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tAn a
y
li
 edge-
olouring of a graph is a proper edge-
olouring su
h that thesubgraph indu
ed by the edges of any two 
olours is a
y
li
. The a
y
li
 
hromati
index of a graph G is the smallest number of 
olours in an a
y
li
 edge-
olouring of
G. We prove that the a
y
li
 
hromati
 index of a 
onne
ted 
ubi
 graph G is 4,unless G is K4 or K3,3; the a
y
li
 
hromati
 index of K4 and K3,3 is 5.1 Introdu
tionVarious types of edge-
olourings of graphs have o

urred in graph theory for morethan a 
entury. Among these 
olourings the most important are proper 
olourings� those that do not allow two adja
ent edges to have the same 
olour. Considerablee�ort has been devoted to proper edge-
olourings where 
y
les that 
ontain only two
olours are forbidden.A proper k-edge-
olouring of G su
h that there are no two-
oloured 
y
les in Gis 
alled an a
y
li
 k-edge-
olouring of G. The 
on
ept of a
y
li
 
olourings wasintrodu
ed by Grünbaum in [8℄.In this paper all the 
onsidered graphs are �nite and simple, i. e. without multipleedges and loops. Let ∆ = ∆(G) denote the maximum degree of a vertex in a graph
G. Throughout the paper, any proper k-edge-
olouring uses the 
olours denotedby 1, 2, . . . , k. The 
hromati
 index of a graph G, denoted by χ′(G), is the leastnumber of 
olours needed to 
olour the edges of G by a proper edge-
olouring.Similarly we de�ne the a
y
li
 
hromati
 index (also 
alled a
y
li
 edge 
hromati
1



number) of a graph G, denoted by a′(G), to be the least k su
h that G has an a
y
li

k-edge-
olouring. Obviously, a′(G) ≥ χ′(G). An alternative de�nition of the a
y
li

hromati
 index gives a slightly di�erent point of view: the a
y
li
 
hromati
 indexof a graph G is the minimum number of mat
hings whi
h su�
e to 
over all edgesof G in su
h a way that the union of any two mat
hings does not 
ontain a 
y
le.It is known that a simple graph G with maximal degree ∆ has 
hromati
 indexeither ∆ or ∆ + 1. How many new 
olours do we have to use if we do not wantto allow two-
oloured 
y
les? It is known that a′(G) ≤ 16∆ (see [2℄ and [9℄), butre
ent results (e. g. [1℄, [3℄, and [10℄) suggest that this bound is far from tight.The 
onje
ture of Fiam£ík [7℄ and later by Alon, Sudakov, and Zaks [1℄ says that
a′(G) ≤ ∆ + 2 for every graph G. Burnstein's result in [4℄ implies that for 
ubi
graphs a′(G) ≤ 5, therefore the 
onje
ture is true for ∆ = 3. In 1980, Fiam£ík [5℄published a paper 
laiming that K4 is the only 
ubi
 graph requiring �ve 
olours inan a
y
li
 edge-
olouring, nevertheless both the result and the proof were in
orre
t.Four years later, in [6℄, he 
orre
ted one of the errors of the previous paper, andstated a 
orre
t result that there are two ex
eptional 
ubi
 graphs requiring �ve
olours in an a
y
li
 edge-
olouring. However, the proof still 
ontains a big gap:usage of Lemma 2 in [5℄ eliminates the 
y
le of 
olours 1 and 2, but it does notensure that no two-
oloured 
y
les of other pairs of 
olours are 
reated. This maybe the reason why the result of Fiam£ík has fallen into obs
urity.In this paper we fo
us on graphs with ∆ = 3. In [3℄, Basavaraju and Chandranproved that a′(G) ≤ 4 for all sub
ubi
 graphs (graphs with maximal degree at most
3) 
ontaining a vertex of degree at most 2.In every proper 3-edge-
olouring of a 
ubi
 graph G the edges 
oloured by anyof the 
olours form a perfe
t mat
hing. Hen
e the subgraph of G indu
ed by theedges of any two 
olours form a 2-fa
tor, whi
h is a nonempty set of two-
oloured
y
les. Therefore to have an a
y
li
 edge-
olouring of a 
ubi
 graph we need at leastfour 
olours. We prove that four 
olours are optimal for all 
onne
ted 
ubi
 graphswith the ex
eption of K4 and K3,3, the two graphs mentioned by Fiam£ík in [6℄, forwhi
h 5 
olours are optimal.Our main result is 
aptured in the following theorem. The proof in Se
tion 2 isalgorithmi
 and does not rely on any probabilisti
 arguments. As a simple 
orollarywe are able to determine the a
y
li
 
hromati
 index of all 
ubi
 graphs.Theorem 1.1 Let G be a 
onne
ted graph with ∆(G) ≤ 3 di�erent from K4 and
K3,3. Then a′(G) ≤ 4.Corollary 1.2 The a
y
li
 
hromati
 index of a 
onne
ted 
ubi
 graph G is 4 unless
G is K4 or K3,3, for whi
h a′(K4) = a′(K3,3) = 5.Proof. For a 
ubi
 graph G we have proved that a′(G) ≥ 4. An a
y
li
 5-edge-
olouring of the graphs K4 and K3,3 is shown in Fig. 1.It remains to prove that the a
y
li
 
hromati
 index is at least 5 for both of thesetwo graphs. Suppose that we have an a
y
li
 4-edge-
olouring of K4. The graph K4has 6 edges, and the edges 
oloured by any of the 
olours form a mat
hing, hen
eno 
olour is used on more than two edges. Therefore there are two 
olours su
h thatboth of them 
olour exa
tly two edges, and edges 
oloured by these 
olours form a
2-fa
tor, whi
h is a two-
oloured 
y
le of length 4 in our 
ase. We have derived a
ontradi
tion.Suppose that we have an a
y
li
 4-edge-
olouring of K3,3. The graph K3,3 has 9edges. If there are two 
olours su
h that both of them 
olour three edges, the edges
oloured by these 
olours form a 2-fa
tor, whi
h is a two-
oloured 
y
le of length 6in our 
ase. Otherwise exa
tly one 
olour, say 1, 
olours three edges and any other
olour 
olours two edges. Choose a 
y
le C of length 4 in K3,3 su
h that two of its2



Figure 1: An a
y
li
 5-edge-
olouring of K4 and K3,3edges are 
oloured by the 
olour 1. The other edges in this 
y
le must be of di�erent
olours, say 2 and 3. Look at one of the edges not belonging to C and adja
ent withthe edge of C that is 
oloured by the 
olour 2. Its 
olour 
an be either 3 or 4. Sin
eour 
olouring is proper and ea
h 
olour di�erent from 1 is used twi
e, the 
olours ofall the other edges are determined. It is easy to 
he
k that in both 
ases there is atwo-
oloured 
y
le, hen
e the graph K3,3 
annot have an a
y
li
 4-edge-
olouring.
�2 A
y
li
 edge-
olouring of sub
ubi
 graphsIn this se
tion we prove Theorem 1.1. For the sake of 
ompleteness we let the proof
over the 
ase where the minimum degree δ(G) ≤ 2, although this 
ase was provedin [3℄, as already noted.We pro
eed by indu
tion on the number of verti
es of G. If G is a 1-vertex graph,then the assertion is trivial. We therefore assume that G is a 
onne
ted graph on atleast two verti
es with ∆(G) ≤ 3, G 6= K4, G 6= K3,3, and for every 
onne
ted graph
H of smaller order, with ∆(H) ≤ 3 and di�erent from K4 and K3,3, a′(H) ≤ 4. Theproof splits into several 
ases depending on whether G 
ontains a bridge or not, andon δ(G).Case 1: G 
ontains a bridge. Let e be a bridge. Let V1 and V2 be the vertex-sets of the two 
omponents 
reated by removing e and let Gi be the graph indu
edby Vi, i = 1, 2. Both G1 and G2 have fewer verti
es than G and ea
h of them has atleast one vertex of degree at most 2, therefore both these graphs are di�erent from
K4 and K3,3, and, in turn, have an a
y
li
 4-edge-
olouring. For i = 1, 2, let ϕi bean a
y
li
 4-edge-
olouring of Gi. We 
an obtain an a
y
li
 4-edge-
olouring ϕ of Gby letting ϕ(e) be any 
olour and permuting the 
olours of ϕ1 and ϕ2 on G1 and G2so that the edges of G adja
ent to e have 
olours di�erent from ϕ(e).Case 2: G is bridgeless and δ(G) = 2. (When G is bridgeless δ(G) is at least2.) Let v be a vertex of degree 2 and let v1 and v2 be the two neighbours of v.First suppose that v1 and v2 are not adja
ent. We 
onstru
t a new graph G′by removing the vertex v from G together with the in
ident edges v1v and v2v andadding a new edge v1v2; 
learly, G′ is simple and 
onne
ted. If G′ = K4 or G′ = K3,3,then G together with an a
y
li
 4-edge-
olouring is depi
ted in Fig. 2. If G′ 6= K4and G′ 6= K3,3, we have a′(G′) ≤ 4 by the indu
tion hypothesis. Let ϕ′ be an a
y
li
4-edge-
olouring of G′. We 
onstru
t an a
y
li
 4-edge-
olouring ϕ of G. We set
ϕ(e) = ϕ′(e) for every e 6= vv1 and e 6= vv2.If the degree of one of the neighbours of v, say v2, is 2, denote by v3 the neighbourof v2 su
h that v 6= v3. We 
hoose ϕ(vv1) to be ϕ′(v1v2). To �nish the 
olouringwe 
hose ϕ(vv2) to be any 
olour di�erent from ϕ(vv1) and ϕ(v2v3). The resulting
olouring is proper and 
learly, from the indu
tion hypothesis, if there is a 2-
oloured
y
le in ϕ, it has to 
ontain the vertex v. But this is not possible be
ause ϕ(vv1) 6=
ϕ(v2v3). 3



Figure 2: Graphs K4 and K3,3 with a subdivided edge and their a
y
li
 4-edge-
olouringsIf, on the other hand, deg(v1) = 3 and deg(v2) = 3, let e1 and e2 be the edgesin
ident with v1 but di�erent from vv1 and let e3 and e4 be the edges in
ident with
v2 but di�erent from vv2. Sin
e ϕ′ is a proper 4-edge-
olouring of G′ whi
h in
ludesthe edge v1v2, we have {ϕ(e1), ϕ(e2)} ∩ {ϕ(e3), ϕ(e4)} 6= ∅. If {ϕ(e1), ϕ(e2)} =
{ϕ(e3), ϕ(e4)}, we 
hoose for ea
h of ϕ(vv1) and ϕ(vv2) one of the two remaining
olours di�erent from ϕ(e1) and ϕ(e2), di�erent from ea
h other. If |{ϕ(e1), ϕ(e2)}∩
{ϕ(e3), ϕ(e4)}| = 1, and, say ϕ(e1) = ϕ(e3), we set ϕ(vv1) = ϕ(e4) and ϕ(vv2) =
ϕ′(v1v2). It 
an be easily seen that in both 
ases ϕ is an a
y
li
 4-edge-
olouring of
G. Now suppose that v1 and v2 are adja
ent. Sin
e G is bridgeless, either G is atriangle, G is K4 minus an edge or the verti
es v1 and v2 are of degree 3 and there isno vertex di�erent from v adja
ent to both v1 and v2. If G is a triangle or K4 minusan edge, then a′(G) ≤ 4; in the latter 
ase let u1 be the neighbour of v1 di�erentfrom v and v2 and let u2 be the neighbour of v2 di�erent from v and v1. As noted,
u1 6= u2. We remove from G the verti
es v, v1, and v2 together with the in
identedges and add a new vertex w of degree 2, joined by an edge to u1 and u2. Wedenote the resulting graph G′. The graph G′ is simple and 
onne
ted and has fewerverti
es than G, and it is not K4 or K3,3 as it has a vertex of degree 2, thereforeby the indu
tion hypothesis a′(G′) ≤ 4. Let ϕ′ be an a
y
li
 4-edge-
olouring of
G′. De�ne the 
olouring ϕ of G as follows: ϕ(e) = ϕ′(e) for every edge e that isnot in
ident with any of v, v1, and v2. Further set ϕ(u1v1) = ϕ(vv2) = ϕ′(u1w),
ϕ(u2v2) = ϕ(vv1) = ϕ′(u2w) and 
olour the edge v1v2 by any of the two remaining
olours di�erent from ϕ(vv1) and ϕ(vv2) (see Fig. 3). Clearly, ϕ is an a
y
li
 4-edge-
olouring of G.

v1 v v2

u2 u1

w

u2u1

Figure 3: Creating G′ from G in Case 2, v1 and v2 adja
entCase 3: G is a bridgeless 
ubi
 graph. Here the proof splits into several sub
asesdepending on the girth of G (denoted by g(G) in what follows).Case 3a: The girth of G is even and g(G) ≥ 6.Let C be any of the shortest 
y
les in G. Let the verti
es of C be u0, v0, u1, v1, . . . , uk−1, vk−1where k = g(G)/2 ≥ 3 (the indi
es will be taken mod k in what follows). Let u′iand v′i be the neighbours of ui and vi, respe
tively, whi
h do not belong to C (theverti
es u′0, v′0, u′1, v′1, . . . are distin
t, be
ause if a vertex outside C had two edges to
C there would be a 
y
le of shorter length than C). Let G′ be the graph 
onstru
tedin the following way: we remove from G the 
y
le C together with all the edgesadja
ent to this 
y
le and join u′i to v′i for i = 0, 1, 2, . . . , k − 1 (see Fig. 4). Theresulting graph G′ is 
ubi
 and simple be
ause g(G) > 4: a multiple edge in G′yields a 
y
le of length 4 in G. Note that G′ might not be 
onne
ted but it 
ontains4



no 
omponent isomorphi
 to K4 or K3,3. Indeed, su
h a 
omponent would yield a
y
le shorter than C in G; we prove this assertion in the next paragraphs.Assume that G′ 
ontains a 
omponent K isomorphi
 to K4 or K3,3. Sin
e G doesnot 
ontain 
y
les of length 4, any su
h 
y
le in K must 
ontain at least one of theedges added in the 
onstru
tion of G′ (we 
all su
h edges added in what follows).If K = K4, one 
an easily 
he
k that K must 
ontain two adja
ent added edges,
ontradi
ting that u′0, v
′
0, u

′
1, v

′
1, . . . are distin
t.If K = K3,3, then sin
e K does not 
ontain two adja
ent added edges, it must
ontain three added edges forming a 1-fa
tor (otherwise there is a 4-
y
le in G).Sin
e no other edges in K are added, the remaining six edges of K forming a 
y
leof length 6 belong to G. Thus the girth of G is 6, the same is the number of verti
esof C. Therefore any vertex of C is adja
ent to a vertex of K. It is easy to 
he
kthat in any 
ase G 
ontains a 
y
le of length 4 or 5.Now we return to the main argument of the Case 3a. The indu
tion hypothesisused on ea
h 
omponent of G′ yields an a
y
li
 4-edge-
olouring ϕ′ of G′, we extendthis 
olouring to an a
y
li
 4-edge-
olouring ϕ of G.

v′2

u′0

v′0

u′1

v′1u′2

u′3

v′2

v0

u1

u2
v1

v2

u0
v3

u3

v′3 u′0

v′0

u′1

v′1u′2

u′3

v′3

Figure 4: Creating G′ from G in Case 3aLet ϕ(e) = ϕ′(e) for all edges e 
ommon for G and G′ and ϕ(uiu
′
i) = ϕ(viv

′
i) =

ϕ′(u′iv
′
i). It remains to de�ne ϕ on the edges of C. We do this in several steps. Thedire
tion u0, v0, u1, . . . along C will be referred to as 
lo
kwise. Let D be a 
y
le in

G other than C. We say that D enters C at a vertex w and leaves C at a vertex w′,if the path w�w′ belongs to both C and D, goes along C in the 
lo
kwise dire
tionand 
annot be extended in any dire
tion. We say that D is of interse
tion ℓ, if thepath w�w′ has length ℓ. The 
y
le D 
an have more than one 
ommon path with
C, in su
h a 
ase we 
hoose w and w′ so that their 
lo
kwise distan
e along C ismaximal.Now we de�ne ϕ on the remaining edges of G, after this step ϕ will be a proper
4-edge-
olouring of G su
h that any 
y
le of interse
tion 1 will 
ontain at least threedistin
t 
olours. Consider the edge viui+1. If the 
olours ϕ(viv

′
i) and ϕ(ui+1u

′
i+1) aredi�erent, we 
hoose any of the two remaining 
olours for ϕ(viui+1). Otherwise weset ϕ(viui+1) to be the 
olour di�erent from the 
olours of the three edges in
identwith v′i. We thus 
olour all k edges viui+1.Consider the edge uivi. It is adja
ent to four edges, but two of them (uiu

′
i and

viv
′
i) are 
oloured by the same 
olour, so there is at least one free 
olour to 
olourthe edge uivi. We 
hoose one su
h free 
olour. We do this for i = 0, 1, . . . , k − 1.Now we have 
oloured all the edges of G.All 
y
les disjoint with C are not two-
oloured by the indu
tion hypothesis. Itis easy to verify that a 
y
le of interse
tion 1 entering C in vi 
ontains at least three5




olours. Consider a 
y
le of interse
tion 1 entering C in ui. This 
y
le 
ontains atleast three 
olours by the indu
tion hypothesis (even if it enters C several times).Now we modify ϕ to be a proper 4-edge-
olouring of G su
h that any 
y
le otherthan C 
ontains at least three 
olours. The only problemati
 
y
les are those ofinterse
tion at least 2. Su
h a 
y
le 
ontaining only two 
olours 
annot enter C in
ui: the 
olours of uiu

′
i and viv

′
i are the same, hen
e the 
olours ϕ(uiu

′
i), ϕ(uivi), and

ϕ(viui+1) are three di�erent 
olours 
ontained in this 
y
le.Let D be a two-
oloured 
y
le whi
h enters C in vi. Then D 
annot leave Cin vi+1, be
ause the 
olours of viui+1 and vi+1v
′
i+1 
annot be the same. Hen
e the
olours of viui+1 and vi+1ui+2 are the same. Now set ϕ(ui+1vi+1) to be the 
olourdi�erent from ϕ(viv

′
i), ϕ(viui+1) and ϕ(ui+1u

′
i+1). Any 
y
le of interse
tion 1 
on-taining the edge ui+1vi+1 
ontains at least three 
olours by the indu
tion hypothesis,thus we did not introdu
e a new two-
oloured 
y
le.After these modi�
ations the only possibly two-
oloured 
y
le is C. Assume thatit 
ontains only two 
olours, say 1 and 2. The edges in
ident with verti
es of C butnot belonging to C are 
oloured by 
olours 3 and 4. If ϕ(u1u

′
1) = ϕ(u2u

′
2) = 3, we
an set ϕ(u2v2) = 4 to obtain an a
y
li
 4-edge-
olouring of G. Otherwise we mayassume that the edges uiu

′
i for i = 1, 2 . . . , k are 
oloured alternately by 
olours 3and 4 (this assumption allows us to repla
e 
olour 1 on the edges of C by 
olour 2and vi
e versa without introdu
ing two-
oloured 
y
les of interse
tion 1). Moreoverwe may assume that ϕ(u1u
′
1) = ϕ(v1v

′
1) = 3, ϕ(u2u

′
2) = ϕ(v2v

′
2) = 4, ϕ(u1v1) = 2and ϕ(v1u2) = 1. There are three 
ases for the 
olours f1 and f2 of the two edgesin
ident with u′2 and not in
ident with u2:

• if {f1, f2} = {2, 3} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 1,

• if {f1, f2} = {1, 2} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 3,

• if {f1, f2} = {1, 3} we set ϕ(v1u2) = 4 and ϕ(u2u
′
2) = 2 and 
olour the edges of

C di�erent from v1u2 by 
olours 1 and 2 alternatively to obtain a proper 4-edge-
olouring.The resulting 
olouring ϕ is an a
y
li
 4-edge-
olouring of G.Case 3b: The girth of G is at least 5 and is odd.Let C be one of the shortest 
y
les of G. Let u0, v0, u1, v1, . . . , uk−1, vk−1, w bethe verti
es of this 
y
le in the order in whi
h they lie on the 
y
le. Let u′i, v′i, and
w′ be the neighbours of ui, vi, and w, respe
tively, whi
h do not lie on the 
y
le C.From the graph G we 
onstru
t a graph G′ by removing the 
y
le C with all theedges adja
ent to this 
y
le and joining u′i to v′i for i = 0, 1, 2, . . . , k − 1. As thegirth of G is at least 5 and G is a shortest 
y
le, the resulting graph G′ 
ontains noloops and no multiple edges. Moreover G′ has δ = 2, ∆ = 3 and no 
omponent of
G is isomorphi
 to K4 or K3,3. The last assertion 
an be proved in almost the sameway as we have done it in the Case 3a, the di�eren
e o

urs only for K = K3,3,where we have three added edges forming a 1-fa
tor: sin
e the graph G in this 
ase(K3,3 without a 1-fa
tor) has girth at most 6 and the girth is odd, it is equal to
5, hen
e C has only 5 verti
es. This is a 
ontradi
tion to the fa
t that K has 6distin
t verti
es that have 6 pairwise distin
t neighbours lying on C. The indu
tionhypothesis applied to ea
h 
omponent of G′ gives an a
y
li
 4-edge-
olouring ϕ′ of
G′. We extend this 
olouring to an a
y
li
 4-edge-
olouring ϕ of G.First, set ϕ(e) = ϕ′(e) for ea
h edge e of G that have no vertex in 
ommon with
C and set ϕ(uiu

′
i) = ϕ(viv

′
i) = ϕ′(u′iv

′
i).Next, we des
ribe the 
olouring of the three edges adja
ent with w. In whatfollows we may assume that the 
olours used in ϕ′ are 1, 2, 3, 4 and the 
olours ofthe edges in
ident with w′ but not in
ident with w are 1 and 2 and ϕ(vk−1v

′
k−1) ≤

ϕ(u0u
′
0). There are several possibilities for the 
olours of u0u

′
0 and vk−1v

′
k−1, all ofthem with the desired 
olouring of the edges in
ident with w are in Fig. 5. Note thatin any possibility there is no two-
oloured 
y
le passing through any two of the three6



edges ww′, u0u
′
0 and vk−1v

′
k−1. The dire
tion u0, v0, u1, . . . along C is referred to as
lo
kwise. Re
all the de�nitions of the terms enter, leave and to be of interse
tionfor a 
y
le that has an edge in 
ommon with C, they apply also in this 
ase.

1
244 1 3 211u0

w′

w 11 4 213 2 443 3vk−1

C

1 2
3 44 2 31 14 3 21 2

3 21
212121

1 2 1 2 1 232 3 4 1 3 2 4 1 4 3 4 3 1 4134 22
2

Figure 5: Colouring of the edges in
ident with w in Case 3bAs the next step we 
olour one edge of C so that there will be no two-
oloured
y
le that enters C at w. Any two-
oloured 
y
le in a proper edge-
olouring has itsedges 
oloured alternately by two 
olours. We utilize this fa
t and 
hoose the 
olourof one of the edges of C so that this edge together with the already 
oloured edge
ww′ will ex
lude the possibility of a two-
oloured 
y
le entering C in w.Consider one of the possibilities depi
ted in Fig. 5. Assume that there exists asmallest integer j ∈ {0, 1, . . . , k − 1} su
h that vjv

′
j and uj+1u

′
j+1 are not of thesame 
olour. Any two-
oloured 
y
le entering C at w would have to use the path

wu0v0 . . . vjuj+1. There are two possible 
olours for the edge vjuj+1, we 
hoose oneof them so that this edge will break the possibly two-
oloured 
y
le entering C in
w. If there is no integer j with the desired property, there is no problem with a
y
le entering C in w: all the edges uiu

′
i and viv

′
i are of the same 
olour that is not
ontained in a two-
oloured 
y
le entering C in w, hen
e this 
y
le 
annot leave C.We 
ontinue by 
olouring the edges viui+1 whi
h have not been 
oloured yet, wedo this in the same manner as we have done in the Case 3a. Then we 
olour theedges uivi to get a proper 4-edge-
olouring ϕ of G. The indu
tion hypothesis assuresthat any two-
oloured 
y
le in G has to 
ontain at least one edge from C. The 
y
le

C itself has odd length, hen
e it 
annot be two-
oloured in a proper edge-
olouring.From the 
onstru
tion of ϕ we know that no 
y
le of interse
tion 1 is two-
oloured.We have dealt with 
y
les entering C in w in the previous paragraph. Sin
e ϕ isproper, no two-
oloured 
y
le 
an enter C in ui. Put together this means that theonly possibly problemati
 
y
les is of interse
tion at least 2 and enter C in vi forsome i. For i = 0, 1, 2, . . . , k − 2 we su

essively apply the same re
olouring as wehave done for graphs of even girth to 
hange ϕ so that any su
h 
y
le will 
ontainat least three 
olours. Finally, almost the same re
olouring applies also for a 
y
leentering C in vk−1 � whi
h has to rea
h u0, the only di�eren
e is that the path
vk−1�u0 has length 2 instead of 1 and we possibly 
hange the 
olour of u0v0. Afterthis step ϕ is an a
y
li
 4-edge-
olouring of G, hen
e a′(G) ≤ 4.7



Case 3
: The girth of G is 4.Let C4 = v1v2v3v4 be a 4-
y
le in G. First assume that C4 
ontains two non-adja
ent edges su
h that neither of them is 
ontained in a 4-
y
le di�erent from C4.For i = 1, 2, 3, 4, let v′i denote the neighbour of vi not belonging to C4. There areno triangles in G and thus no two verti
es of v′1, v′2, v′3, and v′4 
oin
ide. Moreover,sin
e G is bridgeless, the graph G− C4 has either one or two 
omponents.If G − C4 is dis
onne
ted, there are two verti
es in any of the two 
omponentsof G − C4 joined by an edge to C4 in G. Without loss of generality we 
an assumethat v′1 and v′2 are in di�erent 
omponents of G − C4. We 
reate the graph G′by removing the verti
es of C4 together with the in
ident edges and adding edgesjoining v′1 with v′2 and v′3 with v′4. The graph G′ is a 
ubi
, 
onne
ted and of smallerorder than G and it 
ontains a 2-edge 
ut, therefore G′ 6= K4 and G′ 6= K3,3. By theindu
tion hypothesis, G′ has an a
y
li
 4-edge-
olouring ϕ′. We de�ne an a
y
li
4-edge-
olouring ϕ of G by setting ϕ(e) = ϕ′(e) for every edge e not in
ident witha vertex of C4, ϕ(v1v
′
1) = ϕ(v2v

′
2) = ϕ′(v′1v′2), and ϕ(v3v

′
3) = ϕ(v4v

′
4) = ϕ′(v′3v′4).Further, if ϕ′(v′1v

′
2) = ϕ′(v′3v

′
4), we set ϕ(v2v3) to be the 
olour not assigned to anedge in
ident with v′2 in G, ϕ(v1v4) to be the 
olour not assigned to an edge in
identwith v′1 in G and if ϕ(v2v3) 6= ϕ(v1v4) we set ϕ(v1v2) and ϕ(v3v4) to be the 
olourdi�erent from ϕ(v1v

′
1), ϕ(v2v3), and ϕ(v1v4); otherwise, if ϕ(v2v3) = ϕ(v1v4),we set

ϕ(v1v2) and ϕ(v3v4) to be the two di�erent 
olours, both di�erent from ϕ(v1v
′
1) and

ϕ(v2v3). If, on the other hand, the 
olours ϕ′(v′1v′2) and ϕ′(v′3v′4) are di�erent, weset ϕ(v1v2) = ϕ(v3v
′
3), ϕ(v3v4) = ϕ(v1v

′
1) and set ϕ(v2v3) and ϕ(v1v4) to be twodi�erent 
olours, both di�erent from ϕ(v1v

′
1) and ϕ(v3v

′
3). In both 
ases it 
an beeasily 
he
ked that the resulting 
olouring is a
y
li
.Now suppose that G − C4 is 
onne
ted and the edges v1v2 and v3v4 are in noother 4-
y
le of G than C4. We form the graph G′ in the same way as if G − C4was dis
onne
ted. If G′ 6= K4 and G′ 6= K3,3 we �nd an a
y
li
 4-edge-
olouringof G analogously. If G′ = K4 or G′ = K3,3 the graph G together with an a
y
li
4-edge-
olouring is depi
ted in Fig. 11(a), 11(b) and 11(
).Now we pro
eed to the 
ase that C4 does not 
ontain a pair of non-adja
entedges su
h that neither of them is 
ontained in a 4-
y
le di�erent from C4. Then

C4 has to 
ontain two adja
ent edges, ea
h of them 
ontained in a 4-
y
le di�erentfrom C4. Let v1v2 and v2v3 be two su
h edges.We �rst deal with the 
ase that G 
ontains a 4-
y
le D di�erent from C4 whi
h
ontains both v1v2 and v2v3. Sin
e G is simple, neither v3v4 nor v4v1 is 
ontained in
D. Therefore, there is a vertex v5 di�erent from v2 and v4, adja
ent to both v1 and
v3. Let v′2, v′4, and v′5 be the neighbour of v2, v4, and v5, respe
tively, that is not
ontained in {v1, v2, . . . , v5}. Sin
e G is bridgeless, the verti
es v′2, v′4, and v′5 existbut they need not be pairwise distin
t. Moreover, it 
ould not happen v′2 = v′4 = v′5,for otherwise G = K3,3.Assume that the verti
es v′2, v′4, and v′5 are pairwise distin
t. We form a newgraph G′ from G in the following way. We remove from G the verti
es v1, v2, . . . , v5and add a new vertex u linked by an edge with the verti
es v′2, v′4, and v′5 (see Fig. 6).Clearly, G′ is simple, 
ubi
 and 
onne
ted and is distin
t from K4 sin
e G does not
ontain triangles. If G′ is distin
t from K3,3, then a′(G′) ≤ 4 by the indu
tionhypothesis. Let ϕ′ be an a
y
li
 4-edge-
olouring of G′. An a
y
li
 4-edge-
olouring
ϕ of G 
an be 
onstru
ted by setting ϕ(e) = ϕ′(e) for every edge e in G whi
h isnot in
ident with any of v1, v2, . . . , v5 and ϕ(v1v2) = ϕ(v3v5) = ϕ(v4v

′
4) = ϕ′(uv′4),

ϕ(v1v5) = ϕ(v2v
′
2) = ϕ(v3v4) = ϕ′(uv′2), and ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v

′
5) =

ϕ′(uv′5). If G′ = K3,3, an a
y
li
 4-edge-
olouring of G is depi
ted in Fig. 11(d).Assume that v′2 6= v′4 = v′5. Let v6 be the neighbour of v′4 distin
t from v4 and
v5; as G is bridgeless, v6 6= v′2. We 
reate a new graph G′ by deleting the verti
es
v1, v2, . . . , v5, v

′
4 and adding a new vertex v joined to v′2 and v6. Then G′ has fewer8



u

v′2v5

v′5

v1

v2

v4

v′4

v′2

v′5

v′4

v3

Figure 6: Creating G′ from G in Case 3
 if there is a 4-
y
le D 
ontaining both v1v2 and
v2v3 and v′2, v′4, and v′5 are pairwise distin
tverti
es than G, it is 
onne
ted, 
ontains a vertex of degree 2 and has maximumdegree 3. Hen
e a′(G′) ≤ 4 by the indu
tion hypothesis. Let ϕ′ be an a
y
li
 4-edge-
olouring of G′. We extend ϕ′ to an a
y
li
 4-edge-
olouring of G in the followingway. Without loss of generality we 
an assume that ϕ′(vv′2) = 1 and ϕ′(vv6) = 4.We set ϕ(e) = ϕ′(e) for every edge e that is not in
ident with any of v1, v2, . . . , v5, v

′
4and let ϕ(v1v5) = ϕ(v3v4) = ϕ(v2v

′
2) = 1, ϕ(v3v5) = ϕ(v4v

′
4) = 2, ϕ(v1v4) =

ϕ(v2v3) = ϕ(v5v
′
4) = 3, and ϕ(v1v2) = ϕ(v′4v6) = 4, see Fig. 7. If v′4 6= v′2 = v′5 or

v′5 6= v′2 = v′4 the proof 
an be done in a similar way.
v

v′2v5

v1

v2

v4

v′4 = v′5

v6

v6

v′2

v3Figure 7: Creating G′ from G in Case 3
 if there is a 4-
y
le D 
ontaining both v1v2 and
v2v3 and v′2 6= v′4 = v′5Now assume that there is no 4-
y
le di�erent from C4 
ontaining two adja
entedges of C4, and C4 
ontains two adja
ent edges, say v1v2 and v2v3, ea
h 
ontainedin a 4-
y
le di�erent from C4. Let D1 = v1v2v5v6 be a 4-
y
le su
h that {v3, v4} ∩

{v5, v6} = ∅ and let D2 be a 4-
y
le di�erent from C4 
ontaining v2v3. Sin
e G is
ubi
 and simple, D1 and D2 share either one or two edges.
u

v2

v4

v5

v6

v3

v7

v′7

v′4 v′6

v′7

v′6v′4

v1Figure 8: Creating G′ from G in Case 3
 if there is a 4-
y
le D1 
ontaining v1v2 and a4-
y
le D2 
ontaining v2v3, D1 and D2 share exa
tly one edge, and v′4, v′6, and v′7 arepairwise distin
tIf D1 and D2 share exa
tly one edge then there exists a vertex v7 di�erentfrom v1, v2, . . . , v6 and adja
ent to both v3 and v5. Note that no two verti
es of
{v4, v6, v7} are joined by an edge, for otherwise G would 
ontain a triangle. Let
v′4, v′6, and v′7 be the neighbour of v4, v6, and v7, respe
tively, di�erent from allthe verti
es v1, v2, . . . , v7; the verti
es v′4, v′6, and v′7 are not ne
essarily distin
t. If
v′4, v′6, and v′7 are pairwise distin
t, we obtain G′ from G by removing the verti
es
v1, v2, . . . , v7 together with the in
ident edges and adding a new vertex u joined by9



an edge to v4, v6, and v7. Sin
e G is triangle-free, G′ is di�erent from K4. If G′ isalso di�erent from K3,3, then sin
e it is 
onne
ted and 
ubi
 and has fewer vertivesthan G, G′ has an a
y
li
 4-edge-
olouring ϕ′ by the indu
tion hypothesis. We
onstru
t an a
y
li
 4-edge-
olouring ϕ of G by setting ϕ(e) = ϕ′(e) for every edge
e whi
h is in
ident with no vertex from {v1, v2, . . . , v7} and further set ϕ(v1v2) =
ϕ(v6v

′
6) = ϕ(v5v7) = ϕ′(uv′6), ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v6) = ϕ(v7v

′
7) = ϕ′(uv′7),

ϕ(v1v6) = ϕ(v2v5) = ϕ(v3v7) = ϕ(v4v
′
4) = ϕ′(uv′4), and ϕ(v3v4) be the 
olourdi�erent from the 
olours of edges in
ident with u in G′ (see Fig. 8). If G′ is K3,3,an a
y
li
 4-edge-
olouring of G 
an be found in Fig. 11(f).Now we deal with the 
ase that two of the verti
es v′4, v′6, and v′7 are equal anddi�erent from the third. Assume that v′4 = v′6 6= v′7, the proof for other pairs 
anbe done analogously (in fa
t the situations are 
ompletely symmetri
). Let u be theneighbour of v′4 di�erent from v4 and v6. Sin
e G is bridgeless, u is di�erent from

v′7. We form the graph G′ by removing the verti
es v1, v2, . . . , v7 and v′4 from G andadding a new vertex v joined to ea
h of v′7 and u by an edge. The graph G′ is di�erentfrom K4 and K3,3 as it has a vertex of degree 2, and it is 
onne
ted, has maximumdegree 3 and has fewer verti
es than G. We take an a
y
li
 4-edge-
olouring ϕ′ of
G′ and extend it to an a
y
li
 
olouring ϕ of G. Without loss of generality we mayassume that ϕ′(vv′7) = 1 and ϕ′(vu) = 4 . We set ϕ(e) = ϕ′(e) for every edge notin
ident with any of v1, v2, . . . , v7 and ϕ(v1v6) = ϕ(v2v5) = ϕ(v3v4) = ϕ(v7v

′
7) = 1,

ϕ(v1v4) = ϕ(v2v3) = ϕ(v5v7) = ϕ(v6v
′
4) = 2, ϕ(v1v2) = ϕ(v3v7) = ϕ(v4v

′
4) = 3 and

ϕ(v5v6) = ϕ(v′4u) = 4 (see Fig. 9).
v

v2

v1v4

v5

v6

v7

v′7

u

v′7

v′4 = v′6

u

v3

Figure 9: Creating G′ from G in Case 3
 if there is a 4-
y
le D1 
ontaining v1v2 and a4-
y
le D2 
ontaining v2v3, D1 and D2 share exa
tly one edge, and v′4 = v′6 6= v′7If all three verti
es v′4, v′6, and v′7 
oin
ide, graph G is the 3-dimensional 
ube
Q3. An a
y
li
 4-edge-
olouring of Q3 is shown in Fig. 11(g).

v

v4

v5

v6

v′4

v′5 v′5v2

v1

v′4

v3

Figure 10: Creating G′ from G in Case 3
 if there is a 4-
y
le D1 
ontaining v1v2 and a4-
y
le D2 
ontaining v2v3, D1 and D2 share two edgesAssume �nally that D1 and D2 share two edges. Then, G has to 
ontain theedge v3v6. Let v′4 be the neighbour of v4 di�erent from v1 and v3 and let v′5 be theneighbour of v5 di�erent from v2 and v6. Sin
e G 6= K3,3, the verti
es v′4 and v510



are distin
t and sin
e G is bridgeless we have v′4 6= v′5. We 
onstru
t a 
onne
tedgraph G′ with fewer verti
es than G by removing the verti
es v1, v2, . . . , v6 togetherwith the in
ident edges from G and adding a new vertex v joined to v′4 and v′5. Thegraph G′ is di�erent from K4 and K3,3, sin
e it has a vertex of degree 2. We extendan a
y
li
 4-edge-
olouring ϕ′ of G′ to an a
y
li
 4-edge-
olouring ϕ of G a

ordingto Fig. 10.
(a) (b) (
)

(d) (e) (f) (g)Figure 11: A
y
li
 4-edge-
olourings of small graphs from Case 3
Case 3d: The girth of G is 3. First, suppose that G 
ontains a triangle with noedge in
luded in another triangle; denote one su
h triangle C3 and let C3 = v1v2v3.Let v′i be the neighbour of vi not 
ontained in C3. Create a new graph G′ by removingthe verti
es of C3 together with the in
ident edges and introdu
ing a new vertex u
onne
ted to v′1, v′2, and v′3. Sin
e no edge of C3 was in
luded in another triangle,
G′ is simple.

Figure 12: A
y
li
 4-edge-
olouring of K4 and K3,3 with a vertex expanded to a triangleIf G′ = K4 or G′ = K3,3 then G is isomorphi
 to one of the graphs in Fig. 12;an a
y
li
 4-edge-
olouring of G is given in the �gure. Otherwise, G′ is 
onne
tedand has fewer verti
es than G, thus by the indu
tion hypothesis, a′(G′) ≤ 4. Let ϕ′be an a
y
li
 4-edge-
olouring of G′. We extend ϕ′ to an a
y
li
 4-edge-
olouringof G: we set ϕ(e) = ϕ′(e) for every edge e not in
ident with a vertex of C3, set
ϕ(v′ivi) = ϕ′(v′iu), ϕ(v1v2) = ϕ′(v3v

′
3), ϕ(v1v3) = ϕ′(v2v

′
2), and ϕ(v2v3) = ϕ′(v1v

′
1).Now suppose that ea
h triangle in G has an edge in 
ommon with another tri-angle. Fix a triangle C3 = v1v2v3 in G. Sin
e G 6= K4, C3 has exa
tly one edge, say

v1v2, in
luded in a triangle di�erent from C3. Let v4 be the 
ommon neighbour of
v1 and v2 di�erent from v3. Let v′3 be the neighbour of v3 di�erent from v1 and v2and let v′4 be the neighbour of v4 di�erent from v1 and v2. Sin
e G does not 
ontaina bridge, we have v3 6= v4. Constru
t a new graph G′ by removing the verti
es v1,11



v2, v3, and v4 from G and introdu
ing a new vertex u of degree 2 adja
ent to v′3and v′4. Let ϕ′ be an a
y
li
 4-edge-
olouring of G′; G′ admits su
h a 
olouringby the indu
tion hypothesis. We 
onstru
t a 
olouring ϕ of G as follows: we set
ϕ(e) = ϕ′(e) for every edge e whi
h is not in
ident with either of vi for i = 1, 2, 3, 4and ϕ(v′3v3) = ϕ(v2v4) = ϕ′(v′3u), ϕ(v′4v4) = ϕ(v1v3) = ϕ′(v′4u). Further, let c1 and
c2 be the two 
olours di�erent from ϕ′(uv′3) and ϕ′(uv′4). To �nish the de�nition ofthe 
olouring set ϕ(v2v3) = ϕ(v1v4) = c1, and, �nally ϕ(v1v2) = c2 (see Fig. 13).Clearly ϕ is a
y
li
. This 
on
ludes the proof.

v3

v1

v4

v2

v′3 v′4 v′3

u

v′4

Figure 13: Creating G′ from G in Case 3a if every triangle shares an edge with anothertriangleA
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