
algorithms is that a fingerprinting database that contains the
average throughput of all available networks for the considered
geographical area is available. The third algorithm, which is
described in sec. V-B, is a hysteresis-based greedy algorithm.

A. Optimal K-Handover Look-ahead Algorithm

The optimal sequence of HOs that maximizes the through-
put within the time window W , with exactly K HOs, may be
defined as:

HK
opt = argmax

HK

(f(HK)) (4)

f(HK) =

t1∫

t0

Ωa0(t)dt+
K∑

i=1





ti+1∫

ti+Cai

Ωai(t)dt



 (5)

where tK+1 = t0 + W . The integration of Ωa(t) over time
corresponds to the throughput experienced when connected to
network a along the predicted movement trajectory, so f(·)
is the total throughput achieved within W for a given HO
sequence. Notice that we determine the optimal HK

opt for each
of the cases K = {1, 2, . . .Kmax} separately, and then select
the best number of HOs:

Kopt = argmax
K

(f(HK
opt)), K = 1 . . .Kmax. (6)

This is solved by iterating over all considered values of K and
selecting Kopt as the K that leads to the highest throughput.

In order to determine the optimal HO sequence for a value
of K, we consider all possible combinations of networks to
handover from and to, as well as the candidate HO times,
which will be defined subsequently.



The N possible network combinations are:

An ={an0 an1 · · · ani · · · anK}, n = 1 . . . N, (7)
ani−1 "= ani ,

an0 = aj0, j = 1 . . . N.

For every HO i between two consecutive networks in An,
there is a set of M time instants that are candidates for optimal
HO points between these two networks. This set is defined as:

T i
n = {tn,1i tn,2i · · · tn,mi · · · tn,Mi }. (8)

Each unique combination of networks and time instants
from An and Tn,m constitute a unique sequence:

HK
n,m = {(ani , t

n,m
i ), i = 1 . . .K}. (9)

Now, given the n’th combination of networks An we can
determine the set of candidates for optimal handover points
T i
n, as the ti’s that satisfy:

df(HK
n )

dti
= 0 (10)

since these points result in either maxima or minima for
f(HK

n ), which expresses the total throughput in W . Such
optimization by differentiation of course requires that the
throughput functions Ωa(t) are continuously differentiable.

Differentiation of f(HK
n ) with respect to ti, reduces to:

df(HK
n )

dti
=Ωai−1(ti) + Ωai(ti + Cai). (11)

Setting this expression equal to zero and finding all solutions
for every ti gives the candidate handover points Tn for the n’th
combination of networks.

In short, the complete algorithm can be described
as shown in Algorithm 1, where the function
generate_combinations(Na,K, a0) generates all
possible combinations of networks as specified in eq. (7). Na
is the number of networks available within W , and K is the
number of allowed HOs with W . Further, N is the number
of network combinations in A.

The HO algorithm is run periodically, looking a time
W ahead and looping over the Kmax possible handovers to
determine the optimal number of handovers as described in
eq. (6). The HOs are done as planned, and after time W has
passed since last run, the algorithm is run again. However,
due to uncertainties caused by localization inaccuracy and
unknown future movements, the predicted behaviour, which is
used to calculate a HO sequence, is expected to become less
trustworthy with increasing lengths of the look-ahead window.

Algorithm complexity: The determining factor for the
complexity of the algorithm is the number of different network
combinations that the algorithm is trying out.

Considering the constraint in eq. (7): that a HO is always
to a different network than the current, the number of entries
in An becomes:

N = (Na − 1)K+1. (12)

for K = 1 . . .Kmax do
A = generate_combinations(Na,K, a0)
for n = 1 . . . N do

HK
n = An

for i = 1 . . .K do
Solve df(t,HK

n )
dti

= 0 → T i
n

end
for m = 1 . . .M do

HK
n = {An, Tn,m}

s(K,n,m) = f(t,HK
n,m)

end
end

end
(K,n,m) = max{s(K,n,m)}
Hopt = HK

n,m

Algorithm 1: Optimal K-HO algorithm.

From this it is clear, that for a large number of available
networks, trying out all combinations can become infeasible
as the number of HOs K increases. In order to keep the
complexity low, we consider only the networks in W whose
expected throughput exceeds that of the cellular network,
hereby reducing Na.

B. Heuristic Look-ahead Algorithm
In addition to the previous algorithm that determines the op-

timal K-HO solution within the window W , we also consider
a less complex heuristic look-ahead algorithm.

This algorithm always tries to handover to the network with
the highest expected troughput; however, only if the handover
gain exceeds the cellular network throughput by more than a
threshold ρ.

Assume that {t1 t2 · · · tj · · · tJ} where tj < tj+1 is a list
of timestamps for when the network with the highest expected
throughput, amax, changes. Then the preferred network for the
j’th timespan (tj ; tj+1] is:

apref
j =

{
amax
j if

∫ tj+1

tj
(Ωamax

j
(t)− Ω1(t))dt− ρ > 0

1 otherwise
(13)

where Ω1(t) is the throughput function of the cellular network
and ρ is a threshold, used to filter out unhelpful HOs, which
is set as defined in Table I.

Finally, the heuristic sequence is:

Hheu = {(apref
j , tj), t = 1 . . . J} (14)

Notice that for simplicity, this heuristic algorithm does not take
the HO delay into account when calculating the timestamps
in the HO sequence.

C. Movement prediction
For the look-ahead HO algorithms we use a linear move-

ment prediction algorithm that uses historical location mea-
surements within a time window Wh to predict the direction
and speed of the mobile user, W seconds ahead.



First, the direction of movement is determined using a 1st
order Total Least Squares (TLS) regression. TLS is used, since
it minimizes the perpendicular distance to the regression line
and not the vertical distance as ordinary Least Squares (LS)
does. The TLS is realized using the Principal Component
Analysis (PCA) method [8]. The PCA method gives a vector
of unit length along which, the variance of the data is the
highest. But the PCA does not tell if the movement direction
is along or opposite the resulting vector, denoted ŵ. Therefore
we use the first and last historic data points to determine the
sign of the direction vector as:

û =

{
ŵ if sign((aT ŵ)ŵ) = sign(ŵ)

−ŵ otherwise
(15)

where a is the last and first historic data points subtracted:

a = X̂(tc)− X̂(tc −Wh) (16)

where X̂(tc) is the estimated current location and X̂(tc −Wh)
is the oldest location estimate in the look-back window.

The average speed v̄ is determined from the average dis-
tance between the projections of the historical data points in
matrix B onto the direction vector:

b = Bŵ (17)

v̄ =

∑Nh
i=2 b(i)− b(i− 1)

Nh − 1
(18)

where, in B, each row contains an x, y coordinate pair, and
Nh is the number of historical data points.

D. Implementation Considerations for Look-ahead Algorithms
The nature of the K-HO optimal and heuristic look-ahead

prediction algorithms do not dictate that they need to be
implemented in the mobile device or in the network. However,
the algorithms have some dependencies that make the network-
based approach most attractive. First and foremost we have
noticed in our simulation prototype that the processing power
required to determine the best HO sequence with the optimal
algorithm is quite substantial for 4 or more HOs within W. A
battery-driven device may therefore experience a significant
reduction in battery life-time if these calculations are per-
formed locally. However, the heuristic algorithm requires less
processing power and could therefore be implemented in the
mobile device. Secondly, the algorithms need to look up the
average throughput of networks along the expected trajectory.
Doing these regular database look-ups over a wireless link,
could incur a significant increase in the signaling overhead.
Also, in practical networks it may be necessary to account for
the number of collocated users and their instantaneous load
on the different APs and BSs, which advocates for a network-
based approach. Finally, the algorithms rely on a prediction of
the mobile device’s future movement trajectory. In cases where
this is based on only GPS location estimates or a distributed
localization algorithm the device-based solution could be
attractive. However, if a centralized network-based approach
where fusion of measurements from e.g. GPS and cellular and

WiFi networks is considered, as in [9], then the network-based
approach would benefit from a lower communication latency.

IV. EVALUATION SCENARIO

This section describes the scenario that is considered for
evaluation of the proposed look-ahead HO prediction algo-
rithm. We have used matlab-based simulations for evaluation.
Two different scenarios have been considered as shown in
Table I. The ideal scenario assumes perfect location estimation
and a constant speed linear mobility model. This scenario is
used to see how well the algorithm itself performs. Addition-
ally, we consider a realistic scenario with localization errors
and a random mobility model.

Parameter name Default Values
Scenario Ideal Realistic
Simulation time 2000 s
Independent simulation runs (seeds) 32
Scenario size 1 km x 1 km
No. of APs 250
Hand-over cost (C) 2 s
Max. number of HOs for opt. alg. (Kmax) 3
Prediction window size (W ) 20 s
Historical window size (Wh) 10 s
Hysteresis threshold (βhyst) 1 Mbit/s
Throughput variation std. dev. (σTP) 2 Mbit/s
Localization error std. dev. (σpos) 0 m 2 m
Max. angular acceleration αmax 0 rad/s 0.1725 rad/s
Max. acceleration (amax) 0 m/s2 0.9 m/s2
Min. speed (vmin) 2 m/s 0.5 m/s
Max. speed (vmax) 2 m/s 3.5 m/s
Cellular throughput function (Ω1) 3.6 Mbit/s
Heuristic handover threshold (ρ) 2 · C · Ω1 = 14.4 Mbit

TABLE I
EVALUATION PARAMETERS.

A. Throughput functions
Based on the known locations of the BS and APs, the

mobile device can create discrete throughput function for each
available network.

The throughput functions for the WiFi networks are con-
structed using the throughput model described in [10]. Using
this model, we have calculated the maximum throughput for
all IEEE 802.11a modulation schemes for different distances,
and use this curve, as depicted in Fig. 2 to characterize
the achievable WiFi throughput. Table II shows the model
parameters used in this work.

Parameter name Values
Bit rates 6, 9, 12, 18, 24, 36, 48, 56 Mbit/s
Max. retransmissions (Rmax) 7
Payload size (BMSDU) 1024
Transmit power (Ptx) 100 mW
Ricean K 15
Path loss exponent 2.9

TABLE II
WIFI THROUGHPUT MODEL PARAMETERS. DETAILS IN [10].

For evaluating the proposed algorithm, we have used poly-
nomial approximations for the Ω̂(t) function, as this enables
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Fig. 2. Distance-throughput relationship for WiFi networks, generated using
the model in [10] and the parameters in Table II.

us to differentiate and find roots for the throughput functions.
We have used the matlab function polyfit for the approxi-
mations. Since the goodness of the polynomial approximation
depends on the amount of source data, which depends on W
in our case, we define the polynomial order as:

Mpoly = min(8 + 2 ·
⌊
W

10

⌋
, 18) (19)

which has been determined empirically through experiments.
For the cellular network, we assume an urban scenario

where the mobile device is able to connect using High-
Speed Downlink Packet Access (HSDPA) with a bit rate
of Ω1 = 3.6 Mbit/s everywhere. Of course, other cellular
technologies, such as higher-rate 3rd Generation Partnership
Project (3GPP) High-Speed Packet Access (HSPA) or 3GPP
Long-Term Evolution (LTE) could be used with this HO
prediction scheme, as well as faster WiFi technologies such as
IEEE 802.11n. The proposed algorithm is not tied to specific
technologies, it simply tries to exploit the situations where a
local area wireless network offers higher throughput than the
cellular network.

B. Mobility model

The mobility model applied in this work is based on the
model presented in [11], which is referenced in the mobility
model survey in [12]. This model wraps around, meaning that
there are no borders, as shown in [12]. This is an advantage
because directionality changes imposed by the scenario, that
are not taken into account by the movement prediction, can be
avoided. The implemented mobility model corresponds to [11],
however we use the following slightly different formula for
calculating the shortest distance between two entities located
at (x1, y1) and (x2, y2):

Dx = min[|x1 − x2|,min(|xm − x1 + x2|, |xm + x1 − x2|)]
Dy = min[|y1 − y2|,min(|ym − y1 + y2|, |ym + y1 − y2|)]

D =
√
Dx

2 +Dy
2 (20)

where xm and ym are the horizontal and vertical lengths of the
considered area, respectively. Table I lists the parameters that
have been used in this model.

V. RESULTS AND DISCUSSION

For evaluating the proposed schemes we consider an ideal
scenario where we investigate the performance of the HO
schemes under the assumption of perfect movement prediction
and no localization error, while varying different scenario
parameters. Secondly, we consider how different error terms
affect performance. Finally, we consider a realistic scenario
where we have introduced several error terms at the same time.

For comparison, we include two other algorithms that are
described in the following.

A. Maximum Throughput Algorithm (C=0)
This algorithm outputs the maximum instantaneous through-

put of all available network. This corresponds to always per-
forming a handover to the network with the highest through-
put, in the case where the handover delay C = 0. In other
cases, the result of this algorithm is therefore not practically
achievable, but serves as an upper bound on performance.
Notice that for C > 0, the bound is not tight.

B. Hysteresis based HO Algorithm
This algorithm triggers a HO to another network, if the

instantaneous throughput of another network exceeds the in-
stantaneous throughput of the currently connected network by
more than a threshold βhyst. In a practical system the instanta-
neous throughput would be calculated from the instantaneous
SNR, or the threshold would be given as an SNR-threshold.
If more than one other network exceeds the threshold, the
network offering the maximum throughput is chosen. That is,
a HO is initiated if the set of candidate networks Ahyst is not
empty. Ahyst consists of the networks a that fulfill:

Ωa(t) > Ωa0(t) + βhyst (21)

where a0 is the currently connected network.
The network to handover to is selected as:

amax = argmax
a∈Ahyst

(Ωa(t)). (22)

Contrary to the look-ahead prediction algorithms, this al-
gorithm is a greedy algorithm that does not plan ahead,
but decides when to handover based on the instantaneous
throughput.

C. Ideal scenario
In this scenario we use a linear constant speed mobility

model and have set the localization error std. dev. to zero.
The plot in Fig. 3 shows an example of a prediction window

and where HOs are triggered. Further, Fig. 4 shows an example
of the achieved throughput during a simulation run. Notice
how the throughput drops to zero during the duration of each
HO and how the throughput bursts when in WiFi coverage.

In the following, aggregated results for multiple independent
simulation runs are presented. In the plots we show the mean
including the 95% confidence interval. The first result in Fig.
5 shows the impact on throughput of varying the window
size. For small and medium length windows the optimal K-
HO algorithm is best, but for the long look-ahead windows,
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Fig. 3. Example of 60 s prediction window for optimal algorithm. Solid
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Fig. 4. Example of the achieved throughput for a simulation run for the
optimal algorithm.

the heuristic algorithm performs best. The reason for this
is indicated in Fig. 6, which shows that as the window W
becomes longer, the more HOs are required within W by the
optimal algorithm for the best sequence. In these simulations
we have limited the maximum allowed no. of HOs to 3 to
make the simulations computationally feasible. However, since
3 HOs are highly preferred for window lengths of 120s and
180s we expect that 4 or more HOs would actually yield
better results in these cases, hence the limit of maximum 3
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Fig. 5. Performance impact of increasing window size (W). The legend
presented in this figure applies to the following figures in this section.

HOs within W causes the drop in Fig. 5. This is supported
by Fig. 7, which shows the average number of HOs made
by the heuristic algorithm. Here it is clearly shown that the
avg. number of required HOs grows linearly with the window
length.
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In Fig. 8 we show how performance is improved when the
density of WiFi networks increases. Notice how the optimal
algorithm gains more Mbit/s than both the heuristic algorithm
and the hysteresis-based algorithm when increasing the num-
ber of access points from 50 to 500. The optimal algorithm is
clearly better at choosing the networks to handover to, when
many options are available, even though it is significantly
below the maximum throughput algorithm.

Fig. 9 shows the effect of increasing cost of a HO, expressed
as the HO delay C. As expected the increase of C leads to a
decrease in throughput. Contrary to the look-ahead algorithms,
the greedy hysteresis-based algorithm suffers greatly for even
small values (0.5−1 s) of C. The heuristic algorithm is grad-
ually becoming worse than the optimal algorithm as the HO
cost is increasing, due to the simpler algorithm that does not
take into account the handover delay C, nor does it consider
other networks than those with the highest throughput. The
maximum throughput algorithm is of course not affected by
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Fig. 8. Performance impact of increasing the number of access points.

the increasing C, since it assumes that C is always zero.
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Fig. 9. Performance impact of increasing handover delay C.

D. Varying error terms
The effect of increasing the localization error is shown in

Fig. 10. The plot clearly shows, that performance deteriorates
with higher localization inaccuracy, since it leads to erroneous
movement prediction and in turn bad handovers.
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Fig. 10. Performance impact of increasing localization error.

Fig. 11 shows how the hysteresis-based algorithm performs
worse the more the instantaneous throughput varies. Since

the look-ahead algorithm uses a priori knowledge of average
throughput levels and the actual throughput varies around the
mean, it is not affected similarly.
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Fig. 11. Performance impact of increasing throughput variation.

Finally, Fig. 12 shows the effect of varying the maximum
angular acceleration αmax. Larger values of αmax reduces
the accuracy of the movement prediction, thus the achieved
throughput drops for the prediction algorithms.
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Fig. 12. Performance impact of increasing αmax.

E. Realistic scenario
Considering now the realistic scenario, we show in Fig.

13 how the algorithms are affected by different look-ahead
window sizes under realistic circumstances. Now, as the win-
dow size increases, the localization errors and the random
mobility model that are considered in the realistic scenario
result in a more rapid decrease in throughput. This means,
that while a long look-ahead window where several HOs
are planned may look attractive in an ideal system, then in
practical systems with imperfect movement prediction shorter
prediction windows are necessary. Only in cases where the
movement prediction is good, longer look-ahead windows can
be useful.

VI. CONCLUSION AND OUTLOOK

In this work we have considered the problem of determining
when to handover and which network(s) to handover to, within
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Fig. 13. Performance impact of increasing window size (W), in realistic
scenario.

a fixed look-ahead window for a multi-network scenario,
in order to maximise the achieved throughput of a mobile
multi-radio terminal. Based on an analytical formulation of
the handover problem, we have proposed an optimal and a
heuristic algorithm for this and compared them to a simple
hysteresis-based algorithm and the case where the cellular
network is always used. The optimal algorithm finds the
optimal handover sequence for up to K handovers within the
look-ahead window. In this work we have found that the
optimal algorithm is computationally feasible for up to 3-4
handovers, whereas the proposed heuristic algorithm works
with any practical number of handovers. The algorithms have
been implemented and evaluated using simulations in matlab
for a scenario with ubiquitous cellular coverage and randomly
scattered high-speed WiFi hotspots.

Our results for the ideal scenario where the movement pre-
diction is assumed to be perfect, have shown that the optimal
algorithm achieves the highest throughput for cases where less
than 4 handovers are required. For longer look-ahead windows
where more handovers are needed, the heuristic algorithm
achieves the highest throughput.

The two look-ahead algorithms are equally affected by
localization errors, where errors of up to appr. 4 m std. dev.
result in only a minor drop in performance.

A general prerequisite for the look-ahead prediction algo-
rithms is an accurate movement prediction. Our results for a
realistic scenario shows that inaccurate movement prediction
strongly limits the look-ahead window length. However, in
cases where the movement of the user is constrained physically
by e.g. roads, sidewalks or walls, this can be exploited for
improved movement prediction.

An obvious future work item is to reconsider how the
look-ahead predictions are used. In this work, the handover
decisions made within one prediction window is not re-
evaluated as time passes. However, a better handover sequence
may be achievable if for example a new prediction window is
made after each performed handover. In this way the impact
of inaccuracies in movement prediction is kept low.

In this work the handover decision has not taken into

account the available resources at APs and BSs. However, in
actual networks, the available resources are typically shared
between users and it would therefore make sense to take this
aspect into account. For the case of a single mobile user,
where the load imposed by other users is relatively constant,
the proposed selection algorithms can be used as long as the
expected throughput along the predicted movement trajectory
can be retrieved from the database. In the case where multiple
users are performing handovers - potentially to and from the
same networks, it is necessary to extend the optimization
problem to consider multiple users jointly, since the decision
taken by one user will affect the decisions of the remaining
users. Given the computational effort required to find the
optimal solution for the single user case, it does not seem
practically feasible to consider the optimal solution for the
multi-user case.
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