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OPTIMAL ACYCLIC EDGE-COLOURING OF CUBICGRAPHSLars Døvling AndersenDepartment of Mathematial SienesAalborg University9220 Aalborg SØ, Denmarklda�math.aau.dkEdita Má£ajová and Ján MazákDepartment of Computer SieneFaulty of Mathematis, Physis and InformatisComenius University842 48 Bratislava, Slovakiamaajova�ds.fmph.uniba.skmazak�ds.fmph.uniba.skMay 26, 2010AbstratAn ayli edge-olouring of a graph is a proper edge-olouring suh that thesubgraph indued by the edges of any two olours is ayli. The ayli hromatiindex of a graph G is the smallest number of olours in an ayli edge-olouring of
G. We prove that the ayli hromati index of a onneted ubi graph G is 4,unless G is K4 or K3,3; the ayli hromati index of K4 and K3,3 is 5.1 IntrodutionVarious types of edge-olourings of graphs have ourred in graph theory for morethan a entury. Among these olourings the most important are proper olourings� those that do not allow two adjaent edges to have the same olour. Considerablee�ort has been devoted to proper edge-olourings where yles that ontain only twoolours are forbidden.A proper k-edge-olouring of G suh that there are no two-oloured yles in Gis alled an ayli k-edge-olouring of G. The onept of ayli olourings wasintrodued by Grünbaum in [8℄.In this paper all the onsidered graphs are �nite and simple, i. e. without multipleedges and loops. Let ∆ = ∆(G) denote the maximum degree of a vertex in a graph
G. Throughout the paper, any proper k-edge-olouring uses the olours denotedby 1, 2, . . . , k. The hromati index of a graph G, denoted by χ′(G), is the leastnumber of olours needed to olour the edges of G by a proper edge-olouring.Similarly we de�ne the ayli hromati index (also alled ayli edge hromati1



number) of a graph G, denoted by a′(G), to be the least k suh that G has an ayli
k-edge-olouring. Obviously, a′(G) ≥ χ′(G). An alternative de�nition of the aylihromati index gives a slightly di�erent point of view: the ayli hromati indexof a graph G is the minimum number of mathings whih su�e to over all edgesof G in suh a way that the union of any two mathings does not ontain a yle.It is known that a simple graph G with maximal degree ∆ has hromati indexeither ∆ or ∆ + 1. How many new olours do we have to use if we do not wantto allow two-oloured yles? It is known that a′(G) ≤ 16∆ (see [2℄ and [9℄), butreent results (e. g. [1℄, [3℄, and [10℄) suggest that this bound is far from tight.The onjeture of Fiam£ík [7℄ and later by Alon, Sudakov, and Zaks [1℄ says that
a′(G) ≤ ∆ + 2 for every graph G. Burnstein's result in [4℄ implies that for ubigraphs a′(G) ≤ 5, therefore the onjeture is true for ∆ = 3. In 1980, Fiam£ík [5℄published a paper laiming that K4 is the only ubi graph requiring �ve olours inan ayli edge-olouring, nevertheless both the result and the proof were inorret.Four years later, in [6℄, he orreted one of the errors of the previous paper, andstated a orret result that there are two exeptional ubi graphs requiring �veolours in an ayli edge-olouring. However, the proof still ontains a big gap:usage of Lemma 2 in [5℄ eliminates the yle of olours 1 and 2, but it does notensure that no two-oloured yles of other pairs of olours are reated. This maybe the reason why the result of Fiam£ík has fallen into obsurity.In this paper we fous on graphs with ∆ = 3. In [3℄, Basavaraju and Chandranproved that a′(G) ≤ 4 for all sububi graphs (graphs with maximal degree at most
3) ontaining a vertex of degree at most 2.In every proper 3-edge-olouring of a ubi graph G the edges oloured by anyof the olours form a perfet mathing. Hene the subgraph of G indued by theedges of any two olours form a 2-fator, whih is a nonempty set of two-olouredyles. Therefore to have an ayli edge-olouring of a ubi graph we need at leastfour olours. We prove that four olours are optimal for all onneted ubi graphswith the exeption of K4 and K3,3, the two graphs mentioned by Fiam£ík in [6℄, forwhih 5 olours are optimal.Our main result is aptured in the following theorem. The proof in Setion 2 isalgorithmi and does not rely on any probabilisti arguments. As a simple orollarywe are able to determine the ayli hromati index of all ubi graphs.Theorem 1.1 Let G be a onneted graph with ∆(G) ≤ 3 di�erent from K4 and
K3,3. Then a′(G) ≤ 4.Corollary 1.2 The ayli hromati index of a onneted ubi graph G is 4 unless
G is K4 or K3,3, for whih a′(K4) = a′(K3,3) = 5.Proof. For a ubi graph G we have proved that a′(G) ≥ 4. An ayli 5-edge-olouring of the graphs K4 and K3,3 is shown in Fig. 1.It remains to prove that the ayli hromati index is at least 5 for both of thesetwo graphs. Suppose that we have an ayli 4-edge-olouring of K4. The graph K4has 6 edges, and the edges oloured by any of the olours form a mathing, heneno olour is used on more than two edges. Therefore there are two olours suh thatboth of them olour exatly two edges, and edges oloured by these olours form a
2-fator, whih is a two-oloured yle of length 4 in our ase. We have derived aontradition.Suppose that we have an ayli 4-edge-olouring of K3,3. The graph K3,3 has 9edges. If there are two olours suh that both of them olour three edges, the edgesoloured by these olours form a 2-fator, whih is a two-oloured yle of length 6in our ase. Otherwise exatly one olour, say 1, olours three edges and any otherolour olours two edges. Choose a yle C of length 4 in K3,3 suh that two of its2



Figure 1: An ayli 5-edge-olouring of K4 and K3,3edges are oloured by the olour 1. The other edges in this yle must be of di�erentolours, say 2 and 3. Look at one of the edges not belonging to C and adjaent withthe edge of C that is oloured by the olour 2. Its olour an be either 3 or 4. Sineour olouring is proper and eah olour di�erent from 1 is used twie, the olours ofall the other edges are determined. It is easy to hek that in both ases there is atwo-oloured yle, hene the graph K3,3 annot have an ayli 4-edge-olouring.
�2 Ayli edge-olouring of sububi graphsIn this setion we prove Theorem 1.1. For the sake of ompleteness we let the proofover the ase where the minimum degree δ(G) ≤ 2, although this ase was provedin [3℄, as already noted.We proeed by indution on the number of verties of G. If G is a 1-vertex graph,then the assertion is trivial. We therefore assume that G is a onneted graph on atleast two verties with ∆(G) ≤ 3, G 6= K4, G 6= K3,3, and for every onneted graph
H of smaller order, with ∆(H) ≤ 3 and di�erent from K4 and K3,3, a′(H) ≤ 4. Theproof splits into several ases depending on whether G ontains a bridge or not, andon δ(G).Case 1: G ontains a bridge. Let e be a bridge. Let V1 and V2 be the vertex-sets of the two omponents reated by removing e and let Gi be the graph induedby Vi, i = 1, 2. Both G1 and G2 have fewer verties than G and eah of them has atleast one vertex of degree at most 2, therefore both these graphs are di�erent from
K4 and K3,3, and, in turn, have an ayli 4-edge-olouring. For i = 1, 2, let ϕi bean ayli 4-edge-olouring of Gi. We an obtain an ayli 4-edge-olouring ϕ of Gby letting ϕ(e) be any olour and permuting the olours of ϕ1 and ϕ2 on G1 and G2so that the edges of G adjaent to e have olours di�erent from ϕ(e).Case 2: G is bridgeless and δ(G) = 2. (When G is bridgeless δ(G) is at least2.) Let v be a vertex of degree 2 and let v1 and v2 be the two neighbours of v.First suppose that v1 and v2 are not adjaent. We onstrut a new graph G′by removing the vertex v from G together with the inident edges v1v and v2v andadding a new edge v1v2; learly, G′ is simple and onneted. If G′ = K4 or G′ = K3,3,then G together with an ayli 4-edge-olouring is depited in Fig. 2. If G′ 6= K4and G′ 6= K3,3, we have a′(G′) ≤ 4 by the indution hypothesis. Let ϕ′ be an ayli4-edge-olouring of G′. We onstrut an ayli 4-edge-olouring ϕ of G. We set
ϕ(e) = ϕ′(e) for every e 6= vv1 and e 6= vv2.If the degree of one of the neighbours of v, say v2, is 2, denote by v3 the neighbourof v2 suh that v 6= v3. We hoose ϕ(vv1) to be ϕ′(v1v2). To �nish the olouringwe hose ϕ(vv2) to be any olour di�erent from ϕ(vv1) and ϕ(v2v3). The resultingolouring is proper and learly, from the indution hypothesis, if there is a 2-olouredyle in ϕ, it has to ontain the vertex v. But this is not possible beause ϕ(vv1) 6=
ϕ(v2v3). 3



Figure 2: Graphs K4 and K3,3 with a subdivided edge and their ayli 4-edge-olouringsIf, on the other hand, deg(v1) = 3 and deg(v2) = 3, let e1 and e2 be the edgesinident with v1 but di�erent from vv1 and let e3 and e4 be the edges inident with
v2 but di�erent from vv2. Sine ϕ′ is a proper 4-edge-olouring of G′ whih inludesthe edge v1v2, we have {ϕ(e1), ϕ(e2)} ∩ {ϕ(e3), ϕ(e4)} 6= ∅. If {ϕ(e1), ϕ(e2)} =
{ϕ(e3), ϕ(e4)}, we hoose for eah of ϕ(vv1) and ϕ(vv2) one of the two remainingolours di�erent from ϕ(e1) and ϕ(e2), di�erent from eah other. If |{ϕ(e1), ϕ(e2)}∩
{ϕ(e3), ϕ(e4)}| = 1, and, say ϕ(e1) = ϕ(e3), we set ϕ(vv1) = ϕ(e4) and ϕ(vv2) =
ϕ′(v1v2). It an be easily seen that in both ases ϕ is an ayli 4-edge-olouring of
G. Now suppose that v1 and v2 are adjaent. Sine G is bridgeless, either G is atriangle, G is K4 minus an edge or the verties v1 and v2 are of degree 3 and there isno vertex di�erent from v adjaent to both v1 and v2. If G is a triangle or K4 minusan edge, then a′(G) ≤ 4; in the latter ase let u1 be the neighbour of v1 di�erentfrom v and v2 and let u2 be the neighbour of v2 di�erent from v and v1. As noted,
u1 6= u2. We remove from G the verties v, v1, and v2 together with the inidentedges and add a new vertex w of degree 2, joined by an edge to u1 and u2. Wedenote the resulting graph G′. The graph G′ is simple and onneted and has fewerverties than G, and it is not K4 or K3,3 as it has a vertex of degree 2, thereforeby the indution hypothesis a′(G′) ≤ 4. Let ϕ′ be an ayli 4-edge-olouring of
G′. De�ne the olouring ϕ of G as follows: ϕ(e) = ϕ′(e) for every edge e that isnot inident with any of v, v1, and v2. Further set ϕ(u1v1) = ϕ(vv2) = ϕ′(u1w),
ϕ(u2v2) = ϕ(vv1) = ϕ′(u2w) and olour the edge v1v2 by any of the two remainingolours di�erent from ϕ(vv1) and ϕ(vv2) (see Fig. 3). Clearly, ϕ is an ayli 4-edge-olouring of G.

v1 v v2

u2 u1

w

u2u1

Figure 3: Creating G′ from G in Case 2, v1 and v2 adjaentCase 3: G is a bridgeless ubi graph. Here the proof splits into several subasesdepending on the girth of G (denoted by g(G) in what follows).Case 3a: The girth of G is even and g(G) ≥ 6.Let C be any of the shortest yles in G. Let the verties of C be u0, v0, u1, v1, . . . , uk−1, vk−1where k = g(G)/2 ≥ 3 (the indies will be taken mod k in what follows). Let u′iand v′i be the neighbours of ui and vi, respetively, whih do not belong to C (theverties u′0, v′0, u′1, v′1, . . . are distint, beause if a vertex outside C had two edges to
C there would be a yle of shorter length than C). Let G′ be the graph onstrutedin the following way: we remove from G the yle C together with all the edgesadjaent to this yle and join u′i to v′i for i = 0, 1, 2, . . . , k − 1 (see Fig. 4). Theresulting graph G′ is ubi and simple beause g(G) > 4: a multiple edge in G′yields a yle of length 4 in G. Note that G′ might not be onneted but it ontains4



no omponent isomorphi to K4 or K3,3. Indeed, suh a omponent would yield ayle shorter than C in G; we prove this assertion in the next paragraphs.Assume that G′ ontains a omponent K isomorphi to K4 or K3,3. Sine G doesnot ontain yles of length 4, any suh yle in K must ontain at least one of theedges added in the onstrution of G′ (we all suh edges added in what follows).If K = K4, one an easily hek that K must ontain two adjaent added edges,ontraditing that u′0, v
′
0, u

′
1, v

′
1, . . . are distint.If K = K3,3, then sine K does not ontain two adjaent added edges, it mustontain three added edges forming a 1-fator (otherwise there is a 4-yle in G).Sine no other edges in K are added, the remaining six edges of K forming a yleof length 6 belong to G. Thus the girth of G is 6, the same is the number of vertiesof C. Therefore any vertex of C is adjaent to a vertex of K. It is easy to hekthat in any ase G ontains a yle of length 4 or 5.Now we return to the main argument of the Case 3a. The indution hypothesisused on eah omponent of G′ yields an ayli 4-edge-olouring ϕ′ of G′, we extendthis olouring to an ayli 4-edge-olouring ϕ of G.
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Figure 4: Creating G′ from G in Case 3aLet ϕ(e) = ϕ′(e) for all edges e ommon for G and G′ and ϕ(uiu
′
i) = ϕ(viv

′
i) =

ϕ′(u′iv
′
i). It remains to de�ne ϕ on the edges of C. We do this in several steps. Thediretion u0, v0, u1, . . . along C will be referred to as lokwise. Let D be a yle in

G other than C. We say that D enters C at a vertex w and leaves C at a vertex w′,if the path w�w′ belongs to both C and D, goes along C in the lokwise diretionand annot be extended in any diretion. We say that D is of intersetion ℓ, if thepath w�w′ has length ℓ. The yle D an have more than one ommon path with
C, in suh a ase we hoose w and w′ so that their lokwise distane along C ismaximal.Now we de�ne ϕ on the remaining edges of G, after this step ϕ will be a proper
4-edge-olouring of G suh that any yle of intersetion 1 will ontain at least threedistint olours. Consider the edge viui+1. If the olours ϕ(viv

′
i) and ϕ(ui+1u

′
i+1) aredi�erent, we hoose any of the two remaining olours for ϕ(viui+1). Otherwise weset ϕ(viui+1) to be the olour di�erent from the olours of the three edges inidentwith v′i. We thus olour all k edges viui+1.Consider the edge uivi. It is adjaent to four edges, but two of them (uiu

′
i and

viv
′
i) are oloured by the same olour, so there is at least one free olour to olourthe edge uivi. We hoose one suh free olour. We do this for i = 0, 1, . . . , k − 1.Now we have oloured all the edges of G.All yles disjoint with C are not two-oloured by the indution hypothesis. Itis easy to verify that a yle of intersetion 1 entering C in vi ontains at least three5



olours. Consider a yle of intersetion 1 entering C in ui. This yle ontains atleast three olours by the indution hypothesis (even if it enters C several times).Now we modify ϕ to be a proper 4-edge-olouring of G suh that any yle otherthan C ontains at least three olours. The only problemati yles are those ofintersetion at least 2. Suh a yle ontaining only two olours annot enter C in
ui: the olours of uiu

′
i and viv

′
i are the same, hene the olours ϕ(uiu

′
i), ϕ(uivi), and

ϕ(viui+1) are three di�erent olours ontained in this yle.Let D be a two-oloured yle whih enters C in vi. Then D annot leave Cin vi+1, beause the olours of viui+1 and vi+1v
′
i+1 annot be the same. Hene theolours of viui+1 and vi+1ui+2 are the same. Now set ϕ(ui+1vi+1) to be the olourdi�erent from ϕ(viv

′
i), ϕ(viui+1) and ϕ(ui+1u

′
i+1). Any yle of intersetion 1 on-taining the edge ui+1vi+1 ontains at least three olours by the indution hypothesis,thus we did not introdue a new two-oloured yle.After these modi�ations the only possibly two-oloured yle is C. Assume thatit ontains only two olours, say 1 and 2. The edges inident with verties of C butnot belonging to C are oloured by olours 3 and 4. If ϕ(u1u

′
1) = ϕ(u2u

′
2) = 3, wean set ϕ(u2v2) = 4 to obtain an ayli 4-edge-olouring of G. Otherwise we mayassume that the edges uiu

′
i for i = 1, 2 . . . , k are oloured alternately by olours 3and 4 (this assumption allows us to replae olour 1 on the edges of C by olour 2and vie versa without introduing two-oloured yles of intersetion 1). Moreoverwe may assume that ϕ(u1u
′
1) = ϕ(v1v

′
1) = 3, ϕ(u2u

′
2) = ϕ(v2v

′
2) = 4, ϕ(u1v1) = 2and ϕ(v1u2) = 1. There are three ases for the olours f1 and f2 of the two edgesinident with u′2 and not inident with u2:

• if {f1, f2} = {2, 3} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 1,

• if {f1, f2} = {1, 2} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 3,

• if {f1, f2} = {1, 3} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 2 and olour the edges of

C di�erent from v1u2 by olours 1 and 2 alternatively to obtain a proper 4-edge-olouring.The resulting olouring ϕ is an ayli 4-edge-olouring of G.Case 3b: The girth of G is at least 5 and is odd.Let C be one of the shortest yles of G. Let u0, v0, u1, v1, . . . , uk−1, vk−1, w bethe verties of this yle in the order in whih they lie on the yle. Let u′i, v′i, and
w′ be the neighbours of ui, vi, and w, respetively, whih do not lie on the yle C.From the graph G we onstrut a graph G′ by removing the yle C with all theedges adjaent to this yle and joining u′i to v′i for i = 0, 1, 2, . . . , k − 1. As thegirth of G is at least 5 and G is a shortest yle, the resulting graph G′ ontains noloops and no multiple edges. Moreover G′ has δ = 2, ∆ = 3 and no omponent of
G is isomorphi to K4 or K3,3. The last assertion an be proved in almost the sameway as we have done it in the Case 3a, the di�erene ours only for K = K3,3,where we have three added edges forming a 1-fator: sine the graph G in this ase(K3,3 without a 1-fator) has girth at most 6 and the girth is odd, it is equal to
5, hene C has only 5 verties. This is a ontradition to the fat that K has 6distint verties that have 6 pairwise distint neighbours lying on C. The indutionhypothesis applied to eah omponent of G′ gives an ayli 4-edge-olouring ϕ′ of
G′. We extend this olouring to an ayli 4-edge-olouring ϕ of G.First, set ϕ(e) = ϕ′(e) for eah edge e of G that have no vertex in ommon with
C and set ϕ(uiu

′
i) = ϕ(viv

′
i) = ϕ′(u′iv

′
i).Next, we desribe the olouring of the three edges adjaent with w. In whatfollows we may assume that the olours used in ϕ′ are 1, 2, 3, 4 and the olours ofthe edges inident with w′ but not inident with w are 1 and 2 and ϕ(vk−1v

′
k−1) ≤

ϕ(u0u
′
0). There are several possibilities for the olours of u0u

′
0 and vk−1v

′
k−1, all ofthem with the desired olouring of the edges inident with w are in Fig. 5. Note thatin any possibility there is no two-oloured yle passing through any two of the three6



edges ww′, u0u
′
0 and vk−1v

′
k−1. The diretion u0, v0, u1, . . . along C is referred to aslokwise. Reall the de�nitions of the terms enter, leave and to be of intersetionfor a yle that has an edge in ommon with C, they apply also in this ase.

1
244 1 3 211u0

w′

w 11 4 213 2 443 3vk−1

C

1 2
3 44 2 31 14 3 21 2

3 21
212121

1 2 1 2 1 232 3 4 1 3 2 4 1 4 3 4 3 1 4134 22
2

Figure 5: Colouring of the edges inident with w in Case 3bAs the next step we olour one edge of C so that there will be no two-olouredyle that enters C at w. Any two-oloured yle in a proper edge-olouring has itsedges oloured alternately by two olours. We utilize this fat and hoose the olourof one of the edges of C so that this edge together with the already oloured edge
ww′ will exlude the possibility of a two-oloured yle entering C in w.Consider one of the possibilities depited in Fig. 5. Assume that there exists asmallest integer j ∈ {0, 1, . . . , k − 1} suh that vjv

′
j and uj+1u

′
j+1 are not of thesame olour. Any two-oloured yle entering C at w would have to use the path

wu0v0 . . . vjuj+1. There are two possible olours for the edge vjuj+1, we hoose oneof them so that this edge will break the possibly two-oloured yle entering C in
w. If there is no integer j with the desired property, there is no problem with ayle entering C in w: all the edges uiu

′
i and viv

′
i are of the same olour that is notontained in a two-oloured yle entering C in w, hene this yle annot leave C.We ontinue by olouring the edges viui+1 whih have not been oloured yet, wedo this in the same manner as we have done in the Case 3a. Then we olour theedges uivi to get a proper 4-edge-olouring ϕ of G. The indution hypothesis assuresthat any two-oloured yle in G has to ontain at least one edge from C. The yle

C itself has odd length, hene it annot be two-oloured in a proper edge-olouring.From the onstrution of ϕ we know that no yle of intersetion 1 is two-oloured.We have dealt with yles entering C in w in the previous paragraph. Sine ϕ isproper, no two-oloured yle an enter C in ui. Put together this means that theonly possibly problemati yles is of intersetion at least 2 and enter C in vi forsome i. For i = 0, 1, 2, . . . , k − 2 we suessively apply the same reolouring as wehave done for graphs of even girth to hange ϕ so that any suh yle will ontainat least three olours. Finally, almost the same reolouring applies also for a yleentering C in vk−1 � whih has to reah u0, the only di�erene is that the path
vk−1�u0 has length 2 instead of 1 and we possibly hange the olour of u0v0. Afterthis step ϕ is an ayli 4-edge-olouring of G, hene a′(G) ≤ 4.7



Case 3: The girth of G is 4.Let C4 = v1v2v3v4 be a 4-yle in G. First assume that C4 ontains two non-adjaent edges suh that neither of them is ontained in a 4-yle di�erent from C4.For i = 1, 2, 3, 4, let v′i denote the neighbour of vi not belonging to C4. There areno triangles in G and thus no two verties of v′1, v′2, v′3, and v′4 oinide. Moreover,sine G is bridgeless, the graph G− C4 has either one or two omponents.If G − C4 is disonneted, there are two verties in any of the two omponentsof G − C4 joined by an edge to C4 in G. Without loss of generality we an assumethat v′1 and v′2 are in di�erent omponents of G − C4. We reate the graph G′by removing the verties of C4 together with the inident edges and adding edgesjoining v′1 with v′2 and v′3 with v′4. The graph G′ is a ubi, onneted and of smallerorder than G and it ontains a 2-edge ut, therefore G′ 6= K4 and G′ 6= K3,3. By theindution hypothesis, G′ has an ayli 4-edge-olouring ϕ′. We de�ne an ayli4-edge-olouring ϕ of G by setting ϕ(e) = ϕ′(e) for every edge e not inident witha vertex of C4, ϕ(v1v
′
1) = ϕ(v2v

′
2) = ϕ′(v′1v′2), and ϕ(v3v

′
3) = ϕ(v4v

′
4) = ϕ′(v′3v′4).Further, if ϕ′(v′1v

′
2) = ϕ′(v′3v

′
4), we set ϕ(v2v3) to be the olour not assigned to anedge inident with v′2 in G, ϕ(v1v4) to be the olour not assigned to an edge inidentwith v′1 in G and if ϕ(v2v3) 6= ϕ(v1v4) we set ϕ(v1v2) and ϕ(v3v4) to be the olourdi�erent from ϕ(v1v

′
1), ϕ(v2v3), and ϕ(v1v4); otherwise, if ϕ(v2v3) = ϕ(v1v4),we set

ϕ(v1v2) and ϕ(v3v4) to be the two di�erent olours, both di�erent from ϕ(v1v
′
1) and

ϕ(v2v3). If, on the other hand, the olours ϕ′(v′1v′2) and ϕ′(v′3v′4) are di�erent, weset ϕ(v1v2) = ϕ(v3v
′
3), ϕ(v3v4) = ϕ(v1v

′
1) and set ϕ(v2v3) and ϕ(v1v4) to be twodi�erent olours, both di�erent from ϕ(v1v

′
1) and ϕ(v3v

′
3). In both ases it an beeasily heked that the resulting olouring is ayli.Now suppose that G − C4 is onneted and the edges v1v2 and v3v4 are in noother 4-yle of G than C4. We form the graph G′ in the same way as if G − C4was disonneted. If G′ 6= K4 and G′ 6= K3,3 we �nd an ayli 4-edge-olouringof G analogously. If G′ = K4 or G′ = K3,3 the graph G together with an ayli4-edge-olouring is depited in Fig. 11(a), 11(b) and 11().Now we proeed to the ase that C4 does not ontain a pair of non-adjaentedges suh that neither of them is ontained in a 4-yle di�erent from C4. Then

C4 has to ontain two adjaent edges, eah of them ontained in a 4-yle di�erentfrom C4. Let v1v2 and v2v3 be two suh edges.We �rst deal with the ase that G ontains a 4-yle D di�erent from C4 whihontains both v1v2 and v2v3. Sine G is simple, neither v3v4 nor v4v1 is ontained in
D. Therefore, there is a vertex v5 di�erent from v2 and v4, adjaent to both v1 and
v3. Let v′2, v′4, and v′5 be the neighbour of v2, v4, and v5, respetively, that is notontained in {v1, v2, . . . , v5}. Sine G is bridgeless, the verties v′2, v′4, and v′5 existbut they need not be pairwise distint. Moreover, it ould not happen v′2 = v′4 = v′5,for otherwise G = K3,3.Assume that the verties v′2, v′4, and v′5 are pairwise distint. We form a newgraph G′ from G in the following way. We remove from G the verties v1, v2, . . . , v5and add a new vertex u linked by an edge with the verties v′2, v′4, and v′5 (see Fig. 6).Clearly, G′ is simple, ubi and onneted and is distint from K4 sine G does notontain triangles. If G′ is distint from K3,3, then a′(G′) ≤ 4 by the indutionhypothesis. Let ϕ′ be an ayli 4-edge-olouring of G′. An ayli 4-edge-olouring
ϕ of G an be onstruted by setting ϕ(e) = ϕ′(e) for every edge e in G whih isnot inident with any of v1, v2, . . . , v5 and ϕ(v1v2) = ϕ(v3v5) = ϕ(v4v

′
4) = ϕ′(uv′4),

ϕ(v1v5) = ϕ(v2v
′
2) = ϕ(v3v4) = ϕ′(uv′2), and ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v

′
5) =

ϕ′(uv′5). If G′ = K3,3, an ayli 4-edge-olouring of G is depited in Fig. 11(d).Assume that v′2 6= v′4 = v′5. Let v6 be the neighbour of v′4 distint from v4 and
v5; as G is bridgeless, v6 6= v′2. We reate a new graph G′ by deleting the verties
v1, v2, . . . , v5, v

′
4 and adding a new vertex v joined to v′2 and v6. Then G′ has fewer8
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Figure 6: Creating G′ from G in Case 3 if there is a 4-yle D ontaining both v1v2 and
v2v3 and v′2, v′4, and v′5 are pairwise distintverties than G, it is onneted, ontains a vertex of degree 2 and has maximumdegree 3. Hene a′(G′) ≤ 4 by the indution hypothesis. Let ϕ′ be an ayli 4-edge-olouring of G′. We extend ϕ′ to an ayli 4-edge-olouring of G in the followingway. Without loss of generality we an assume that ϕ′(vv′2) = 1 and ϕ′(vv6) = 4.We set ϕ(e) = ϕ′(e) for every edge e that is not inident with any of v1, v2, . . . , v5, v

′
4and let ϕ(v1v5) = ϕ(v3v4) = ϕ(v2v

′
2) = 1, ϕ(v3v5) = ϕ(v4v

′
4) = 2, ϕ(v1v4) =

ϕ(v2v3) = ϕ(v5v
′
4) = 3, and ϕ(v1v2) = ϕ(v′4v6) = 4, see Fig. 7. If v′4 6= v′2 = v′5 or

v′5 6= v′2 = v′4 the proof an be done in a similar way.
v

v′2v5

v1

v2

v4

v′4 = v′5

v6

v6

v′2

v3Figure 7: Creating G′ from G in Case 3 if there is a 4-yle D ontaining both v1v2 and
v2v3 and v′2 6= v′4 = v′5Now assume that there is no 4-yle di�erent from C4 ontaining two adjaentedges of C4, and C4 ontains two adjaent edges, say v1v2 and v2v3, eah ontainedin a 4-yle di�erent from C4. Let D1 = v1v2v5v6 be a 4-yle suh that {v3, v4} ∩

{v5, v6} = ∅ and let D2 be a 4-yle di�erent from C4 ontaining v2v3. Sine G isubi and simple, D1 and D2 share either one or two edges.
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v1Figure 8: Creating G′ from G in Case 3 if there is a 4-yle D1 ontaining v1v2 and a4-yle D2 ontaining v2v3, D1 and D2 share exatly one edge, and v′4, v′6, and v′7 arepairwise distintIf D1 and D2 share exatly one edge then there exists a vertex v7 di�erentfrom v1, v2, . . . , v6 and adjaent to both v3 and v5. Note that no two verties of
{v4, v6, v7} are joined by an edge, for otherwise G would ontain a triangle. Let
v′4, v′6, and v′7 be the neighbour of v4, v6, and v7, respetively, di�erent from allthe verties v1, v2, . . . , v7; the verties v′4, v′6, and v′7 are not neessarily distint. If
v′4, v′6, and v′7 are pairwise distint, we obtain G′ from G by removing the verties
v1, v2, . . . , v7 together with the inident edges and adding a new vertex u joined by9



an edge to v4, v6, and v7. Sine G is triangle-free, G′ is di�erent from K4. If G′ isalso di�erent from K3,3, then sine it is onneted and ubi and has fewer vertivesthan G, G′ has an ayli 4-edge-olouring ϕ′ by the indution hypothesis. Weonstrut an ayli 4-edge-olouring ϕ of G by setting ϕ(e) = ϕ′(e) for every edge
e whih is inident with no vertex from {v1, v2, . . . , v7} and further set ϕ(v1v2) =
ϕ(v6v

′
6) = ϕ(v5v7) = ϕ′(uv′6), ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v6) = ϕ(v7v

′
7) = ϕ′(uv′7),

ϕ(v1v6) = ϕ(v2v5) = ϕ(v3v7) = ϕ(v4v
′
4) = ϕ′(uv′4), and ϕ(v3v4) be the olourdi�erent from the olours of edges inident with u in G′ (see Fig. 8). If G′ is K3,3,an ayli 4-edge-olouring of G an be found in Fig. 11(f).Now we deal with the ase that two of the verties v′4, v′6, and v′7 are equal anddi�erent from the third. Assume that v′4 = v′6 6= v′7, the proof for other pairs anbe done analogously (in fat the situations are ompletely symmetri). Let u be theneighbour of v′4 di�erent from v4 and v6. Sine G is bridgeless, u is di�erent from

v′7. We form the graph G′ by removing the verties v1, v2, . . . , v7 and v′4 from G andadding a new vertex v joined to eah of v′7 and u by an edge. The graph G′ is di�erentfrom K4 and K3,3 as it has a vertex of degree 2, and it is onneted, has maximumdegree 3 and has fewer verties than G. We take an ayli 4-edge-olouring ϕ′ of
G′ and extend it to an ayli olouring ϕ of G. Without loss of generality we mayassume that ϕ′(vv′7) = 1 and ϕ′(vu) = 4 . We set ϕ(e) = ϕ′(e) for every edge notinident with any of v1, v2, . . . , v7 and ϕ(v1v6) = ϕ(v2v5) = ϕ(v3v4) = ϕ(v7v

′
7) = 1,

ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v7) = ϕ(v6v
′
4) = 2, ϕ(v1v2) = ϕ(v3v7) = ϕ(v4v

′
4) = 3 and

ϕ(v5v6) = ϕ(v′4u) = 4 (see Fig. 9).
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Figure 9: Creating G′ from G in Case 3 if there is a 4-yle D1 ontaining v1v2 and a4-yle D2 ontaining v2v3, D1 and D2 share exatly one edge, and v′4 = v′6 6= v′7If all three verties v′4, v′6, and v′7 oinide, graph G is the 3-dimensional ube
Q3. An ayli 4-edge-olouring of Q3 is shown in Fig. 11(g).
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Figure 10: Creating G′ from G in Case 3 if there is a 4-yle D1 ontaining v1v2 and a4-yle D2 ontaining v2v3, D1 and D2 share two edgesAssume �nally that D1 and D2 share two edges. Then, G has to ontain theedge v3v6. Let v′4 be the neighbour of v4 di�erent from v1 and v3 and let v′5 be theneighbour of v5 di�erent from v2 and v6. Sine G 6= K3,3, the verties v′4 and v510



are distint and sine G is bridgeless we have v′4 6= v′5. We onstrut a onnetedgraph G′ with fewer verties than G by removing the verties v1, v2, . . . , v6 togetherwith the inident edges from G and adding a new vertex v joined to v′4 and v′5. Thegraph G′ is di�erent from K4 and K3,3, sine it has a vertex of degree 2. We extendan ayli 4-edge-olouring ϕ′ of G′ to an ayli 4-edge-olouring ϕ of G aordingto Fig. 10.
(a) (b) ()

(d) (e) (f) (g)Figure 11: Ayli 4-edge-olourings of small graphs from Case 3Case 3d: The girth of G is 3. First, suppose that G ontains a triangle with noedge inluded in another triangle; denote one suh triangle C3 and let C3 = v1v2v3.Let v′i be the neighbour of vi not ontained in C3. Create a new graph G′ by removingthe verties of C3 together with the inident edges and introduing a new vertex uonneted to v′1, v′2, and v′3. Sine no edge of C3 was inluded in another triangle,
G′ is simple.

Figure 12: Ayli 4-edge-olouring of K4 and K3,3 with a vertex expanded to a triangleIf G′ = K4 or G′ = K3,3 then G is isomorphi to one of the graphs in Fig. 12;an ayli 4-edge-olouring of G is given in the �gure. Otherwise, G′ is onnetedand has fewer verties than G, thus by the indution hypothesis, a′(G′) ≤ 4. Let ϕ′be an ayli 4-edge-olouring of G′. We extend ϕ′ to an ayli 4-edge-olouringof G: we set ϕ(e) = ϕ′(e) for every edge e not inident with a vertex of C3, set
ϕ(v′ivi) = ϕ′(v′iu), ϕ(v1v2) = ϕ′(v3v

′
3), ϕ(v1v3) = ϕ′(v2v

′
2), and ϕ(v2v3) = ϕ′(v1v

′
1).Now suppose that eah triangle in G has an edge in ommon with another tri-angle. Fix a triangle C3 = v1v2v3 in G. Sine G 6= K4, C3 has exatly one edge, say

v1v2, inluded in a triangle di�erent from C3. Let v4 be the ommon neighbour of
v1 and v2 di�erent from v3. Let v′3 be the neighbour of v3 di�erent from v1 and v2and let v′4 be the neighbour of v4 di�erent from v1 and v2. Sine G does not ontaina bridge, we have v3 6= v4. Construt a new graph G′ by removing the verties v1,11



v2, v3, and v4 from G and introduing a new vertex u of degree 2 adjaent to v′3and v′4. Let ϕ′ be an ayli 4-edge-olouring of G′; G′ admits suh a olouringby the indution hypothesis. We onstrut a olouring ϕ of G as follows: we set
ϕ(e) = ϕ′(e) for every edge e whih is not inident with either of vi for i = 1, 2, 3, 4and ϕ(v′3v3) = ϕ(v2v4) = ϕ′(v′3u), ϕ(v′4v4) = ϕ(v1v3) = ϕ′(v′4u). Further, let c1 and
c2 be the two olours di�erent from ϕ′(uv′3) and ϕ′(uv′4). To �nish the de�nition ofthe olouring set ϕ(v2v3) = ϕ(v1v4) = c1, and, �nally ϕ(v1v2) = c2 (see Fig. 13).Clearly ϕ is ayli. This onludes the proof.
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