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Understanding gene variations in people living under extreme conditions has the potential of curing 
diseases caused by exposure to heat, cold, fatty diets, hypoxia, and pathogens. One candidate gene 
associated with heat resistance is ACE1, encoding angiotensin-converting enzyme 1. Associations have 
also been made between cold resistance or fatty diets and polymorphisms of several genes including 
ACTN3, encoding alpha-actinin-3, and CPTIA, encoding carnitine palmitoyltransferase 1A. A prominent 
role in resistance to hypoxia has been given for polymorphisms of EPAS1, encoding endothelial PAS 
domain protein 1, and EGLN1, encoding Egl-9 family hypoxia inducible factor 1. Variants conferring 
human resistance to pathogens include HBB, encoding hemoglobin subunit beta, and ACE2, encoding 
angiotensin-converting enzyme 2. Genetic knowledge concerning malaria and hypoxia should continue to 
promote advances in gene therapy. 

Introduction 
Biological variation in the human population can help physicians and scientists personalize 

treatments to serve public health better. Research on the genetic variability of different 

populations may influence medical treatment of certain diseases via drugs or changes in diet. 

Although humans share over 99% of their hereditary information, some groups have diverged in 

phenotype as a consequence of living in extreme environments, such as Tibetans living at high 

altitudes, Siberians and Inuits living in extreme cold, and sub-Saharan Africans living in malaria-

endemic regions (Ilardo and Nielsen 2018). Knowledge about genetic variation within such 

groups may aid the treatment of diseases caused by exposure to heat, cold, fat diets, and hypoxia 

(Table 1). In particular, genetic knowledge of specific populations may lead to gene therapy of 
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vulnerable individuals.  

Table 1 Gene variants associated with adaptations to extreme conditions 

Adaptation Gene variants Proteins References 

UV radiation, heat TYR, MITF ,ACE1, 

HSP90AA1 

angiotensin-

converting enzyme 1 

*Add refs for TYR 

and MITF 

Caro-Consuegra et 

al. 2022; 

Feng et al. 2021; 

Heled et al. 2004; 

Moran et al. 2006; 

Saternus et al. 2015 

cold, fat diets ACTN3, LCT, FABP1, 

FABP2, FADS1, 

FADS2, FADS3, 

CPTIA, LRP5, LEPR, 

LEP, TRPM8, UCP1, 

UCP3  

lactase, fatty acid 

binding protein 1 

and 2, fatty acid 

desaturase 1, 2, and 

3, carnitine 

palmitoyltransferase 

1A, low-density 

lipoprotein receptor-

related protein 5, 

transient receptor 

potentiation channel 

subfamily M 

Almon et al. 2010; 

Cardona et al. 2014; 

Chen et al. 2019; 

Fisher et al. 2007; 

Friedlander et al. 

2013; Fumagalli et 

al. 2015; Garcés Da 

Silva et al. 2018; 

Greenberg et al. 

2009; Heianza et al. 

2018; Hancock et al. 

2011; Igoshin et al. 
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member 8; 

uncoupling protein 

1, uncoupling 

protein 3, brain 

derived 

neurotrophic factor 

2019; Key et al. 

2018; Li et al. 2018; 

Manco et al. 2017; 

Nikanorova et al. 

2021; Ojeda-

Granados et al. 2016; 

Parajuli et al. 2021; 

Robitaille et al. 2004; 

Stan et al. 2005; 

Wagh et al. 2012; 

Wyckelsma et al. 

2021 

hypoxia EPAS1, EGLN1  endothelial PAS 

domain protein 1 

Aggarwal et al. 2010; 

Bai et al., 2022; 

Brutsaert et al. 2019; 

Buroker et al. 2012; 

Huerta-Sánchez et al. 

2010; Jacovas et al. 

2022; Julian and 

Moore 2019; Peng et 

al. 2017; Petousi and 

Robbins. 2014; 

Simonson et al. 
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2010; Tashi et al. 

2017; Yang 2017; Yi 

et al. 2010; Zhang et 

al. 2021 

Exposure to Ultraviolet Radiation and Heat 
People living near the equator receive an exceptionally high amount of ultraviolet radiation (UV 

index 20 as opposed to 8 in Northern zones (https://www.grida.no/resources/7130). Such 

radiation can damage the skin, but is absorbed by darker surfaces. Ancestral populations carried 

genetic variants (polymorphisms) associated with darker skin that helped them adapt to exposure 

to ultraviolet radiation. Dark skin is caused by higher melanin levels, which are regulated by 

genes such as the TYR gene, which encodes tyrosinase, the enzyme that catalyzes the conversion 

of tyrosine to melanin (Feng et al. 2021; Saternus et al. 2015), plus several other genes related to 

skin pigmentation (Quillen et al. 2019), including MITF, which encodes the melanocyte inducing 

transcription factor (Caro-Consuegra et al. 2022). 

The genetic basis of heat tolerance in desert-living populations is lacking and has only 

begun to be investigated in humans in general (Hosokawa et al. 2019). During exercise-related 

heat tolerance of male Caucasian volunteers, changes in body core temperature and heat storage 

differed depending on polymorphisms of ACE1, encoding angiotensin-converting enzyme 1, the 

DD genotype being more tolerant than ID+II genotypes grouped together (Heled et al. 2004). The 

enzyme belongs to the renin-angiotensin system critical in thermoregulation via vascular and 

renal mechanisms (Finberg et al. 1977; Kosunen et al. 1976). ACE1 variants are hypothesized to 

confer an advantage in thermoregulation although predisposing to hypertension (Moskowitz 

1996). Likely relevant to the human response are heat shock proteins, since, after recovery from 

exercise, HSP70 (heat shock protein family A member 1A derived from the HSPA1A gene), and 

HSP90 (protein isoforms derived from five genes including HSP90AA1) levels found in 

lymphocytes were higher in a heat tolerant than a heat intolerant group of men (Moran et al. 

2006). 

Occupants of sub-Saharan Africa have adapted to an environment with endemic 

https://www.grida.no/resources/7130
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mosquito-borne malaria via genetic variants in genes such as HBB, which encodes beta-globin. 

Although some HBB genetic variants increase resistance to malaria, they also can cause sickle-

cell disease, the most common genetic disorder in the world in which the most severe form is 

sickle cell anemia. Sickle-cell disease is an autosomal recessive disorder caused by a mutation in 

the HBB gene. In individuals homozygous for the mutation, C-shaped, or sickle-shaped, blood 

cells stick together and clog blood vessels, causing symptoms of acute chest syndrome, stroke, 

hypersplenism, aplastic crises, nocturnal enuresis, bone pain, avascular necrosis, chronic leg 

ulcerations, delayed growth, and priapism (Serjeant 2013). The lack of blood flow and the 

deterioration of renal function can also reduce chances of combating infections such as 

pneumonia because of a deficiency in cell defense and attack mechanisms. Medications easing 

the symptoms of sickle-cell disease include hydroxyurea, which makes red blood cells less likely 

to assume a sickle shape and increases their size (McGann and Ware 2015), l-glutamine, which 

reduces pain caused by oxidative stress (Cox et al. 2020), and voxelotor (GBT440), which 

increases blood viscosity (Dufu et al. 2018), each with significant side-effects. To establish a life-

long cure, several types of gene therapy are underway, including one based on delivering the 

fully functional HBB gene (Eisenstein 2021), a life-saving option for some patients provided they 

travel away from a malaria-plagued zone. 

The genetic response to heat stress is all the more relevant with rising temperatures on the 

planet (Beall et al. 2012). Future directions in research include examining the genomic 

consequences of thermal shifts in evolution via phylogeographic approaches (Cortés et al. 2020). 

Exposure to cold weather and high fat diets 
Adaptation to cold weather is linked with a genetic characteristic present in 18% of the world’s 

population, an allele of ACTN3 causing a loss of alpha-actinin-3 (Friedlander et al. 2013), 

selectively expressed in fast-twitch muscle fibers (Mills et al. 2001). As a result of changes in 

skeletal muscle thermogenesis, people lacking ACTN3 maintain a core body temperature better 

during cold-water immersion than those possessing the gene (Wyckelsma et al. 2021). A lack of 

ACTN3 not only seems to favor cold endurance but also running endurance (Ivarsson and 

Westerblad 2015). 

The relation between alpha-actinin-3 and endurance running has been extended to 

animals, since mice lacking Actn3 displayed higher cytochrome oxidase expression in skeletal 
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muscle and longer endurance while running on a treadmill (MacArthur et al. 2007). The null 

mutant muscle also showed better force recovery from fatigue (MacArthur et al. 2008). However, 

their fast-twitch muscle fibers were more prone to break when eccentrically stretched (Haug et al. 

2022). 

In addition to ACTN3, allele frequencies of TRPM8, encoding transient receptor 

potentiation channel subfamily M member 8, were related with winter temperatures in east Asian 

populations (Igoshin et al. 2019) as well as ambient temperatures and latitude in northern 

populations (Key et al. 2018), revealing the importance of a thermal sensor protein in the 15° to 

30°C range (Fernández et al. 2011). Downregulated TRPM8 may lead to cold tolerance based on 

data in Trpm8 null mutant mice spending more time under frigid ambient temperatures and 

displaying longer latencies before paw withdrawal to a cold plate after an injection of icillin 

(Dhaka et al. 2007). 

In a genome-wide analysis study of Siberian populations, polymorphisms related to cold 

adaptation included CPTIA, encoding carnitine palmitoyltransferase 1A, a liver isoform of an 

enzyme involved in long-chain fatty acid metabolism, as well as LRP5, encoding low-density 

lipoprotein receptor-related protein 5, involved in cholesterol metabolism and bone growth 

(Cardona et al. 2014). Amid consecutive newborns of Canadian Inuits from Kivalliq (mean daily 

low of -27 to -32degC from December to February 

https://en.wikipedia.org/wiki/Kivalliq_Region), a population that migrated from Siberia, 70% 

were homozygous for the P479L allele of CPTIA, 24% were heterozygous, and only 6% were 

wild-type, lowering enzymatic activity in cultured fibroblasts but causing few medical symptoms 

of enzyme deficiency (Greenberg et al. 2009) despite the fact that the homozygous null mutation 

is lethal in the mouse (Nyman et al. 2005). 

Greenland Inuits carry polymorphisms of FADS1, FADS2, and FADS3, encoding fatty 

acid desaturase 1, 2, and 3, respectively (Fumagalli et al. 2015), enzymes involved in converting 

linoleic acid and alpha-linoleic acid into longer and more unsaturated forms (Zhang et al. 2016). 

FADS2 and FADS3 polymorphisms were likewise associated with red blood cell omega-3 fatty 

acid levels in Canadian Inuits (Parajuli et al. 2021). Moreover, the frequency distributions of 

CPTIA, FADS2, and FADS3 variants differed in North relative to South China populations (Li et 

al. 2018). These polymorphisms may be caused by traditional or modern diets with a high fat 

content consumed by such populations, a common consequence of adapting to cold weather. 



 

Preprint version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

7 

Indeed, FADS2 variants interacted with polyunsaturated fat acid intake on serum triglyceride 

levels in a Swedish population (Chen et al. 2019). A loss-of-function FADS2 allele may be 

favorable for human health, perhaps in affluent countries, since a null mutation of Fads2 led to 

resistance to obesity and atherosclerosis in mice consuming a high fat diet (Stoffel et al. 2014, 

2021). 

Other links with diet are indicated by polymorphisms associated with serum leptin levels 

reported in Siberian populations for LEPR, encoding the leptin receptor, as well as two genes 

related to leptin, UCP1, encoding uncoupling protein 1, and BNDF, encoding brain derived 

neurotrophic factor (Nikanorova et al. 2021). Allele frequencies of UCP1 and UCP3, encoding 

uncoupling protein 3, were correlated with winter temperatures in a population genetic analysis 

(Hancock et al. 2011). Moreover, polymorphisms were reported for both LEPR and LEP, 

encoding leptin itself, in brown adipose tissue, crucial for non-shivering thermogenesis, among 

four continental groups (Sazzini et al. 2014). Leptin is a hormone released from adipocytes from 

brown and white adipose tissue and involved in fat storage, sending a satiety signal to its receptor 

situated in the ventromedial and lateral hypothalamus (Klok et al. 2007; Meister 2000). 

A variant of FABP1A, encoding fatty acid binding protein 1, was associated with plasma 

levels of triglycerides and low-density lipoprotein-cholesterol in a random sample of German 

women (Fisher et al. 2007) and interacted with fat intake in regard to plasma apolipoprotein B 

levels in French Canadian men recruited from a lipid clinic (Robitaille et al. 2004). The latter 

authors speculated that the FABP1A allele in carriers consuming a modern diet with a high fat 

content inhibits the incorporation of fatty acids to produce and secrete apolipoprotein B from the 

liver. Gene variants of FABP2, encoding fatty acid binding protein 2, were associated with 

plasma levels of low-density lipoprotein-cholesterol, apolipoprotein B, and total cholesterol in 9- 

to 16-year old French Canadians (Stan et al. 2005) and plasma triglyceride levels in healthy 

Venezuelans classified as fat-tolerant or not depending on a lipid challenge test (Garcés Da Silva 

et al. 2018). 

Although not subject to frigid weather, the Maasai tribe of Kenya and Tanzania possess a 

gene cluster from the cytochrome P450, family 3, subfamily A (CYP3A) chromosomal locus, 

allowing them to oxidize fatty acids and generate useful steroids derived from cholesterol, with 

the highest association found for FABP1A (Wagh et al. 2012). Because most of their nutrients 

traditionally come from raw meat, milk, and blood, the Maasai tribe ingests large amounts of 
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cholesterol, yet their blood levels of cholesterol are equal or even lower than most people (Arhem 

1989). Genetic analyses of the Maasai have uncovered gain-of-function polymorphisms of LCT, 

encoding lactase, the enzyme that breaks down lactose and thereby permits digestion of milk 

products, attributed to their tradition of herding cows and goats (Wagh et al. 2012). Lactase 

persistent young Portugese adults with a polymorphism of LCT had higher body adipose mass 

and weight than lactase non-persistent ones (Manco et al. 2017). On the contrary, lactase 

persistent Swedish children and adolescents with the same polymorphism of LCT consumed 

fatter dairy products than lactase non-persistent ones without differing in body adipose mass 

(Almon et al 2010). Likewise, body weight and fat were equivalent in Mexican adults of different 

ethnic origin with lactase persistent LCT polymorphisms as opposed to lactase non-persistent 

ones (Ojeda-Granados et al. 2016). The opposite results are probably due to the use of different 

diets. Although a different polymorphism of LCT had no effect on body weight and fat in 

overweight Americans, adipose-related values changed depending on whether they consumed 

high or low protein diets (Heianza et al. 2018). 

Exposure to hypoxia 
Genetic variations foster adaptation to one’s environment, including places at high altitudes (Shi 

and Su 2011). In Tibet, the average altitude is 4.3 km (https://en.wikipedia.org/wiki/Tibet). Over 

the course of millennia, ancestors of people in Tibet progressively lived at higher altitudes and, 

via natural selection, adapted to these extreme conditions by mitigating the normal increase of 

hemoglobin concentrations prevailing when oxygen levels plummet (Witt and Huerta-Sánchez 

2019). Tibetan people adapted via polymorphisms of the EPAS1 gene, encoding endothelial PAS 

domain protein 1, part of the hypoxia-inducible factor (HIF) family of proteins producing red 

blood cells under hypoxic conditions (Bai et al., 2022; Buroker et a. 2012; Huerta-Sánchez et al. 

2010; Peng et al., 2017; Simonson et al. 2010; Yang 2017; Yi et al. 2010; Zhang et al. 2021). 

EPAS1 polymorphisms in Tibetan highlanders produce fewer red blood cells than non-mutated 

EPAS1, a characteristic originating with Denisovan hominins. Although Tibetan highlanders 

share a recent common ancestor with Han Chinese lowlanders, the two differ in regard to EPAS1 

alleles. With fewer red blood cells, high-altitude conditions such as hypercoagulation and 

hypoxic pulmonary hypertension are mitigated. To compensate for their lack of hemoglobin, 

highlanders exhale more nitric oxide (Wu and Kayser 2006), a molecule that dilates blood vessels 
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(Joannides et al. 1995). EPAS1 polymorphisms occurred in conjunction with a gain-in-function of 

the EGLN1 gene, encoding Egl-9 family hypoxia inducible factor 1, so that, at high altitudes, the 

EGLN1 haplotype has lowered hemoglobin levels in the presence of the EPAS1 allele (Tashi et 

al. 2017). It is assumed that physiological factors such as dilated blood vessels compensate for 

this lack of hemoglobin. EPAS1 and EGLN1 single nucleotide polymorphisms were detected in 

patients with acute or chronic mountain sickness (Buroker et al. 2012). Together, EPAS1 and 

EGLN1 compose “a central role in oxygen sensing and coordinating an organism’s response to 

hypoxia” (Petousi and Robbins 2014). 

In addition, missense mutations in the Epas1 gene were revealed in Tibetan horses 

characterized by facilitated blood circulation and oxygen transport under hypoxic conditions (Liu 

et al. 2019). Tibetan horses displayed lower hemoglobin concentrations than lowland horses and 

signs of a convergent Epas1 signature appeared in cattle and sheep as well as goats, pigs, and 

dogs (Wu et al. 2020b). 

As with Tibetans, polymorphisms of the EGLN1 gene were discovered in the Quechua 

population living at an average altitude of 3.6 km (McGrath 2021) on the Andean mountain range 

of Peru (Aggarwal et al. 2010; Brutsaert et al. 2019), an example of convergent evolution 

(Greenway et al. 2020; Rocha et al. 2021; Witt and Huerta-Sanchez 2019). EGLN1 

polymorphisms in Quechua people were associated with higher aerobic capacity than lowland 

people under hypoxic conditions (Brutsaert et al. 2019) and lowered partial pressure of carbon 

dioxide while maximizing oxygen usage (Julian and Moore 2019), but with an increased risk of 

developing high-altitude pulmonary edema (Aggarwal et al. 2010). Moreover, different 

frequencies of haplotype of HLA-G, encoding human leukocyte antigen G (histocompatibility 

complex class 1, G alpha chain), were identified in highlanders relative to lowlanders in the 

Andes region of South America (Jacovas et al. 2022). 

Resistance to hypoxia has been proposed to be mediated by defense and rescue phases of 

energy demands via adenosine triphosphate (ATP) (Hochachka and Lutz 2001; Hochachka et al. 

1996). In the defense phase, a decrease in ATP consumption is modulated by ATP production to 

balance supply and demand. During the rescue phase, there is overexpression of EEF1A1, 

encoding eukaryotic translation elongation factor 1 alpha 1 as well as transcription factor HIF1, 

encoding hypoxia inducible factor 1 subunit alpha. The accumulation of the EEF1A protein 

mediates the translation of specific rescue mRNAs, while the HIF1 protein suppresses the 
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expression of genes involved in ATP-intensive metabolism, such as enzymes involved in the 

Krebs cycle and gluconeogenesis, but increases the expression of genes involved in cell survival 

under low ATP turnover, such as glycolytic enzymes (Boothby et al. 2019). 

Genetic information of this type may help inform the health care of patients exposed to 

hypoxia, a central feature of ischemic heart disease, stroke, anemia, and chronic obstructive 

pulmonary disease (Bigham and Lee 2014) as well as promote gene therapy (Rhim et al. 2013). 

More favorable preventive measures may also be available to mountain-climbers and tourists 

entering a plane at a low altitude and exiting the plane at a higher one. 

Implications for Disease 
Knowledge of genes involved in extreme environments may provide aid in confronting a 

pandemic, since genetic analyses are underway regarding severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), a ribonucleic acid (RNA) virus leading to coronavirus disease 

2019 (COVID-19) (Mogensen 2022; Ren et al. 2024). Among candidate genes involved in heat 

tolerance and mentioned above, the ACE1 I/D polymorphism was associated with COVID-19 

disease severity (Almeida et al. 2024). Moreover, subjects with a rare variant in an area on the X 

chromosome upstream of ACE2, encoding angiotensin-converting enzyme 2, the main cell 

receptor for SARS-CoV-2 entry, had a reduced risk of COVID-19 (Horowitz et al. 2021) and its 

severity was associated with ACE2 polymorphisms (Elnagdy et al. 2024), hypoxia being able to 

modify SARS-Cov-2 cell entry via ACE2 (Mughis et al. 2023). Among candidate genes involved 

in hypoxia, EGLN1 variants were related to COVID-19 severity (Harit et al. 2024). Another gene 

involved with hypoxia was HLA-G. A common allele of HLA-B, encoding human leukocyte 

antigen B (histocompatibility complex class 1, B alpha chain), was associated with the 

asymptomatic form of COVID-19 infection (Augusto et al. 2023). 

Received 30 June 2022; accepted for publication 22 February 2024. 
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