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Abstract

An acyclic edge-colouring of a graph is a proper edge-colouring such that the
subgraph induced by the edges of any two colours is acyclic. The acyclic chromatic
index of a graph G is the smallest number of colours in an acyclic edge-colouring of
G. We prove that the acyclic chromatic index of a connected cubic graph G is 4,
unless G is K, or K3 3; the acyclic chromatic index of Ky and K33 is 5.

1 Introduction

Various types of edge-colourings of graphs have occurred in graph theory for more
than a century. Among these colourings the most important are proper colourings
— those that do not allow two adjacent edges to have the same colour. Considerable
effort has been devoted to proper edge-colourings where cycles that contain only two
colours are forbidden.

A proper k-edge-colouring of GG such that there are no two-coloured cycles in G
is called an acyclic k-edge-colouring of G. The concept of acyclic colourings was
introduced by Griinbaum in [§].

In this paper all the considered graphs are finite and simple, i.e. without multiple
edges and loops. Let A = A(G) denote the maximum degree of a vertex in a graph
G. Throughout the paper, any proper k-edge-colouring uses the colours denoted
by 1,2,...,k. The chromatic indezx of a graph G, denoted by \/(G), is the least
number of colours needed to colour the edges of G by a proper edge-colouring.
Similarly we define the acyclic chromatic index (also called acyclic edge chromatic



number) of a graph G, denoted by a’(G), to be the least k such that G has an acyclic
k-edge-colouring. Obviously, a/(G) > x/(G). An alternative definition of the acyclic
chromatic index gives a slightly different point of view: the acyclic chromatic index
of a graph G is the minimum number of matchings which suffice to cover all edges
of G in such a way that the union of any two matchings does not contain a cycle.

It is known that a simple graph G with maximal degree A has chromatic index
either A or A + 1. How many new colours do we have to use if we do not want
to allow two-coloured cycles? It is known that «’(G) < 16A (see [2] and [9]), but
recent results (e.g. [1], [3], and [10]) suggest that this bound is far from tight.
The conjecture of Fiaméik [7| and later by Alon, Sudakov, and Zaks [1] says that
ad'(G) < A+ 2 for every graph G. Burnstein’s result in [4] implies that for cubic
graphs a/(G) < 5, therefore the conjecture is true for A = 3. In 1980, Fiamcik [5]
published a paper claiming that K4 is the only cubic graph requiring five colours in
an acyclic edge-colouring, nevertheless both the result and the proof were incorrect.
Four years later, in [6], he corrected one of the errors of the previous paper, and
stated a correct result that there are two exceptional cubic graphs requiring five
colours in an acyclic edge-colouring. However, the proof still contains a big gap:
usage of Lemma 2 in [5] eliminates the cycle of colours 1 and 2, but it does not
ensure that no two-coloured cycles of other pairs of colours are created. This may
be the reason why the result of Fiamdcik has fallen into obscurity.

In this paper we focus on graphs with A = 3. In [3]|, Basavaraju and Chandran
proved that a/(G) < 4 for all subcubic graphs (graphs with maximal degree at most
3) containing a vertex of degree at most 2.

In every proper 3-edge-colouring of a cubic graph G the edges coloured by any
of the colours form a perfect matching. Hence the subgraph of G induced by the
edges of any two colours form a 2-factor, which is a nonempty set of two-coloured
cycles. Therefore to have an acyclic edge-colouring of a cubic graph we need at least
four colours. We prove that four colours are optimal for all connected cubic graphs
with the exception of K4 and K3 3, the two graphs mentioned by Fiaméik in [6], for
which 5 colours are optimal.

Our main result is captured in the following theorem. The proof in Section 2 is
algorithmic and does not rely on any probabilistic arguments. As a simple corollary
we are able to determine the acyclic chromatic index of all cubic graphs.

Theorem 1.1 Let G be a connected graph with A(G) < 3 different from K4 and
K373. Then a’(G) < 4.

Corollary 1.2 The acyclic chromatic index of a connected cubic graph G is 4 unless
G is Ky or K33, for which a/(K4) = d/(K33) = 5.

Proof. For a cubic graph G we have proved that o/(G) > 4. An acyclic 5-edge-
colouring of the graphs K4 and K33 is shown in Fig. 1.

It remains to prove that the acyclic chromatic index is at least 5 for both of these
two graphs. Suppose that we have an acyclic 4-edge-colouring of K4. The graph K4
has 6 edges, and the edges coloured by any of the colours form a matching, hence
no colour is used on more than two edges. Therefore there are two colours such that
both of them colour exactly two edges, and edges coloured by these colours form a
2-factor, which is a two-coloured cycle of length 4 in our case. We have derived a
contradiction.

Suppose that we have an acyclic 4-edge-colouring of K3 3. The graph K33 has 9
edges. If there are two colours such that both of them colour three edges, the edges
coloured by these colours form a 2-factor, which is a two-coloured cycle of length 6
in our case. Otherwise exactly one colour, say 1, colours three edges and any other
colour colours two edges. Choose a cycle C' of length 4 in K33 such that two of its



Figure 1: An acyclic 5-edge-colouring of K, and Kj 3

edges are coloured by the colour 1. The other edges in this cycle must be of different
colours, say 2 and 3. Look at one of the edges not belonging to C' and adjacent with
the edge of C' that is coloured by the colour 2. Its colour can be either 3 or 4. Since
our colouring is proper and each colour different from 1 is used twice, the colours of
all the other edges are determined. It is easy to check that in both cases there is a

two-coloured cycle, hence the graph K33 cannot have an acyclic 4-edge-colouring.
O

2 Acyclic edge-colouring of subcubic graphs

In this section we prove Theorem 1.1. For the sake of completeness we let the proof
cover the case where the minimum degree §(G) < 2, although this case was proved
in [3], as already noted.

We proceed by induction on the number of vertices of G. If GG is a 1-vertex graph,
then the assertion is trivial. We therefore assume that G is a connected graph on at
least two vertices with A(G) < 3, G # K4, G # K33, and for every connected graph
H of smaller order, with A(H) < 3 and different from K4 and K33, a/(H) < 4. The
proof splits into several cases depending on whether GG contains a bridge or not, and

on §(G).

Case 1: G contains a bridge. Let e be a bridge. Let V; and V5 be the vertex-
sets of the two components created by removing e and let G; be the graph induced
by V;, i = 1,2. Both G; and G5 have fewer vertices than G and each of them has at
least one vertex of degree at most 2, therefore both these graphs are different from
K4 and K33, and, in turn, have an acyclic 4-edge-colouring. For 7 = 1,2, let ¢; be
an acyclic 4-edge-colouring of G;. We can obtain an acyclic 4-edge-colouring ¢ of G
by letting ¢(e) be any colour and permuting the colours of ¢1 and g9 on G1 and Go
so that the edges of G adjacent to e have colours different from ¢(e).

Case 2: G is bridgeless and §(G) = 2. (When G is bridgeless §(G) is at least
2.) Let v be a vertex of degree 2 and let v; and vy be the two neighbours of v.

First suppose that v; and v9 are not adjacent. We construct a new graph G’
by removing the vertex v from G together with the incident edges viv and vov and
adding a new edge v1vg; clearly, G’ is simple and connected. If G’ = K4 or G’ = K3 3,
then G together with an acyclic 4-edge-colouring is depicted in Fig. 2. If G’ # K4
and G’ # K3 3, we have a/(G’) < 4 by the induction hypothesis. Let ¢ be an acyclic
4-edge-colouring of G'. We construct an acyclic 4-edge-colouring ¢ of G. We set
po(e) = ¢'(e) for every e # vv1 and e # vu,.

If the degree of one of the neighbours of v, say vs, is 2, denote by vg the neighbour
of vg such that v # vs. We choose p(vv1) to be ¢'(vivg). To finish the colouring
we chose ¢(vvg) to be any colour different from ¢(vvy) and p(vevs). The resulting
colouring is proper and clearly, from the induction hypothesis, if there is a 2-coloured
cycle in ¢, it has to contain the vertex v. But this is not possible because ¢(vvy) #

@(vav3).



Figure 2: Graphs K, and K33 with a subdivided edge and their acyclic 4-edge-colourings

If, on the other hand, deg(v;) = 3 and deg(vy) = 3, let e; and es be the edges
incident with vy but different from vvy and let e3 and e4 be the edges incident with
v9 but different from vwvy. Since ¢’ is a proper 4-edge-colouring of G’ which includes
the edge vivz, we have {p(e1), p(e2)} N {p(es), plea)} # 0. If {p(er), ple2)} =
{¢(e3), p(eq)}, we choose for each of p(vvy) and @(vvy) one of the two remaining
colours different from ¢(e;) and ¢(ez), different from each other. If [{p(e1), p(e2) }N
[ples), plen)}] = 1, and, say w(er) = ples), we set p(vor) = @les) and p(voz) =
¢ (v1v2). Tt can be easily seen that in both cases ¢ is an acyclic 4-edge-colouring of
G.

Now suppose that vy and ve are adjacent. Since G is bridgeless, either G is a
triangle, G is K4 minus an edge or the vertices v; and vy are of degree 3 and there is
no vertex different from v adjacent to both v; and vs. If G is a triangle or K4 minus
an edge, then a/(G) < 4; in the latter case let u; be the neighbour of vy different
from v and v9 and let ug be the neighbour of ve different from v and v1. As noted,
uy # us. We remove from G the vertices v, v1, and ve together with the incident
edges and add a new vertex w of degree 2, joined by an edge to u; and uy. We
denote the resulting graph G’. The graph G’ is simple and connected and has fewer
vertices than G, and it is not K4 or K33 as it has a vertex of degree 2, therefore
by the induction hypothesis a/(G’) < 4. Let ¢ be an acyclic 4-edge-colouring of
G’'. Define the colouring ¢ of G as follows: ¢(e) = ¢/(e) for every edge e that is
not incident with any of v, v1, and vy. Further set p(ujv1) = p(vvy) = ¢ (uw),
o(ugve) = @(vvy) = ¢’ (ugw) and colour the edge v1ve by any of the two remaining
colours different from ¢(vvy) and ¢(vv2) (see Fig. 3). Clearly, ¢ is an acyclic 4-edge-
colouring of G.

>

Figure 3: Creating G’ from G in Case 2, v; and vy adjacent

Case 3: ( is a bridgeless cubic graph. Here the proof splits into several subcases
depending on the girth of G (denoted by ¢(G) in what follows).
Case 3a: The girth of G is even and ¢(G) > 6.

Let C be any of the shortest cycles in G. Let the vertices of C be ug, vo, u1,v1, . - ., Uk_1, Vp_1
where k = ¢g(G)/2 > 3 (the indices will be taken mod k in what follows). Let w]
and v} be the neighbours of u; and v;, respectively, which do not belong to C' (the
vertices u), v, u}, v}, ... are distinct, because if a vertex outside C' had two edges to
C there would be a cycle of shorter length than C'). Let G’ be the graph constructed
in the following way: we remove from G the cycle C together with all the edges
adjacent to this cycle and join ] to v} for i = 0,1,2,...,k — 1 (see Fig. 4). The
resulting graph G’ is cubic and simple because g(G) > 4: a multiple edge in G’
yields a cycle of length 4 in G. Note that G’ might not be connected but it contains



no component isomorphic to K4 or K33. Indeed, such a component would yield a
cycle shorter than C' in G; we prove this assertion in the next paragraphs.

Assume that G’ contains a component K isomorphic to K4 or K3 3. Since G does
not contain cycles of length 4, any such cycle in K must contain at least one of the
edges added in the construction of G’ (we call such edges added in what follows).
If K = K4, one can easily check that K must contain two adjacent added edges,
contradicting that ug, vj, u}, v}, ... are distinct.

If K = K33, then since K does not contain two adjacent added edges, it must
contain three added edges forming a 1-factor (otherwise there is a 4-cycle in G).
Since no other edges in K are added, the remaining six edges of K forming a cycle
of length 6 belong to G. Thus the girth of G is 6, the same is the number of vertices
of C. Therefore any vertex of C is adjacent to a vertex of K. It is easy to check
that in any case G contains a cycle of length 4 or 5.

Now we return to the main argument of the Case 3a. The induction hypothesis
used on each component of G’ yields an acyclic 4-edge-colouring ¢’ of G’, we extend
this colouring to an acyclic 4-edge-colouring ¢ of G.

/
UO
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/
’Ul

Figure 4: Creating G’ from G in Case 3a

Let p(e) = ¢'(e) for all edges e common for G and G’ and ¢(uu}) = ¢(v;v)) =
¢’ (ufv]). It remains to define ¢ on the edges of C. We do this in several steps. The
direction wug, v, u1, ... along C will be referred to as clockwise. Let D be a cycle in
G other than C'. We say that D enters C at a vertex w and leaves C' at a vertex w’,
if the path w—w’ belongs to both C' and D, goes along C' in the clockwise direction
and cannot be extended in any direction. We say that D is of intersection £, if the
path w—w’ has length ¢£. The cycle D can have more than one common path with
C, in such a case we choose w and w’ so that their clockwise distance along C' is
maximal.

Now we define ¢ on the remaining edges of GG, after this step ¢ will be a proper
4-edge-colouring of G such that any cycle of intersection 1 will contain at least three
distinct colours. Consider the edge viu;y 1. If the colours p(viv;) and @(u;y1uj, ) are
different, we choose any of the two remaining colours for p(v;u;y1). Otherwise we
set o(viuiq1) to be the colour different from the colours of the three edges incident
with v]. We thus colour all k& edges v;u;41.

Consider the edge u;v;. It is adjacent to four edges, but two of them (u;u} and
v;v}) are coloured by the same colour, so there is at least one free colour to colour
the edge u;v;. We choose one such free colour. We do this for ¢ = 0,1,...,k — 1.
Now we have coloured all the edges of G.

All cycles disjoint with C' are not two-coloured by the induction hypothesis. It
is easy to verify that a cycle of intersection 1 entering C'in v; contains at least three



colours. Consider a cycle of intersection 1 entering C' in u;. This cycle contains at
least three colours by the induction hypothesis (even if it enters C' several times).

Now we modify ¢ to be a proper 4-edge-colouring of G such that any cycle other
than C' contains at least three colours. The only problematic cycles are those of
intersection at least 2. Such a cycle containing only two colours cannot enter C' in
u;: the colours of w;u} and v;v} are the same, hence the colours ¢(u;u), ¢(u;v;), and
©(vju;+1) are three different colours contained in this cycle.

Let D be a two-coloured cycle which enters C' in v;. Then D cannot leave C
in v;41, because the colours of v;u; 41 and leng cannot be the same. Hence the
colours of v;u; 11 and v;y1u;4o are the same. Now set ¢(u;+1v;41) to be the colour
different from o(v;v;), @(viuiy1) and @(uip1uj, ;). Any cycle of intersection 1 con-
taining the edge u;4+1v;41 contains at least three colours by the induction hypothesis,
thus we did not introduce a new two-coloured cycle.

After these modifications the only possibly two-coloured cycle is C. Assume that
it contains only two colours, say 1 and 2. The edges incident with vertices of C' but
not belonging to C' are coloured by colours 3 and 4. If p(uju)) = @(ugub) = 3, we
can set p(ugvy) = 4 to obtain an acyclic 4-edge-colouring of G. Otherwise we may
assume that the edges w;u} for i = 1,2... k are coloured alternately by colours 3
and 4 (this assumption allows us to replace colour 1 on the edges of C' by colour 2
and vice versa without introducing two-coloured cycles of intersection 1). Moreover
we may assume that o(uju)) = p(v1v]) = 3, p(uguh) = p(vavh) = 4, p(ugv1) = 2
and p(viug) = 1. There are three cases for the colours f; and fo of the two edges
incident with u}, and not incident with ws:

o if {f1, fa} = {2,3} we set p(viug) =4 and p(ugufy) =1,

o if {f1, fa} = {1,2} we set p(viug) = 4 and p(uguly) = 3,

o if {f1,f2} = {1,3} we set p(viuz) = 4 and p(ugub) = 2 and colour the edges of
C different from wvyug by colours 1 and 2 alternatively to obtain a proper 4-edge-
colouring.

The resulting colouring ¢ is an acyclic 4-edge-colouring of G.

Case 3b: The girth of G is at least 5 and is odd.

Let C' be one of the shortest cycles of G. Let ug, vg, u1,v1,...,Ut_1,Vp_1,w be
the vertices of this cycle in the order in which they lie on the cycle. Let u}, v}, and
w’ be the neighbours of u;, v;, and w, respectively, which do not lie on the cycle C.

From the graph G we construct a graph G’ by removing the cycle C' with all the
edges adjacent to this cycle and joining u} to v, for i = 0,1,2,...,k — 1. As the
girth of G is at least 5 and G is a shortest cycle, the resulting graph G’ contains no
loops and no multiple edges. Moreover G’ has § = 2, A = 3 and no component of
G is isomorphic to Ky or K33. The last assertion can be proved in almost the same
way as we have done it in the Case 3a, the difference occurs only for K = K33,
where we have three added edges forming a 1-factor: since the graph G in this case
(K33 without a 1-factor) has girth at most 6 and the girth is odd, it is equal to
5, hence C' has only 5 vertices. This is a contradiction to the fact that K has 6
distinct vertices that have 6 pairwise distinct neighbours lying on C. The induction
hypothesis applied to each component of G’ gives an acyclic 4-edge-colouring ¢’ of
G’. We extend this colouring to an acyclic 4-edge-colouring ¢ of G.

First, set ¢(e) = ¢'(e) for each edge e of G that have no vertex in common with
C and set p(uuz) = (vivy) = @' (uivy).

Next, we describe the colouring of the three edges adjacent with w. In what
follows we may assume that the colours used in ¢ are 1,2,3,4 and the colours of
the edges incident with w’ but not incident with w are 1 and 2 and p(vi_1v,_;) <
@(uguyp). There are several possibilities for the colours of ugu( and vy_1v)_4, all of
them with the desired colouring of the edges incident with w are in Fig. 5. Note that
in any possibility there is no two-coloured cycle passing through any two of the three



edges ww', upug and vg_qv},_,;. The direction ug, vo, u1, ... along C' is referred to as
clockwise. Recall the definitions of the terms enter, leave and to be of intersection
for a cycle that has an edge in common with C, they apply also in this case.

Figure 5: Colouring of the edges incident with w in Case 3b

As the next step we colour one edge of C so that there will be no two-coloured
cycle that enters C' at w. Any two-coloured cycle in a proper edge-colouring has its
edges coloured alternately by two colours. We utilize this fact and choose the colour
of one of the edges of C' so that this edge together with the already coloured edge
ww’ will exclude the possibility of a two-coloured cycle entering C' in w.

Consider one of the possibilities depicted in Fig. 5. Assume that there exists a
smallest integer j € {0,1,...,k — 1} such that v]-v; and Uj+1u;+l are not of the
same colour. Any two-coloured cycle entering C' at w would have to use the path
wugy - .. vjujy1. There are two possible colours for the edge v;ju; 11, we choose one
of them so that this edge will break the possibly two-coloured cycle entering C' in
w. If there is no integer j with the desired property, there is no problem with a
cycle entering C' in w: all the edges u;u, and v;v] are of the same colour that is not
contained in a two-coloured cycle entering C' in w, hence this cycle cannot leave C.

We continue by colouring the edges v;u; 41 which have not been coloured yet, we
do this in the same manner as we have done in the Case 3a. Then we colour the
edges u;v; to get a proper 4-edge-colouring ¢ of G. The induction hypothesis assures
that any two-coloured cycle in G has to contain at least one edge from C. The cycle
C itself has odd length, hence it cannot be two-coloured in a proper edge-colouring.
From the construction of ¢ we know that no cycle of intersection 1 is two-coloured.
We have dealt with cycles entering C' in w in the previous paragraph. Since ¢ is
proper, no two-coloured cycle can enter C' in u;. Put together this means that the
only possibly problematic cycles is of intersection at least 2 and enter C' in v; for
some . For i =0,1,2,...,k — 2 we successively apply the same recolouring as we
have done for graphs of even girth to change ¢ so that any such cycle will contain
at least three colours. Finally, almost the same recolouring applies also for a cycle
entering C in vp_; — which has to reach ug, the only difference is that the path
vk_1—ug has length 2 instead of 1 and we possibly change the colour of ugvg. After
this step ¢ is an acyclic 4-edge-colouring of G, hence o'(G) < 4.
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Case 3c: The girth of G is 4.

Let Cy = vivousvg be a 4-cycle in G. First assume that C; contains two non-
adjacent edges such that neither of them is contained in a 4-cycle different from CYy.
For i = 1,2,3,4, let v denote the neighbour of v; not belonging to Cy. There are
no triangles in G and thus no two vertices of v}, v}, v, and v} coincide. Moreover,
since G is bridgeless, the graph G — Cy has either one or two components.

If G — Cy is disconnected, there are two vertices in any of the two components
of G — Cy joined by an edge to Cy in G. Without loss of generality we can assume
that v] and v} are in different components of G — Cy. We create the graph G’
by removing the vertices of Cy together with the incident edges and adding edges
joining v] with v} and v§ with vj. The graph G’ is a cubic, connected and of smaller
order than G and it contains a 2-edge cut, therefore G’ # K, and G’ # K3 3. By the
induction hypothesis, G’ has an acyclic 4-edge-colouring ¢’. We define an acyclic
4-edge-colouring ¢ of G by setting p(e) = ¢(e) for every edge e not incident with
a vertex of Cy, p(u10}) = pluath) = ¢'(v]04), and @(ugvh) — @(vg)) = ¢ (Vo))
Further, if ¢/ (vjvh) = ¢'(v5v])), we set @(vav3) to be the colour not assigned to an
edge incident with v} in G, p(viv4) to be the colour not assigned to an edge incident
with v} in G and if (vev3) # w(vivs) We set p(viva) and p(vzvs) to be the colour
different from ¢(v1v]), @(vavs), and p(vivy); otherwise, if p(vaus) = p(viv4),we set
(v1v2) and p(vsvg) to be the two different colours, both different from ¢(viv]) and
@(vgus). If, on the other hand, the colours ¢'(vjv)) and ¢'(vhv)) are different, we
set p(viva) = p(uzvh), @(vsvs) = @(v1v]) and set p(vavs) and p(viv4) to be two
different colours, both different from ¢(v1v]) and p(vsvs). In both cases it can be
easily checked that the resulting colouring is acyclic.

Now suppose that G — Cy is connected and the edges vivy and vzvy are in no
other 4-cycle of G than C4y. We form the graph G’ in the same way as if G — Cy
was disconnected. If G’ # Ky and G’ # K33 we find an acyclic 4-edge-colouring
of G analogously. If G’ = K4 or G’ = K33 the graph G together with an acyclic
4-edge-colouring is depicted in Fig. 11(a), 11(b) and 11(c).

Now we proceed to the case that Cy does not contain a pair of non-adjacent
edges such that neither of them is contained in a 4-cycle different from Cy4. Then
C4 has to contain two adjacent edges, each of them contained in a 4-cycle different
from Cjy. Let vivy and vovs be two such edges.

We first deal with the case that G contains a 4-cycle D different from C which
contains both vyve and vov3. Since G is simple, neither vgvs nor vqvq is contained in
D. Therefore, there is a vertex vs different from v9 and v4, adjacent to both vy and
vs. Let vh, v}, and v} be the neighbour of vy, vg, and vs, respectively, that is not
contained in {vi,v2,...,vs}. Since G is bridgeless, the vertices v}, v/, and v} exist
but they need not be pairwise distinct. Moreover, it could not happen v} = vj = vf,
for otherwise G' = K3 3.

Assume that the vertices vj, v}, and v} are pairwise distinct. We form a new
graph G’ from G in the following way. We remove from G the vertices vy, vo, ..., vs5
and add a new vertex u linked by an edge with the vertices v}, v/}, and v} (see Fig. 6).
Clearly, G’ is simple, cubic and connected and is distinct from Ky since G does not
contain triangles. If G’ is distinct from Ks3, then o/(G’) < 4 by the induction
hypothesis. Let ¢’ be an acyclic 4-edge-colouring of G'. An acyclic 4-edge-colouring
¢ of G can be constructed by setting p(e) = ¢/(e) for every edge e in G which is
not incident with any of vq,ve,...,vs and p(v1v2) = @(v3vs) = P(V4v)) = ¢’ (uv}),
p(vivs) = @(vovy) = p(vzva) = ¢'(uvy), and p(vivs) = @(vavs) = P(vsvs) =
¢ (wf). If G' = K33, an acyclic 4-edge-colouring of G is depicted in Fig. 11(d).

Assume that v} # v} = v. Let vg be the neighbour of v} distinct from vy and
vs; as G is bridgeless, vg # v),. We create a new graph G’ by deleting the vertices
V1,02, ..., 05,vy and adding a new vertex v joined to v} and vg. Then G’ has fewer



Figure 6: Creating G’ from G in Case 3c if there is a 4-cycle D containing both v;vy and
vouz and v}, v, and vl are pairwise distinct

vertices than G, it is connected, contains a vertex of degree 2 and has maximum
degree 3. Hence a/(G’) < 4 by the induction hypothesis. Let ¢’ be an acyclic 4-edge-
colouring of G'. We extend ¢’ to an acyclic 4-edge-colouring of G in the following
way. Without loss of generality we can assume that ¢'(vvf) = 1 and ¢'(vvg) = 4.
We set p(e) = ¢(e) for every edge e that is not incident with any of vy, v, ..., vs, v}

and let @(vivs) = @(vsva) = @(vavy) = 1, p(vgvs) = p(vav)) = 2, (vivs) =
o(vau3) = p(vsvy) = 3, and p(viv2) = @(vjve) = 4, see Fig. 7. If v} # v = v or
v # vl = v} the proof can be done in a similar way.

!
Vs

U6

Figure 7: Creating G’ from G in Case 3c if there is a 4-cycle D containing both v;vy and
vouz and vh # v = vl

Now assume that there is no 4-cycle different from C4 containing two adjacent
edges of Cy4, and Cy contains two adjacent edges, say vive and vovs, each contained
in a 4-cycle different from Cy. Let D; = vivavsvg be a 4-cycle such that {vs,v4} N
{vs,v6} = 0 and let D be a 4-cycle different from Cy containing vovs. Since G is
cubic and simple, D1 and D5 share either one or two edges.

LN /
P o U7
s
. -7 u
); ' ‘\o /
vy

vy 3

Figure 8: Creating G’ from G in Case 3c if there is a 4-cycle D; containing vivy and a
4-cycle Dy containing vevs, Dy and D, share exactly one edge, and v}, vg, and v} are
pairwise distinct

If D; and Ds share exactly one edge then there exists a vertex vy different
from vy, v, ...,vg and adjacent to both vs and vs. Note that no two vertices of
{v4,v6,v7} are joined by an edge, for otherwise G would contain a triangle. Let
vy, v, and v} be the neighbour of vy, vg, and vz, respectively, different from all
the vertices vy, ve,. .., v7; the vertices v}, vf, and v, are not necessarily distinct. If
v}, vg, and v} are pairwise distinct, we obtain G’ from G by removing the vertices
V1, V2, ..., V7 together with the incident edges and adding a new vertex u joined by



an edge to vy, vg, and v7. Since G is triangle-free, G’ is different from K. If G’ is
also different from K33, then since it is connected and cubic and has fewer vertives
than G, G’ has an acyclic 4-edge-colouring ¢’ by the induction hypothesis. We
construct an acyclic 4-edge-colouring ¢ of G by setting p(e) = ¢/(e) for every edge
e which is incident with no vertex from {vq,ve,...,v7} and further set p(vive) =
p(vevg) = @(vsvr) = ¢@'(uvg), p(vive) = @(vavs) = @(vsve) = P(v7vy) = @' (uvy),
w(vivg) = p(vavs) = (vsvr) = @(vavy) = @' (wv)), and p(vzvs) be the colour
different from the colours of edges incident with u in G’ (see Fig. 8). If G’ is K33,
an acyclic 4-edge-colouring of G can be found in Fig. 11(f).

Now we deal with the case that two of the vertices v}y, v, and v/, are equal and
different from the third. Assume that vj = v # o7, the proof for other pairs can
be done analogously (in fact the situations are completely symmetric). Let u be the
neighbour of v} different from vy and vg. Since G is bridgeless, u is different from
vh. We form the graph G’ by removing the vertices vy, v, ..., v7 and v} from G and
adding a new vertex v joined to each of v and u by an edge. The graph G’ is different
from K4 and K33 as it has a vertex of degree 2, and it is connected, has maximum
degree 3 and has fewer vertices than G. We take an acyclic 4-edge-colouring ¢’ of
G’ and extend it to an acyclic colouring ¢ of G. Without loss of generality we may
assume that ¢'(vv}) = 1 and ¢'(vu) =4 . We set ¢(e) = ¢/(e) for every edge not
incident with any of vy, ve,...,v7 and p(v1v) = p(vavs) = p(vzvs) = P(V7Vh) = 1,
p(v1vg) = @(vav3) = P(vsv7r) = P(vev)) = 2, P(v1v2) = P(v3v7) = P(v4v}) = 3 and
w(vsv6) = p(vju) =4 (see Fig. 9).
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Figure 9: Creating G’ from G in Case 3¢ if there is a 4-cycle D; containing v;vy and a
4-cycle Dy containing vevs, Dy and Dy share exactly one edge, and v = vf # v/

If all three vertices vjj, vf, and v} coincide, graph G is the 3-dimensional cube
@3. An acyclic 4-edge-colouring of Q)3 is shown in Fig. 11(g).
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Figure 10: Creating G’ from G in Case 3c if there is a 4-cycle D; containing v,v9 and a
4-cycle D, containing vevs, Dy and Dy share two edges

Assume finally that Dy and Ds share two edges. Then, G has to contain the

edge vzvg. Let v) be the neighbour of vy different from v; and vz and let v} be the
neighbour of vs different from ve and vg. Since G # K3, the vertices v} and vs
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are distinct and since G is bridgeless we have v) # vi. We construct a connected
graph G’ with fewer vertices than G by removing the vertices vy, vg, ..., vg together
with the incident edges from G and adding a new vertex v joined to vj and vj. The
graph G’ is different from K, and K3 3, since it has a vertex of degree 2. We extend
an acyclic 4-edge-colouring ¢’ of G’ to an acyclic 4-edge-colouring ¢ of G according
to Fig. 10.

Figure 11: Acyclic 4-edge-colourings of small graphs from Case 3¢

Case 3d: The girth of G is 3. First, suppose that G contains a triangle with no
edge included in another triangle; denote one such triangle C3 and let C3 = vivovs.
Let v be the neighbour of v; not contained in C3. Create a new graph G’ by removing
the vertices of C3 together with the incident edges and introducing a new vertex u
connected to v}, vh, and v5. Since no edge of C3 was included in another triangle,

G’ is simple.

Figure 12: Acyclic 4-edge-colouring of K4 and K33 with a vertex expanded to a triangle

If ' = K4 or G’ = K33 then G is isomorphic to one of the graphs in Fig. 12;
an acyclic 4-edge-colouring of G is given in the figure. Otherwise, G’ is connected
and has fewer vertices than G, thus by the induction hypothesis, a/(G") < 4. Let ¢’
be an acyclic 4-edge-colouring of G'. We extend ¢’ to an acyclic 4-edge-colouring
of G: we set p(e) = ¢/(e) for every edge e not incident with a vertex of Cj, set
P (ulvs) = ¢ (V1) (vrvs) = ¢ (v30}), p(v1v) = @' (21, and @ (vav3) = (010},

Now suppose that each triangle in G has an edge in common with another tri-
angle. Fix a triangle C'5 = vjvovus in G. Since G # Ky, C3 has exactly one edge, say
v1ve, included in a triangle different from C5. Let v4 be the common neighbour of
v1 and vy different from wvs. Let vé be the neighbour of v3 different from v; and vs
and let v, be the neighbour of vy different from v; and ve. Since G does not contain
a bridge, we have vz # vy. Construct a new graph G’ by removing the vertices vy,

11



v, v3, and vy from G and introducing a new vertex u of degree 2 adjacent to v}
and vj. Let ¢’ be an acyclic 4-edge-colouring of G’; G’ admits such a colouring
by the induction hypothesis. We construct a colouring ¢ of G as follows: we set
p(e) = ¢'(e) for every edge e which is not incident with either of v; for i = 1,2,3,4
and ¢(vhvs) = @(vavs) = ¢ (vhu), (vjvs) = p(vivs) = ¢’ (vju). Further, let ¢; and
¢2 be the two colours different from ¢'(uvf) and ¢'(uv}). To finish the definition of
the colouring set ¢(vau3) = p(viv4) = c1, and, finally @(viv2) = c2 (see Fig. 13).
Clearly ¢ is acyclic. This concludes the proof.

Figure 13: Creating G’ from G in Case 3a if every triangle shares an edge with another

triangle

U1
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