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Abstract.Wedevelop new tools for formal inference and informal model
validation in the analysis of spatial point pattern data. The score test
is generalised to a ‘pseudo-score’ test derived from Besag’s pseudo-
likelihood, and to a class of diagnostics based on point process resid-
uals. The results lend theoretical support to the established practice
of using functional summary statistics such as Ripley’s K-function,
when testing for complete spatial randomness; and they provide new
tools such as the compensator of the K-function for testing other fit-
ted models. The results also support localisation methods such as the
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2 A. BADDELEY ET AL.

1. INTRODUCTION

This paper develops new tools for formal inference and informal model valid-
ation in the analysis of spatial point pattern data. The score test statistic, based
on the point process likelihood, is generalised to a ‘pseudo-score’ test statis-
tic derived from Besag’s pseudo-likelihood. The score and pseudo-score can be
viewed as residuals, and further generalised to a class of residual diagnostics.

The likelihood score and the score test [73, 60], [21, pp 315 and 324] are used
frequently in applied statistics to provide diagnostics for model selection and
model validation [2, 18, 59, 15, 75]. In spatial statistics, the score test is used
mainly to support formal inference about covariate effects [13, 46, 74] assuming
the underlying point process is Poisson under both the null and alternative hy-
potheses. Our approach extends this to a much wider class of point processes,
making it possible (for example) to check for covariate effects or localised hot-
spots in a clustered point pattern.

Figure 1 shows three example datasets studied in the paper. Our techniques
make it possible to check separately for ‘inhomogeneity’ (spatial variation in
abundance of points) and ‘interaction’ (localised dependence between points)
in these data.

(a) (b) (c)

Fig 1: Point pattern datasets. (a) Japanese black pine seedlings and saplings in a
10 × 10 metre quadrat [52, 53]. Reprinted by kind permission of Professors M.
Numata and Y. Ogata. (b) Simulated realisation of inhomogeneous Strauss pro-
cess showing strong inhibition and spatial trend [6, Fig. 4b]. (c) Simulated re-
alisation of homogeneous Geyer saturation process showing moderately strong
clustering without spatial trend [6, Fig. 4c].

Our approach also provides theoretical support for the established practice of
using functional summary statistics such as Ripley’sK-function [62, 63] to study
clustering and inhibition between points. In one class of models, the score test
statistic is equivalent to the empirical K-function, and the score test procedure is
closely related to the customary goodness-of-fit procedure based on comparing
the empirical K-function with its null expected value. Similar statements apply
to the nearest neighbour distance distribution function G and the empty space
function F .

For computational efficiency, especially in large datasets, the point process
likelihood is often replaced by Besag’s [14] pseudo-likelihood. The resulting
‘pseudo-score’ is a possible surrogate for the likelihood score. In one model,
the pseudo-score test statistic is equivalent to a residual version of the empirical
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K-function, yielding a new, efficient diagnostic for goodness-of-fit. However, in
general, the interpretation of the pseudo-score test statistic is conceptually more
complicated than that of the likelihood score test statistic, and hence difficult to
employ as a diagnostic.

In classical settings the score test statistic is a weighted sum of residuals. Here
the pseudo-score test statistic is a weighted point process residual in the sense
of [6, 3]. This suggests a simplification, in which the pseudo-score test statistic
is replaced by another residual diagnostic that is easier to interpret and to com-
pute.
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Fig 2: Empirical K-function (thick grey line) for the point pattern data in Fig-
ure 1b, compensator of the K-function (solid black line) for a model of the cor-
rect form, and expectedK-function for a homogeneous Poisson process (dashed
line).

In special cases this diagnostic is a residual version of one of the classical func-
tional summary statistics K ,G or F obtained by subtracting a ‘compensator’ from
the functional summary statistic. The compensator depends on the observed
data and on the fitted model. For example, if the fitted model is the homoge-
neous Poisson process, then the compensator of G(r) is F (r), and the compen-
sator of K(r) is πr2. This approach provides a new class of residual summary
statistics that can be used as informal diagnostics for goodness-of-fit, for a wide
range of point process models, in close analogy with current practice. The di-
agnostics apply under very general conditions, including the case of inhomo-
geneous point process models, where exploratory methods are underdeveloped
or inapplicable. For instance, the compensator of K(r) for an inhomogeneous
non-Poisson model is illustrated in Figure 2.

Section 2 introduces basic definitions and assumptions. Section 3 describes
the score test for a general point process model, and Section 4 develops the im-
portant case of Poisson point process models. Section 5 gives examples and tech-
nical tools for non-Poisson point process models. Section 6 develops the general
theory for our diagnostic tools. Section 7 applies these tools to tests for first order
trend and hotspots. Sections 8–11 develop diagnostics for interaction between
points, based on pairwise distances, nearest neighbour distances and empty
space distances respectively. The tools are demonstrated on data in Sections 12–
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15. Further examples of diagnostics are given in Appendix A. Appendices B–E
provide technical details.

2. ASSUMPTIONS

2.1 Fundamentals

A spatial point pattern dataset is a finite setx = {x1, . . . , xn} of points xi ∈ W ,
where the number of points n(x) = n ≥ 0 is not fixed in advance, and the
domain of observation W ⊂ Rd is a fixed, known region of d-dimensional space
with finite positive volume |W |. We take d = 2 but the results generalise easily
to all dimensions.

A point process model assumes that x is a realisation of a finite point process
X in W without multiple points. We can equivalently view X as a random fi-
nite subset of W . Much of the literature on spatial statistics assumes that X is
the restriction X = Y ∩ W of a stationary point process Y on the entire space
R2. We do not assume this; there is no assumption of stationarity, and some
of the models considered here are intrinsically confined to the domain W . For
further background material including measure theoretical details, see e.g. [50,
Appendix B].

WriteX ∼ Poisson(W,ρ) ifX follows the Poisson process onW with intensity
function ρ, where we assume ν =

∫
W ρ(u) du is finite. Then n(X) is Poisson

distributed with mean ν, and conditional on n(X), the points in X are i.i.d.
with density ρ(u)/ν.

Every point process model considered here is assumed to have a probability
density with respect to Poisson(W, 1), the unit rate Poisson process, under one
of the following scenarios.

2.2 Unconditional case

In the unconditional case we assume X has a density f with respect to
Poisson(W, 1). Then the density is characterised by the property

(1) E[h(X)] = E[h(Y )f(Y )]

for all non-negative measurable functionals h, where Y ∼ Poisson(W, 1). In par-
ticular the density of Poisson(W,ρ) is

(2) f(x) = exp
(∫

W
(1− ρ(u)) du

) ∏
i

ρ(xi).

We assume that f is hereditary, i.e. f(x) > 0 implies f(y) > 0 for all finite
y ⊂ x ⊂ W .

2.3 Conditional case

In the conditional case, we assume X = Y ∩ W where Y is a point process.
Thus X may depend on unobserved points of Y lying outside W . The density
of X may be unknown or intractable. Under suitable conditions (explained in
Section 5.4) modelling and inference can be based on the conditional distribu-
tion of X◦ = X ∩ W ◦ given X+ = X ∩ W+ = x+, where W+ ⊂ W is a
subregion, typically a region near the boundary of W , and only the points in
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W ◦ = W \ W+ are treated as random. We assume that the conditional distri-
bution of X◦ = X ∩W ◦ given X+ = X ∩W+ = x+ has an hereditary density
f(x◦ | x+) with respect to Poisson(W ◦, 1).

For ease of exposition, we focus mainly on the unconditional case, with occa-
sional comments on the conditional case. For Poisson point process models, we
always take W = W ◦ so that the two cases agree.

3. SCORE TEST FOR POINT PROCESSES

In principle, any technique for likelihood-based inference is applicable to point
process likelihoods. In practice, many likelihood-based computations require
extensive Monte Carlo simulation [30, 50, 49]. To minimise such difficulties,
when assessing the goodness-of-fit of a fitted point processmodel, it is natural to
choose the score test which only requires computations for the null hypothesis
[73, 60].

Consider any parametric family of point process models for X with density
fθ indexed by a k-dimensional vector parameter θ ∈ Θ ⊆ Rk. For a simple null
hypothesis H0 : θ = θ0 where θ0 ∈ Θ is fixed, the score test against any alterna-
tive H1 : θ ∈ Θ1, where Θ1 ⊆ Θ \ {θ0}, is based on the score test statistic [21, p.
315]

(3) T 2 = U(θ0)
TI(θ0)−1U(θ0).

Here U(θ) = ∂
∂θ log fθ(x) and I(θ) = Eθ

[
U(θ)U(θ)T

]
are the score function and

Fisher information respectively, and the expectation is with respect to fθ. Here
and throughout, we assume that the order of integration and differentation with
respect to θ can be interchanged. Under suitable conditions, the null distribution
of T 2 is χ2 with k degrees of freedom. In the case k = 1 it may be informative to
evaluate the signed square root

(4) T = U(θ0)/
√

I(θ0)

which is asymptotically standard normally distributed under the same condi-
tions.

For a composite null hypothesisH0 : θ ∈ Θ0 whereΘ0 ⊂ Θ is anm-dimensional
submanifold with 0 < m < k, the score test statistic is defined in [21, p. 324].
However, we shall not use this version of the score test, as it assumes differ-
entiability of the likelihood with respect to nuisance parameters, which is not
necessarily applicable here (as exemplified in Section 4.2).

In the sequel we often consider models of the form

(5) f(α,β)(x) = c(α, β)hα(x) exp(βS(x))

where the parameter β and the statistic S(x) are one dimensional, and the null
hypothesis is H0 : β = 0. For fixed α, this is a linear exponential family and (4)
becomes

T (α) =
(
S(x)− E(α,0)[S(x)]

)
/
√

Var(α,0)[S(x)].

In practice, when α is unknown, we replace α by its MLE under H0 so that,
with a slight abuse of notation, the signed square root of the score test statistic
is approximated by

(6) T = T (α̂) =
(
S(x)− E(α̂,0)[S(x)]

)
/
√

Var(α̂,0)[S(x)].
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Under suitable conditions, T in (6) is asymptotically equivalent to T in (4), and
so a standard Normal approximation may still apply.

4. SCORE TEST FOR POISSON PROCESSES

Application of the score test to Poisson point process models appears to origi-
nate with Cox [20]. Consider a parametric family of Poisson processes,
Poisson(W,ρθ), where the intensity function is indexed by θ ∈ Θ. The score test
statistic is (3) where

U(θ) =
∑

i

κθ(xi)−
∫

W
κθ(u)ρθ(u) du

I(θ) =
∫

W
κθ(u) κθ(u)Tρθ(u) du

with κθ(u) = ∂
∂θ log ρθ(u). Asymptotic results are given in [44, 61].

4.1 Log-linear alternative

The score test is commonly used in spatial epidemiology to assess whether
disease incidence depends on environmental exposure. As a particular case of
(5), suppose the Poisson model has a log-linear intensity function

(7) ρ(α,β)(u) = exp(α + βZ(u))

whereZ(u), u ∈ W is a known, real-valued and non-constant covariate function,
and α and β are real parameters. Cox [20] noted that the uniformly most pow-
erful test of H0 : β = 0 (the homogeneous Poisson process) against H1 : β > 0 is
based on the statistic

(8) S(x) =
∑

i

Z(xi).

Recall that, for a point process X on W with intensity function ρ,

(9) E

 ∑
xi∈X

h(xi)

 =
∫

W
h(u)ρ(u) du

for any Borel function h such that the integral on the right hand side exists, and
for Poisson(W,ρ),

(10) Var

 ∑
xi∈X

h(xi)

 =
∫

W
h(u)2ρ(u) du

for any Borel function h such that the integral on the right hand side exists
[23, p. 188]. Hence the standardised version of (8) is

(11) T =
(

S(x)− κ̂

∫
W

Z(u) du

)/√
κ̂

∫
W

Z(u)2 du

where κ̂ = n/|W | is the MLE of the intensity κ = exp(α) under the null hypoth-
esis. This is a direct application of the approximation (6) of the signed square
root of the score test statistic.
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Berman [13] proposed several tests and diagnostics for spatial association
between a point process X and a covariate function Z(u). Berman’s Z1 test is
equivalent to the Cox score test described above. Waller et al. [74] and Lawson
[46] proposed tests for the dependence of disease incidence on environmental
exposure, based on data giving point locations of disease cases. These are also
applications of the score test. Berman conditioned on the number of points when
making inference. This is in accordance with the observation that the statistic
n(x) is S-ancillary for β, while S(x) is S-sufficient for β.

4.2 Threshold alternative and nuisance parameters

Consider the Poisson process with an intensity function of ‘threshold’ form,

ρz,κ,φ(u) =
{

κ exp(φ) if Z(u) ≤ z
κ if Z(u) > z

where z is the threshold level. If z is fixed, this model is a special case of (7) with
Z(u) replaced by I{Z(u) ≤ z}, and so (8) is replaced by

S(x) = S(x, z) =
∑

i

I{Z(xi) ≤ z}

where I{·} denotes the indicator function. By (11) the (approximate) score test of
H0 : φ = 0 against H1 : φ 6= 0 is based on

T = T (z) = (S(x, z) − κ̂A(z)) /
√

κ̂A(z)

where A(z) = |{u ∈ W : Z(u) ≤ z}| is the area of the corresponding level set of
Z .

If z is not fixed, then it plays the role of a nuisance parameter in the score test:
the value of z affects inference about the canonical parameter φ, which is the
parameter of primary interest in the score test. Note that the likelihood is not
differentiable with respect to z.

In most applications of the score test, a nuisance parameter would be replaced
by its MLE under the null hypothesis. However in this context, z is not identi-
fiable under the null hypothesis. Several approaches to this problem have been
proposed [17, 24, 25, 32, 67]. They include replacing z by its MLE under the alter-
native [17], maximising T (z) or |T (z)| over z [24, 25], and finding the maximum
p-value of T (z) or |T (z)| over a confidence region for z under the alternative
[67].

These approaches appear to be inapplicable to the current context. While the
null distribution of T (z) is asymptotically N(0, 1) for each fixed z as κ →∞, this
convergence is not uniform in z. The null distribution of S(x, z) is Poisson with
parameter κA(z); sample paths of T (z) will be governed by Poisson behaviour
where A(z) is small.

In this paper, our approach is simply to plot the score test statistic as a function
of the nuisance parameter. This turns the score test into a graphical exploratory
tool, following the approach adopted in many other areas [2, 18, 59, 15, 75]. A
second style of plot based on S(x, z) − κ̂A(z) against z may be more appro-
priate visually. Such a plot is the lurking variable plot of [6]. Berman [13] also
proposed a plot of S(x, z) against z, together with a plot of κ̂A(z) against z, as
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a diagnostic for dependence on Z . This is related to the Kolmogorov-Smirnov
test since, under H0, the values Yi = Z(xi) are i.i.d. with distribution function
P(Y ≤ y) = A(z)/|W |.
4.3 Hot spot alternative

Consider the Poisson process with intensity

(12) ρκ,φ,v(u) = κ exp(φk(u− v))

where k is a kernel (a probability density onR2), κ > 0 and φ are real parameters,
and v ∈ R2 is a nuisance parameter. This process has a ‘hot spot’ of elevated
intensity in the vicinity of the location v. By (11) and (9)–(10) the score test of
H0 : φ = 0 against H1 : φ 6= 0 is based on

T = T (v) = (S(x, v) − κ̂M1(v))/
√

κ̂M2(v)

where
S(x, v) =

∑
i

k(xi − v)

is the usual nonparametric kernel estimate of point process intensity [27] evalu-
ated at v without edge correction, and

Mi(v) =
∫

W
k(u− v)i du, i = 1, 2.

The numerator S(x, v)−κ̂M1(v) is the smoothed residual field [6] of the null model.
In the special case where k(u) ∝ I{‖u‖ ≤ h} is the uniform density on a disc of
radius h, the maximum maxv T (v) is closely related to the scan statistic [1, 43].

5. NON-POISSON MODELS

The remainder of the paper deals with the case where the alternative (and
perhaps also the null) is not a Poisson process. Key examples are stated in Sec-
tion 5.1. Non-Poisson models require additional tools including the conditional
intensity (Section 5.2) and pseudo-likelihood (Section 5.3).

5.1 Point process models with interaction

We shall frequently consider densities of the form

(13) f(x) = c

[∏
i

λ(xi)

]
exp (φV (x))

where c is a normalising constant, the first order term λ is a non-negative func-
tion, φ is a real interaction parameter, and V (x) is a real non-additive function
which specifies the interaction between the points. We refer to V as the interac-
tion potential. In general, apart from the Poisson density (2) corresponding to
the case φ = 0, the normalising constant is not expressible in closed form.

Often the definition of V can be extended to all finite point patterns in R2 so as
to be invariant under rigid motions (translations and rotations). Then the model
for X is said to be homogeneous if λ is constant on W , and inhomogeneous
otherwise.
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Let
d(u,x) = min

j
‖u− xj‖

denote the distance from a location u to its nearest neighbour in the point con-
figuration x. For n(x) = n ≥ 1 and i = 1, . . . , n, define

x−i = x \ {xi}.

In many places in this paper we consider the following three motion-invariant
interaction potentials V (x) = V (x, r) depending on a parameter r > 0 which
specifies the range of interaction. The Strauss process [71] has interaction poten-
tial

(14) VS(x, r) =
∑
i<j

I{‖xi − xj‖ ≤ r}

the number of r-close pairs of points in x; the Geyer saturation model [30] with
saturation threshold 1 has interaction potential

(15) VG(x, r) =
∑

i

I{d(xi,x−i) ≤ r}

the number of points in x whose nearest neighbour is closer than r units; and
the Widom-Rowlinson penetrable sphere model [76] or area-interaction process
[11] has interaction potential

(16) VA(x, r) = −|W ∩
⋃
i

B(xi, r)|

the negative area of W intersected with the union of balls B(xi, r) of radius r
centred at the points of x. Each of these densities favours spatial clustering (pos-
itive association) when φ > 0 and spatial inhibition (negative association) when
φ < 0. The Geyer and area-interaction models are well-defined point processes
for any value of φ [11, 30], but the Strauss density is integrable only when φ ≤ 0
[42].

5.2 Conditional intensity

Consider a parametric model for a point process X in R2, with parameter
θ ∈ Θ. Papangelou [58] defined the conditional intensity of X as a non-negative
stochastic process λθ(u,X) indexed by locations u ∈ R2 and characterised by
the property that

(17) Eθ

 ∑
xi∈X

h(xi,X \ {xi})
 = Eθ

[∫
R2

h(u,X)λθ(u,X) du

]

for all measurable functions h such that the left or right hand side exists. Equa-
tion (17) is known as theGeorgii-Nguyen-Zessin (GNZ) formula [29, 40, 41, 51]; see
also Section 6.4.1 in [50]. Adapting a term from stochastic process theory, we will
call the random integral on the right side of (17) the (Papangelou) compensator of
the random sum on the left side.
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Consider a finite point processX in W . In the unconditional case (Section 2.2)
we assumeX has density fθ(x)which is hereditary for all θ ∈ Θ. Wemay simply
define

(18) λθ(u,x) = fθ(x ∪ {u})/fθ(x)

for all locations u ∈ W and point configurations x ⊂ W such that u 6∈ x. Here
we take 0/0 = 0. For xi ∈ x we set λθ(xi,x) = λθ(xi,x−i), and for u 6∈ W we set
λθ(u,x) = 0. Then it may be verified directly from (1) that (17) holds, so that (18)
is the Papangelou conditional intensity ofX . Note that the normalising constant
of fθ cancels in (18). For a Poisson process, it follows from (2) and (18) that the
conditional intensity is equivalent to the intensity function of the process.

In the conditional case (Section 2.3) we assume that the conditional distribu-
tion of X◦ = X ∩ W ◦ given X+ = X ∩ W+ = x+ has an hereditary density
fθ(x◦ | x+) with respect to Poisson(W ◦, 1), for all θ ∈ Θ. Then define

(19) λθ(u,x◦ | x+) = fθ(x◦ ∪ {u} | x+)/fθ(x◦ \ {u} | x+)

if u ∈ W ◦, and zero otherwise. It can similarly be verified that this is the Papan-
gelou conditional intensity of the conditional distribution of X◦ given X+ =
x+.

It is convenient to rewrite (18) in the form

λθ(u,x) = exp(∆u log f(x))

where ∆ is the one-point difference operator

(20) ∆uh(x) = h(x ∪ {u}) − h(x \ {u}).
Note the Poincaré inequality for the Poisson process X

(21) Var[h(X)] ≤ E
∫

W
[∆u h(X)]2 ρ(u) du

holding for all measurable functionals h such that the right hand side is finite;
see [45, 77].

5.3 Pseudo-likelihood and pseudo-score

To avoid computational problems with point process likelihoods, Besag [14]
introduced the pseudo-likelihood function

(22) PL(θ) =

[∏
i

λθ(xi,x)

]
exp

(
−

∫
W

λθ(u,x) du

)
.

This is of the same functional form as the likelihood function of a Poisson pro-
cess (2), but has the conditional intensity in place of the Poisson intensity. The
corresponding pseudo-score

(23) PU(θ) =
∂

∂θ
log PL(θ) =

∑
i

∂

∂θ
log λθ(xi,x)−

∫
W

∂

∂θ
λθ(u,x) du

is an unbiased estimating function (i.e. PU(θ) has zero-mean) by virtue of (17).
The pseudo-likelihood function can also be defined in the conditional case

[38]. In (22) the product is instead over points xi ∈ x◦ and the integral is instead
overW ◦; in (23) the sum is instead over points xi ∈ x◦ and the integral is instead
overW ◦; and in both places x = x◦∪x+. The conditional intensity λθ(u,x)must
also be replaced by λθ(u,x◦ | x+).
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5.4 Markov point processes

For a point process X constructed as X = Y ∩W where Y is a point process
in R2, the density and conditional intensity of X may not be available in simple
form. Progress can bemade if Y is aMarkov point process of interaction rangeR <
∞, see [29, 51, 65, 72] and [50, Sect. 6.4.1]. Briefly, this means that the conditional
intensity λθ(u,Y ) of Y satisfies λθ(u,Y ) = λθ(u,Y ∩B(u,R)) where B(u,R) is
the ball of radius R centred at u. Define the erosion of W by distance R

W⊖R = {u ∈ W : B(u,R) ⊂ W}
and assume this has non-zero area. Let B = W \W⊖R be the border region. The
process satisfies a spatial Markov property: the processes Y ∩W⊖R and Y ∩W c

are conditionally independent given Y ∩B.
In this situation we shall invoke the conditional case with W ◦ = W⊖R and

W+ = W \ W ◦. The conditional distribution of X ∩ W ◦ given X ∩ W+ = x+

has Papangelou conditional intensity

(24) λθ(u,x◦ | x+) =
{

λθ(u,x◦ ∪ x+) if u ∈ W ◦

0 otherwise.

Thus the unconditional and conditional versions of a Markov point process have the
same Papangelou conditional intensity at locations in W ◦.

For x◦ = {x1, . . . , xn◦}, the conditional probability density becomes

fθ(x◦ | x+) = cθ(x+)λθ(x1,x
◦)

n◦∏
i=2

λθ(xi, {x1, . . . , xi−1} ∪ x+)

if n◦ > 0, and fθ(∅ | x+) = cθ(x+), where ∅ denotes the empty configuration,
and the inverse normalising constant cθ(x+) depends only on x+.

For example, instead of (13) we now consider

f(x◦ | x+) = c(x+)

[
n◦∏
i=1

λ(xi)

]
exp

(
φV (x◦ ∪ x+)

)
assuming V (y) is defined for all finite y ⊂ R2 such that for any u ∈ R2 \ y,
∆uV (y) depends only on u and y ∩ B(u,R). This condition is satisfied by the
interaction potentials (14)-(16); note that the range of interaction is R = r for the
Strauss process, and R = 2r for both the Geyer and the area-interaction models.

6. SCORE, PSEUDOSCORE AND RESIDUAL DIAGNOSTICS

This section develops the general theory for our diagnostic tools.
By (6) in Section 3 it is clear that comparison of a summary statistic S(x) to its

predicted value ES(X) under a null model, is effectively equivalent to the score
test under an exponential family model where S(x) is the canonical sufficient
statistic. Similarly, the use of a functional summary statistic S(x, z), depending
on a function argument z, is related to the score test under an exponential family
modelwhere z is a nuisance parameter and S(x, z) is the canonical sufficient statis-
tic for fixed z. In this section we construct the corresponding exponential family
models, apply the score test, and propose surrogates for the score test statistic.
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6.1 Models

Let fθ(x) be the density of any point process X on W governed by a param-
eter θ. Let S(x, z) be a functional summary statistic of the point pattern dataset
x, with function argument z belonging to any space.

Consider the extended model with density

(25) fθ,φ,z(x) = cθ,φ,zfθ(x) exp(φS(x, z))

where φ is a real parameter, and cθ,φ,z is the normalising constant. The density is
well-defined provided

M(θ, φ, z) = E [fθ(Y ) exp(φS(Y , z))] < ∞
where Y ∼ Poisson(W, 1). The extended model is constructed by ‘exponential
tilting’ of the original model by the statistic S. By (6), for fixed θ and z, assuming
differentiability of M with respect to φ in a neighbourhood of φ = 0, the signed
root of the score test statistic is approximated by

(26) T =
(
S(x, z)− Eθ̂[S(X , z)]

)
/
√

Varθ̂[S(X , z)]

where θ̂ is the MLE under the null model, and the expectation and variance are
with respect to the null model with density fθ̂.

Insight into the qualitative behaviour of the extended model (25) can be ob-
tained by studying the perturbing model

(27) gφ,z(x) = kφ,z exp(φS(x, z)),

provided this is a well-defined density with respect to Poisson(W, 1), where kφ,z

is the normalising constant.When the null hypothesis is a homogeneous Poisson
process, the extendedmodel is identical to the perturbing model, up to a change
in the first order term. In general, the extended model is a qualitative hybrid
between the null and perturbing models.

In this context the score test is equivalent to naive comparison of the observed
and null-expected values of the functional summary statistic S. The test statis-
tic T in (26) may be difficult to evaluate; typically, apart from Poisson models,
the moments (particularly the variance) of S would not be available in closed
form. The null distribution of T would also typically be unknown. Hence, im-
plementation of the score test would typically require moment approximation
and simulation from the null model, which in both cases may be computation-
ally expensive. Various approximations for the score or the score test statistic
can be constructed, as discussed in the sequel.

6.2 Pseudo-score of extended model

The extended model (25) is an exponential family with respect to φ, having
conditional intensity

κθ,φ,z(u,x) = λθ(u,x) exp (φ∆uS(x, z))

where λθ(u,x) is the conditional intensity of the null model. The pseudo-score
function with respect to φ, evaluated at φ = 0, is

PU(θ, z) =
∑

i

∆xiS(x, z) −
∫

W
∆uS(x, z)λθ(u,x) du
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where the first term

(28) Σ∆ S(x, z) =
∑

i

∆xiS(x, z)

will be called the pseudo-sum of S. If θ̂ is the maximum pseudo-likelihood esti-
mate (MPLE) under H0, the second term with θ replaced by θ̂ becomes

(29) C∆ S(x, z) =
∫

W
∆uS(x, z)λθ̂(u,x) du

and will be called the (estimated) pseudo-compensator of S. We call

(30) R∆ S(x, z) = PU(θ̂, z) = Σ∆S(x, z) − C∆ S(x, z)

the pseudo-residual since it is a weighted residual in the sense of [6].
The pseudo-residual serves as a surrogate for the numerator in the score test

statistic (26). For the denominator, we need the variance of the pseudo-residual.
Appendix B gives an exact formula (65) for the variance of the pseudo-score
PU(θ, z), which can serve as an approximation to the variance of the pseudo-
residual R∆ S(x, z). The leading term in this approximation is

(31) C2∆ S(x, z) =
∫

W
[∆uS(x, z)]2λθ̂(u,x) du

which we shall call the Poincaré pseudo-variance because of its similarity to the
Poincaré upper bound in (21). We propose to use the square root of (31) as a
surrogate for the denominator in (26). This yields a ‘standardised’ pseudo-residual

(32) T∆ S(x, z) = R∆ S(x, z)/
√

C2∆ S(x, z).

We emphasise that this quantity is not guaranteed to have zero mean and unit
variance (even approximately) under the null hypothesis. It is a computation-
ally efficient surrogate for the score test statistic; its null distribution must be
investigated by other means.

The pseudo-sum (28) can be regarded as a functional summary statistic for
the data in its own right. Its definition depends only on the choice of the statistic
S, and it may have a meaningful interpretation as a non-parametric estimator
of a property of the point process. The pseudo-compensator (29) might also be
regarded as a functional summary statistic, but its definition involves the null
model. If the null model is true we may expect the pseudo-residual to be ap-
proximately zero. Sections 9-11 and Appendix A study particular instances of
pseudo-residual diagnostics based on (28)-(30).

In the conditional case, the Papangelou conditional intensity λθ̂(u,x) must be
replaced by λθ̂(u,x◦ | x+) given in (19) or (24). The integral in the definition
of the pseudo-compensator (29) must be restricted to the domain W ◦, and the
summation over data points in (28) must be restricted to points xi ∈ W ◦, i.e. to
summation over points of x◦.
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6.3 Residuals

A simpler surrogate for the score test is available when the canonical suffi-
cient statistic S of the perturbing model is naturally expressible as a sum of local
contributions

(33) S(x, z) =
∑

i

s(xi,x−i, z).

Note that any statistic can be decomposed in this way unless some restriction
is imposed on s; such a decomposition is not necessarily unique. We call the
decomposition ‘natural’ if s(u,x, z) only depends on points of x that are close to
u, as demonstrated in the examples in Sections 9, 10 and 11 and in Appendix A.

Consider a null model with conditional intensity λθ(u,x). Following [6] de-
fine the (s-weighted) innovation by

(34) IS(x, r) = S(x, z)−
∫

W
s(u,x, z)λθ(u,x) du

which by the GNZ formula (17) has mean zero under the null model. In prac-
tice we replace θ by an estimate θ̂ (e.g. the MPLE) and consider the (s-weighted)
residual

(35) RS(x, z) = S(x, z)−
∫

W
s(u,x, z)λθ̂(u,x) du.

The residual shares many properties of the score function and can serve as a
computationally efficient surrogate for the score. The data-dependent integral

(36) CS(x, z) =
∫

W
s(u,x, z)λθ̂(u,x) du

is the (estimated) Papangelou compensator of S. By the general variance formula
(64) and by analogy with (31) we propose to use the Poincaré variance

(37) C2 S(x, z) =
∫

W
s(u,x, z)2λθ̂(u,x) du

as a surrogate for the variance of RS(x, z), and thereby obtain a ‘standardised’
residual

TS(x, z) = RS(x, z)/
√

C2 S(x, z).

Once again TS(x, z) is not exactly standardised, and its null distribution must
be investigated by other means.

In the conditional case, the integral in the definition of the compensator (36)
must be restricted to the domain W ◦, and the summation over data points in
(33) must be restricted to points xi ∈ W ◦, i.e. to summation over points of x◦.

7. DIAGNOSTICS FOR FIRST ORDER TREND

Consider any null modelwith density fθ(x) and conditional intensity λθ(u,x).
By analogy with Section 4 we consider alternatives of the form (25) where

S(x, z) =
∑

i

s(xi, z)
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for some function s. The perturbing model (27) is a Poisson process with inten-
sity exp(φs(·, z)) where z is a nuisance parameter. The score test is a test for the
presence of an (extra) first order trend. The pseudo-score and residual diagnos-
tics are both equal to

(38) RS(x, z) =
∑

i

s(xi, z)−
∫

W
s(u, z)λθ̂(u,x) du.

This is the s-weighted residual described in [6]. The variance of (38) can be esti-
mated by simulation, or approximated by the Poincaré variance (37).

If Z is a real-valued covariate function on W then we may take s(u, z) =
I{Z(u) ≤ z} for z ∈ R, corresponding to a threshold effect (cf. Section 4.2). A
plot of (38) against z was called a lurking variable plot in [6].

If s(u, z) = k(u− z) for z ∈ R2, where k is a density function on R2, then

RS(x, z) =
∑

i

k(xi − z)−
∫

W
k(u− z)λθ̂(u,x) du

which was dubbed the smoothed residual field in [6]. Examples of application of
these techniques have been discussed extensively in [6].

8. INTERPOINT INTERACTION

In the remainder of the paper we concentrate on diagnostics for interpoint
interaction.

8.1 Classical summary statistics

Following Ripley’s influential paper [63] it is standard practice, when inves-
tigating association or dependence between points in a spatial point pattern, to
evaluate functional summary statistics such as the K-function, and to compare
graphically the empirical summaries and theoretical predicted values under a
suitable model, often a stationary Poisson process (‘Complete Spatial Random-
ness’, CSR) [63, 22, 28].

The three most popular functional summary statistics for spatial point pro-
cesses are Ripley’sK-function, the nearest neighbour distance distribution func-
tion G, and the empty space function (spherical contact distance distribution
function) F . Definitions of K , G and F and their estimators can be seen in
[9, 22, 28, 50]. Simple empirical estimators of these functions are of the form

K̂(r) = K̂x(r) =
1

ρ̂2(x)|W |
∑
i 6=j

eK(xi, xj)I{‖xi − xj‖ ≤ r}(39)

Ĝ(r) = Ĝx(r) =
1

n(x)

∑
i

eG(xi,x−i, r)I{d(xi,x−i) ≤ r}(40)

F̂ (r) = F̂x(r) =
1
|W |

∫
W

eF (u, r)I{d(u,x) ≤ r}du(41)

where eK(u, v), eG(u,x, r) and eF (u, r) are edge correction weights, and typi-

cally ρ̂2(x) = n(x)(n(x)− 1)/|W |2.
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8.2 Score test approach

The classical approach fits naturally into the scheme of Section 6. In order to
test for dependence between points, we choose a perturbing model that exhibits
dependence. Three interesting examples of perturbing models are the Strauss
process, the Geyer saturation model with saturation threshold 1 and the area-
interaction process, with interaction potentials VS(x, r), VG(x, r) and VA(x, r)
given in (14)-(16). The nuisance parameter r ≥ 0 determines the range of in-
teraction. Although the Strauss density is integrable only when φ ≤ 0, a Strauss
hybrid (between fθ and the Strauss density) may be well-defined for some φ > 0
so that the extended model may support alternatives that are clustered relative
to the null, as originally intended by Strauss [71].

The potentials of these three models are closely related to the summary statis-
tics K̂, Ĝ and F̂ in (39)–(41). Ignoring the edge correction weights e(·) we have

K̂x(r) ≈ 2|W |
n(x) (n(x)− 1)

VS(x, r)(42)

Ĝx(r) ≈ 1
n(x)

VG(x, r)(43)

F̂x(r) ≈ − 1
|W |VA(x, r).(44)

To draw the closest possible connection with the score test, instead of choos-
ing the Strauss, Geyer or area-interaction process as the perturbing model, we
shall take the perturbing model to be defined through (27) where S is one of the
statistics K̂ , Ĝ or F̂ . We call these the (perturbing) K̂-model, Ĝ-model and F̂ -model
respectively. The score test is then precisely equivalent to comparing K̂ , Ĝ or F̂
with its predicted expectation using (6).

Essentially K̂, Ĝ, F̂ are re-normalised versions of VS , VG, VA as shown in (42)–
(44). In the case of F̂ the renormalisation is not data-dependent, so the F̂ -model
is virtually an area-interactionmodel, ignoring edge correction. For K̂, the renor-
malisation depends only on n(x), and so conditionally on n(x) = n, the K̂-
model and the Strauss process are approximately equivalent. Similarly for Ĝ, the
normalisation also depends only on n(x), so conditionally on n(x) = n, the Ĝ-
model and Geyer saturation process are approximately equivalent. If we follow
Ripley’s [63] recommendation to condition on n when testing for interaction,
this implies that the use of the K , G or F -function is approximately equivalent
to the score test of CSR against a Strauss, Geyer or area-interaction alternative,
respectively.

When the null hypothesis is CSR, we saw that the extended model (25) is
identical to the perturbing model, up to a change in intensity, so that the use
of the K̂-function is equivalent to testing the null hypothesis of CSR against
the alternative of a K̂-model. Similarly for Ĝ and F̂ . For a more general null
hypothesis, the use of the K̂-function, for example, corresponds to adopting an
alternative hypothesis that is a hybrid between the fitted model and a K̂-model.

Note that if the edge correction weight eK(u, v) is uniformly bounded, the
K̂-model is integrable for all values of φ, avoiding a difficulty with the Strauss
process [42].

Computation of the score test statistic (26) requires estimation or approxima-
tion of the null variance of K̂(r), Ĝ(r) or F̂ (r). A wide variety of approximations



GOODNESS-OF-FIT FOR SPATIAL POINT PROCESSES 17

is available when the null hypothesis is CSR [64, 28]. For other null hypotheses,
simulation estimates would typically be used. A central limit theorem is avail-
able for K̂(r), Ĝ(r) and F̂ (r), e.g. [7, 34, 33, 39, 64]. However, convergence is
not uniform in r, and the normal approximation will be poor for small values
of r. Instead Ripley [62] developed an exact Monte Carlo test [12, 35] based on
simulation envelopes of the summary statistic under the null hypothesis.

In the following sections we develop the residual and pseudo-residual diag-
nostics corresponding to this approach.

9. RESIDUAL DIAGNOSTICS FOR INTERACTION USING PAIRWISE
DISTANCES

This section develops residual (35) and pseudo-residual (30) diagnostics de-
rived from a summary statistic S which is a sum of contributions depending on
pairwise distances.

9.1 Residual based on perturbing Strauss model

9.1.1 General derivation Consider any statistic of the general ‘pairwise inter-
action’ form

(45) S(x, r) =
∑
i<j

q({xi, xj}, r).

This can be decomposed in the local form (33) with

s(u,x, r) =
1
2

∑
i

q({xi, u}, r), u 6∈ x.

Hence

∆xiS(x, r) = 2s(xi,x−i, r) and ∆uS(x, r) = 2s(u,x, r), u 6∈ x.

Consequently the pseudo-residual and the pseudo-compensator are just twice
the residual and the Papangelou compensator:

Σ∆ S(x, r) = 2S(x, r) =
∑
i 6=j

q({xi, xj}, r)(46)

C∆ S(x, r) = 2CS(x, r) =
∫

W

∑
i

q({xi, u}, r)λθ̂(u,x) du(47)

R∆ S(x, z) = 2RS(x, r) = 2S(x, r)− 2CS(x, r).(48)

9.1.2 Residual of Strauss potential The Strauss interaction potential VS of (14)
is of the general form (45) with q({xi, xj}, r) = I{‖xi − xj‖ ≤ r}. Hence VS can
be decomposed in the form (33) with s(u,x, r) = 1

2 t(u,x, r) where

t(u,x, r) =
∑

i

I{‖u − xi‖ ≤ r}, u 6∈ x.

Hence the Papangelou compensator of VS is

(49) CVS(x, r) =
1
2

∫
W

t(u,x, r)λθ̂(u,x) du.
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9.1.3 Case of CSR If the null model is CSR with intensity ρ estimated by
ρ̂ = n(x)/|W | (the MLE, which agrees with the MPLE in this case), the Papan-
gelou compensator (49) becomes

CVS(x, r) =
ρ̂

2

∫
W

∑
i

I{‖u− xi‖ ≤ r}du =
ρ̂

2

∑
i

|W ∩B(xi, r)|.

Ignoring edge effects we have |W ∩B(xi, r)| ≈ πr2 and, applying (42), the resid-
ual is approximately

(50) RVS(x, r) ≈ n(x)2

2|W |
[
K̂x(r)− πr2

]
.

The term in brackets is a commonly-used measure of departure from CSR, and
is a sensible diagnostic because K(r) = πr2 under CSR. The Poincaré variance
(37) is

C2 VS(x, r) =
n(x)
4|W |

∫
W

t(u,x, r)2 du

while the exact variance formula (64) yields

Var [RVS(X, r)] ≈ Var [IVS(X , r)]

=
ρ

4

∫
W

E
[
t(u,X , r)2

]
du +

ρ2

4

∫
W 2

I{‖u − v‖ ≤ r}dudv.

Now Y = t(u,X , r) is Poisson distributed with mean µ = ρ|B(u, r)∩W | so that
E(Y 2) = µ + µ2. For u ∈ W⊖r we have µ = ρπr2, so ignoring edge effects

Var [RVS(X, r)] ≈ ρ2

2
|W |πr2 +

ρ3

4
|W |π2r4.

This has similar functional form to expressions for the variance of K̂ under CSR
obtained using the methods of U -statistics [47, 16, 64], summarised in
[28, p. 51 ff.]. For small r, we have t(u,x, r) ∈ {0, 1} so that

C2 VS(x, r) ≈ n(x)2

4|W | πr2

Var [RVS(X , r)] ≈ ρ2

2
|W |πr2

so that C2 VS(x, r) is a substantial underestimate (by a factor of approximately
2) of the true variance. Thus a test based on referring TVS(x, r) to a standard
normal distribution may be expected to be conservative for small r.

9.2 Residual based on perturbing K̂-model

Assuming ρ̂2(x) = ρ̂2(n(x)) depends only on n(x), the empirical K-function
(39) can also be expressed as a sumof local contributions K̂x(r) =

∑
i k(xi,x−i, r)

with

k(u,x, r) =
tw(u,x, r)

ρ̂2(n(x) + 1)|W |
, u 6∈ x



GOODNESS-OF-FIT FOR SPATIAL POINT PROCESSES 19

where
tw(u,x, r) =

∑
j

eK(u, xj)I{‖u − xj‖ ≤ r}

is a weighted count of the points of x that are r-close to the location u. Hence
the compensator of the K̂-function is

(51) C K̂x(r) =
1

ρ̂2(n(x) + 1)|W |

∫
W

tw(u,x, r)λθ̂(u,x) du.

Assume the edge correction weight eK(u, v) = eK(v, u) is symmetric; e.g.
this is satisfied by the Ohser-Stoyan edge correction weight [57, 56] given by
eK(u, v) = 1/|Wu ∩Wv| where Wu = {u + v : v ∈ W}, but not by Ripley’s [62]
isotropic correction weight. Then the increment is, for u 6∈ x,

∆uK̂x(r) =
ρ̂2(x)− ρ̂2(x ∪ {u})

ρ̂2(x ∪ {u})
K̂x(r) +

2tw(u,x, r)

ρ̂2(x ∪ {u})|W |
and when xi ∈ x

∆xiK̂x(r) =
ρ̂2(x−i)− ρ̂2(x)

ρ̂2(x−i)
K̂x(r) +

2tw(xi,x−i, r)

ρ̂2(x−i)|W |
.

Assuming the standard estimator ρ̂2(x) = n(n − 1)/|W |2 with n = n(x), the
pseudo-sum is seen to be zero, so the pseudo-residual is apart from the sign
equal to the pseudo-compensator, which becomes

C∆ K̂x(r) = 2C K̂x(r)−
[

2
n− 2

∫
W

λθ̂(u,x) du

]
K̂x(r)

where C K̂x(r) is given by (51). So if the null model is CSR and the intensity is
estimated by n/|W |, the pseudo-residual is approximately 2[K̂x(r) − C K̂x(r)],
and hence it is equivalent to the residual approximated by (50). This is also the
conclusion in the more general case of a null model with an activity parameter
κ, i.e. where the conditional intensity factorises as

λθ(u,x) = κξβ(u,x)

where θ = (κ, β) and ξβ(·) is a conditional intensity, since the pseudo-likelihood
equations then imply that n =

∫
W λθ̂(u,x) du.

In conclusion, the residual diagnostics obtained from the perturbing Strauss
and K̂-models are very similar, the major difference being the data-dependent
normalisation of the K̂-function; similarly for pseudo-residual diagnostics which
may be effectively equivalent to the residual diagnostics. In practice, the popu-
larity of the K-function seems to justify using the residual diagnostics based on
the perturbing K̂-model. Furthermore, due to the familarity of the K-function
we often choose to plot the compensator(s) of the fitted model(s) in a plot with
the empirical K-function rather than the residual(s) for the fitted model.

9.3 Edge correction in conditional case

In the conditional case, the conditional intensity λθ̂(u,x) is known only at
locations u ∈ W ◦. The diagnostics must be modified accordingly, by restricting
the domain of summation and integration to W ◦. Appropriate modifications are
discussed in Appendices C–E.
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10. RESIDUAL DIAGNOSTICS FOR INTERACTION USING NEAREST
NEIGHBOUR DISTANCES

This section develops residual and pseudo-residual diagnostics derived from
summary statistics based on nearest neighbour distances.

10.1 Residual based on perturbing Geyer model

The Geyer interaction potential VG(x, r) given by (15) is clearly a sum of local
statistics (33), and its compensator is

CVG(x, r) =
∫

W
I{d(u,x) ≤ r}λθ̂(u,x) du.

The Poincaré variance is equal to the compensator in this case. Ignoring edge
effects, VG(x, r) is approximately n(x)Ĝx(r), cf. (40).

If the null model is CSR with estimated intensity κ̂ = n(x)/|W |, then

CVG(x, r) = κ̂|W ∩
⋃
i

B(xi, r)|;

ignoring edge effects, this is approximately κ̂|W |F̂ (r), cf. (41). Thus the residual
diagnostic is approximately n(x)(Ĝ(r) − F̂ (r)). This is a reasonable diagnostic
for departure from CSR, since F ≡ G under CSR. This argument lends support
to Diggle’s [26, eq. (5.7)] proposal to judge departure from CSR using the quan-
tity sup |Ĝ− F̂ |.

This example illustrates the important point that the compensator of a func-
tional summary statistic S should not be regarded as an alternative parametric
estimator of the same quantity that S is intended to estimate. In the example
just given, under CSR the compensator of Ĝ is approximately F̂ , a qualitatively
different and in some sense ‘opposite’ summary of the point pattern.

We have observed that the interaction potential VG of the Geyer saturation
model is closely related to Ĝ. However, the pseudo-residual associated to VG is
a more complicated statistic, since a straightforward calculation shows that the
pseudo-sum is

Σ∆VG(x, r) = VG(x, r) +
∑

i

∑
j: j 6=i

I{‖xi − xj‖ ≤ r and d(xj ,x−i) > r},

and the pseudo-compensator is

C∆ VG(x, r) =
∫

W
I{d(u,x) ≤ r}λθ̂(u,x) du

+
∑

i

I{d(xi,x−i) > r}
∫

W
I{‖u− xi‖ ≤ r}λθ̂(u,x) du.

10.2 Residual based on perturbing Ĝ-model

The empirical G-function (40) can be written

(52) Ĝx(r) =
∑

i

g(xi,x−i, r)
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where

(53) g(u,x, r) =
1

n(x) + 1
eG(u,x, r)I{d(u,x) ≤ r}, u 6∈ x

so that the Papangelou compensator of the empirical G-function is

C Ĝx(r) =
∫

W
g(u,x, r)λθ̂(u,x) du =

1
n(x) + 1

∫
W∩⋃i B(xi,r)

eG(u,x, r)λθ̂(u,x) du.

The residual diagnostics obtained from the Geyer and Ĝ-models are very sim-
ilar, and we choose to use the diagnostic based on the popular Ĝ-function. As
with the K-function we typically use the compensator(s) of the fitted model(s)
rather than the residual(s), to visually maintain the close connection to the em-
pirical G-function.

The expressions for the pseudo-sum and pseudo-compensator of Ĝ are not of
simple form, and we refrain from explicitly writing out these expressions. For
both the Ĝ- and Geyer models, the pseudo-sum and pseudo-compensator are
not directly related to a well-known summary statistic. We prefer to plot the
pseudo-residual rather than the pseudo-sum and pseudo-compensator(s).

11. DIAGNOSTICS FOR INTERACTION BASED ON EMPTY SPACE
DISTANCES

11.1 Pseudo-residual based on perturbing area-interactio n model

When the perturbing model is the area-interaction process, it is convenient to
re-parametrise the density, such that the canonical sufficient statistic VA given in
(16) is re-defined as

VA(x, r) =
1
|W | |W ∩

⋃
i

B(xi, r)|.

This summary statistic is not naturally expressed as a sum of contributions from
each point as in (33), so we shall only construct the pseudo-residual. Let

U(x, r) = W ∩
⋃
i

B(xi, r).

The increment

∆uVA(x, r) =
1
|W | (|U(x ∪ {u}, r)| − |U(x, r)|) , u 6∈ x

can be thought of as ‘unclaimed space’ — the proportion of space around the
location u that is not “claimed” by the points of x. The pseudo-sum

Σ∆ VA(x, r) =
∑

i

∆xiVA(x, r)

is the proportion of the window that has ‘single coverage’ — the proportion of
locations in W that are covered by exactly one of the balls B(xi, r). This can be
used in its own right as a functional summary statistic, and it corresponds to
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a raw (i.e. not edge corrected) empirical estimate of a summary function F1(r)
defined by

F1(r) = P (#{x ∈ X|d(u, x) ≤ r} = 1) ,

for any stationary point process X , where u ∈ R2 is arbitrary. Under CSR with
intensity ρ we have

EF1(r) = ρπr2 exp(−ρπr2).

This summary statistic does not appear to be treated in the literature, and it may
be of interest to study it separately, but we refrain from a more detailed study
here.

The pseudo-compensator corresponding to this pseudo-sum is

C∆ VA(x, r) =
∫

W
∆uVA(x, r)λθ̂(u,x) du.

This integral does not have a particularly simple interpretation even when the
null model is CSR.

11.2 Pseudo-residual based on perturbing F̂ -model

Alternatively one could use a standard empirical estimator F̂ of the empty
space function F as the summary statistic in the pseudo-residual. The pseudo-
sum associated with the perturbing F̂ -model is

Σ∆ F̂x(r) = n(x)F̂x(r)−
∑

i

F̂x−i(r),

with pseudo-compensator

C∆ F̂x(r) =
∫

W
(F̂x∪{u}(r)− F̂x(r))λθ̂(u,x) du.

Ignoring edge correction weights, F̂x∪{u}(r) − F̂x(r) is approximately equal to
∆uVA(x, r), so the pseudo-sum and pseudo-compensator associated with the
perturbing F̂ -model are approximately equal to the pseudo-sum and pseudo-
compensator associated with the perturbing area-interaction model. Here, we
usually prefer graphics using the pseudo-compensator(s) and the pseudo-sum
since this has an intuitive interpretation as explained above.

12. TEST CASE: TREND WITH INHIBITION

In Sections 12–14 we demonstrate the diagnostics on the point pattern datasets
shown in Figure 1. This section concerns the synthetic point pattern in Figure 1b.

12.1 Data and models

Figure 1b shows a simulated realisation of the inhomogeneous Strauss pro-
cess with first order term λ(x, y) = 200 exp(2x + 2y + 3x2), interaction range
R = 0.05, interaction parameter γ = exp(φ) = 0.1 and W equal to the unit
square, see (13) and (14). This is an example of extremely strong inhibition (neg-
ative association) between neighbouring points, combined with a spatial trend.
Since it is easy to recognise spatial trend in the data, (either visually or using
existing tools such as kernel smoothing [27]) the main challenge here is to detect
the inhibition after accounting for the trend.
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We fitted four point process models to the data in Figure 1b. They were (A)
a homogeneous Poisson process (CSR); (B) an inhomogeneous Poisson process
with the correct form of the first order term, i.e. with intensity

(54) ρ(x, y) = exp(β0 + β1x + β2y + β3x
2)

where β0, . . . , β3 are real parameters; (C) a homogeneous Strauss process with
the correct interaction range R = 0.05; and (D) a process of the correct form,
i.e. inhomogeneous Strauss with the correct interaction range R = 0.05 and the
correct form of the first order potential (54).

12.2 Software implementation

The diagnostics defined in Sections 9–11 were implemented in the R lan-
guage, and will be publicly available in the spatstat library [5]. Unless oth-
erwise stated, models were fitted by approximate maximum pseudo-likelihood
using the algorithm of [4] with the default quadrature scheme in spatstat,
having an m×m grid of dummy points where m = max(25, 10[1+2

√
n(x)/10])

was equal to 40 for most of our examples. Integrals over the domain W were
approximated by finite sums over the quadrature points.

Somemodels were refitted using a finer grid of dummypoints, usually 80×80.
The software also supports Huang-Ogata [36] one-step approximate maximum
likelihood.

12.3 Application of K̂ diagnostics

12.3.1 Diagnostics for correct model First we fitted a point process model of the
correct form (D). The fitted parameter values were γ̂ = 0.217 and
β̂ = (5.6,−0.46, 3.35, 2.05) using the coarse grid of dummy points, and γ̂ = 0.170
and β̂ = (5.6,−0.64, 4.06, 2.44) using the finer grid of dummy points, as against
the true values γ = 0.1 and β = (5.29, 2, 2, 3).
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Fig 3: Residual diagnostics based on pairwise distances, for a model of the
correct form fitted to the data in Figure 1b. (a) residual K̂-function and two-
standard-deviation limits under the fitted model of the correct form. (b) stan-
dardised residual K̂-function under the fitted model of the correct form.
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Figure 2 in Section 1 shows K̂ along with its compensator for the fittedmodel,
together with the theoretical K-function under CSR. The empirical K-function
and its compensator coincide very closely, suggesting correctly that the model
is a good fit. Figure 3a shows the residual K̂-function and the two-standard-
deviation limits, where the surrogate standard deviation is the square root of
(37). Figure 3b shows the corresponding standardised residual K̂-function ob-
tained by dividing by the surrogate standard deviation.

Although this model is of the correct form, the standardised residual exceeds
2 for small values of r. This is consistent with the prediction in Section 9.1.3
that the test would be conservative for small r. For very small r there are small-
sample effects so that a normal approximation to the null distribution of the
standardised residual is inappropriate.

Formal significance interpretation of the critical bands is limited, because the
null distribution of the standardised residual is not known exactly, and the val-
ues ±2 are approximate pointwise critical values, i.e. critical values for the score
test based on fixed r. The usual problems of multiple testing arise when the test
statistic is considered as a function of r: see [28, p. 14].

12.3.2 Comparison of competing models Figure 4a shows the empirical K-func-
tion and its compensator for each of themodels (A)–(D) in Section 12.1. Figure 4b
shows the corresponding residual plots, and Figure 4c the standardised residu-
als. A positive or negative value of the residual suggests that the data are more
clustered or more inhibited, respectively, than the model. The clear inference is
that the Poisson models (A) and (B) fail to capture interpoint inhibition at range
r ≈ 0.05, while the homogeneous Strauss model (C) is less clustered than the
data at very large scales, suggesting that it fails to capture spatial trend. The
correct model (D) is judged to be a good fit.

The interpretation of this example requires some caution, because the residual
K̂-function of the fitted Strauss models (C) and (D) is constrained to be approxi-
mately zero at r = R = 0.05. The maximum pseudo-likelihood fitting algorithm
solves an estimating equation that is approximately equivalent to this constraint,
because of (42).

It is debatable which of the presentations in Figure 4 is more effective at re-
vealing lack-of-fit. A compensator plot such as Figure 4a seems best at captur-
ing the main differences between competing models. It is particularly useful for
recognising a gross lack-of-fit. A residual plot such as Figure 4b seems better
for making finer comparisons of goodness-of-fit, for example, assessing models
with slightly different ranges of interaction. A standardised residual plot such as
Figure 4c tends to be highly irregular for small values of r, due to discretisation
effects in the computation and the inherent nondifferentiability of the empirical
statistic. In difficult cases we may apply smoothing to the standardised residual.

12.4 Application of Ĝ diagnostics

12.4.1 Diagnostics for correct model Consider again the model of the correct
form (D). The residual and compensator of the empirical nearest neighbour func-
tion Ĝ for the fitted model are shown in Figure 5. The residual plot suggests a
marginal lack-of-fit for r < 0.025. This may be correct, since the fitted model
parameters (Section 12.3.1) are marginally poor estimates of the true values, in
particular of the interaction parameter. This was not reflected so strongly in the
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Fig 4: Goodness-of-fit diagnostics based on pairwise distances, for each of the
models (A)–(D) fitted to the data in Figure 1b. (a) K̂ and its compensator under
each model. (b) residual K̂-function (empirical minus compensator) under each
model. (c) standardised residual K̂-function under each model.
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K̂ diagnostics. This suggests that the residual of Ĝ may be particularly sensitive
to lack-of-fit of interaction.
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Fig 5: Residual diagnostics obtained from the perturbing Ĝ-modelwhen the data
pattern is a realisation of an inhomogeneous Strauss process. (a) Ĝ and its com-
pensator under a fitted model of the correct form, and theoretical G-function
for a Poisson process. (b) residual Ĝ-function and two-standard-deviation limits
under the fitted model of the correct form.

12.4.2 Comparison of competing models For each of the four models, Figure 6a
shows Ĝ and its Papangelou compensator. This clearly shows that the Poisson
models (A) and (B) fail to capture interpoint inhibition in the data. The Strauss
models (C) and (D) appear virtually equivalent in Figure 6a.

Figure 6b shows the standardised residual of Ĝ, and Figure 6c the pseudo-
residual of VG (i.e. the pseudo-residual based on the pertubing Geyer model),
with spline smoothing applied to both plots. The Strauss models (C) and (D) ap-
pear virtually equivalent in Figure 6c. The standardised residual plot Figure 6b
correctly suggests a slight lack of fit for model (C) while model (D) is judged to
be a reasonable fit.

12.5 Application of F̂ diagnostics

Figure 7 shows the pseudo-residual diagnostics based on empty space dis-
tances. Both diagnostics clearly showmodels (A)–(B) are poor fits to data. How-
ever, in Figure 7a it is hard to decide which of the models (C)–(D) provide a
better fit. Despite the close connection between the area-interaction process and
the F̂ -model, the diagnostic in Figure 7b based on the F̂ -model performs bet-
ter in this particular example and correctly shows (D) is the best fit to data. In
both cases it is noticed that the pseudo-sum has a much higher peak than the
pseudo-compensators for the Poisson models (A)–(B), correctly suggesting that
these models do not capture the strength of inhibition present in the data.
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Fig 6: Diagnostics based on nearest neighbour distances, for the models (A)–(D)
fitted to the data in Figure 1b. (a) compensator for Ĝ. (b) smoothed standardised
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Fig 7: Pseudo-sumand pseudo-compensators for themodels (A)–(D) fitted to the
data in Figure 1b when the perturbing model is (a) the area-interaction process
(null fitted on a fine grid) and (b) the F̂ -model (null fitted on a coarse grid).

13. TEST CASE: CLUSTERING WITHOUT TREND

13.1 Data and models

Figure 1c is a realisation of a homogeneous Geyer saturation process [30] on
the unit square, with first order term λ = exp(4), saturation threshold s = 4.5
and interaction parameters r = 0.05 and γ = exp(0.4) ≈ 1.5, i.e. the density is

(55) f(x) ∝ exp(n(x) log λ + VG,s(x, r) log γ)

where

VG,s(x, r) =
∑

i

min

s,
∑
j: j 6=i

I{‖xi − xj‖ ≤ r}
 .

This is an example of moderately strong clustering (with interaction range
R = 2r = 0.1) without trend. The main challenge here is to correctly identify
the range and type of interaction.

We fitted three point process models to the data: (E) a homogeneous Pois-
son process (CSR); (F) a homogeneous area-interaction process with disc radius
r = 0.05; (G) a homogeneous Geyer saturation process of the correct form, with
interaction parameter r = 0.05 and saturation threshold s = 4.5 while the pa-
rameters λ and γ in (55) are unknown. The parameter estimates for (G) were
log λ̂ = 4.12 and log γ̂ = 0.38.

13.2 Application of K̂ diagnostics

A plot (not shown) of the K̂-function and its compensator, under each of
the three models (E)–(G), demonstrates clearly that the homogeneous Poisson
model (E) is a poor fit, but does not discriminate between the other models.

Figure 8 shows the residual K̂ and the smoothed standardised residual K̂ for
the three models. These diagnostics show that the homogeneous Poisson model
(E) is a poor fit, with a positive residual suggesting correctly that the data are
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more clustered than the Poisson process. The plots suggests that both models
(F) and (G) are considerably better fits to the data than a Poisson model. They
show that (G) is a better fit than (F) over a range of r values, and suggest that
(G) captures the correct form of the interaction.
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Fig 8: Goodness-of-fit diagnostics based on pairwise distances for each of the
models (E)–(G) fitted to the data in Figure 1c. (a) residual K̂ ; (b) smoothed stan-
dardised residual K̂ .

13.3 Application of Ĝ diagnostics
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(G): CĜ(r)
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Fig 9: Goodness-of-fit diagnostics based on nearest neighbour distances for each
of the models (E)–(G) fitted to the data in Figure 1c. (a) Ĝ and its compensator
under each model; (b) smoothed standardised residual Ĝ.

Figure 9 shows Ĝ and its compensator, and the corresponding residuals and
standardised residuals, for each of the models (E)–(G) fitted to the clustered
point pattern in Figure 1c. The conclusions obtained from Figure 9a are the
same as those in Section 13.2 based on K̂ and its compensator. Figure 10 shows
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the smoothed pseudo-residual diagnostics based on the nearest neighbour dis-
tances. The message from these diagnostics is very similar to that from Figure 9.
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(b)

Fig 10: Smoothed pseudo-residuals for each of the models (E)–(G) fitted to the
clustered point pattern in Figure 1c when the perturbing model is (a) Geyer
saturation model with saturation 1, and (b) the Ĝ-model.

Models (F) and (G) have the same range of interaction R = 0.1. Comparing
Figures 8 and 9 we might conclude that the Ĝ-compensator appears less sensi-
tive to the form of interaction than the K̂-compensator. Other experiments sug-
gest that Ĝ is more sensitive than K̂ to discrepancies in the range of interaction.

13.4 Application of F̂ diagnostics

Figure 11 shows the pseudo-residual diagnostics based on the empty space
distances, for the three models fitted to the clustered point pattern in Figure 1c.
In this case diagnostics based on the area-interaction process and the F̂ -model
are very similar, as expected due to the close connection between the two diag-
nostics. Here it is very noticeable that the pseudo-compensator for the Poisson
model has a higher peak than the pseudo-sum, which correctly indicates that
the data is more clustered than a Poisson process.

14. TEST CASE: JAPANESE PINES

14.1 Data and models

Figure 1a shows the locations of seedlings and saplings of Japanese black
pine, studied by Numata [52, 53] and analysed extensively by Ogata and Tane-
mura [54, 55]. In their definitive analysis [55] the fitted model was an inhomo-
geneous ‘soft core’ pairwise interaction process with log-cubic first order term
λβ(x, y) = exp(Pβ(x, y)), where Pβ is a cubic polynomial in x and y with coeffi-
cient vector β, and density

(56) f(β,σ2)(x) = c(β,σ2) exp

∑
i

Pβ(xi)−
∑
i<j

(
σ4/‖xi − xj‖4

)
where σ2 is a positive parameter.
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Fig 11: Pseudo-sum and pseudo-compensators for the models (E)–(G) fitted to
the clustered point pattern in Figure 1c when the perturbing model is (a) area-
interaction process and (b) the F̂ -model.

Here we evaluate the goodness-of-fit of three models: (H) an inhomogeneous
Poisson process with log-cubic intensity; (I) a homogeneous soft core pairwise
interaction process, i.e. when Pβ(x, y) in (56) is replaced by a real parameter; (J)
the Ogata-Tanemura model (56). For more detail on the dataset and the fitted
inhomogeneous soft core model, see [55, 6].

A complication in this case is that the soft core process (56) is not Markov,
since the pair potential c(u, v) = exp(−σ4/‖u − v‖4) is always positive. Nev-
ertheless, since this function decays rapidly, it seems reasonable to apply the
residual and pseudo-residual diagnostics, using a cutoff distance R such that
| log c(u, v)| ≤ ǫ when ‖u − v‖ ≤ R, for a specified tolerance ǫ. The cutoff de-
pends on the fitted parameter value σ2. We chose ǫ = 0.0002 yielding R = 1.
Estimated interaction parameters were σ̂2 = 0.11 for model (I) and σ̂2 = 0.12 for
model (J).

14.2 Application of K̂ diagnostics

A plot (not shown) of K̂ and its compensator for each of the models (H)–(J)
suggests that the homogeneous soft core model (I) is inadequate, while the in-
homogeneous models (H) and (J) are reasonably good fits to the data. However
it does not discriminate between the models (H) and (J).

Figure 12 shows smoothed version of the residual and standardised residual
of K̂ for each model. The Ogata-Tanemura model (J) is judged to be the best fit.

14.3 Application of Ĝ diagnostics

Finally, for each of the models (H)–(J) fitted to the Japanese pines data in Fig-
ure 1a, Figure 13a shows Ĝ and its compensator. The conclusions are the same
as those based on K̂ shown in Figure 12. Figure 14 shows the pseudo-residuals
when using either a perturbing Geyer model (Figure 14a) or a perturbing Ĝ-
model (Figure 14b). Figures 14a-14b tell almost the same story: the inhomoge-
neous Poisson model (H) provides the worst fit, while it is difficult to discrim-
inate between the fit for the soft core models (I) and (J). In conclusion, consid-
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Fig 12: Goodness-of-fit diagnostics based on pairwise distances for each of the
models (H)–(J) fitted to the Japanese pines data in Figure 1a. (a) smoothed resid-
ual K̂ ; (b) smoothed standardised residual K̂ .

ering Figures 12, 13 and 14, the Ogata-Tanemura model (J) provides the best
fit.

14.4 Application of F̂ diagnostics

Finally, the empty space pseudo-residual diagnostics are shown in Figure 15
for the Japanese Pines data in Figure 1a. This gives a clear indication that the
Ogata-Tanemura model (J) is the best fit to the data, and the data pattern ap-
pears to be too regular compared to the Poisson model (H) and not regular
enough for the homogeneous softcore model (I).

15. SUMMARY OF TEST CASES

In this section we discuss which of the diagnostics we prefer to use based on
their behaviour for the three test cases in Sections 12-14.

Typically the various diagnostics supplement each other well, and it is recom-
mended to use more than one diagnostic when judging goodness-of-fit. Com-
pensator and pseudo-compensator plots are informative for gaining an overall
picture of goodness-of-fit, and tend to make it easy to recognize a poor fit when
comparing competing models. To compare models which fit closely, it may be
more informative to use (standardised) residuals or pseudo-residuals. We pre-
fer to use the standardised residuals, but it is important not to over-interpret the
significance of departure from zero.

Based on the test cases here, it is not clear whether diagnostics based on pair-
wise distances, nearest neighbour distances, or empty space distances are prefer-
able. However, for each of thesewe prefer to workwith compensators and resid-
uals rather than pseudo-compensators and pseudo-residuals when possible (i.e.
it is only necessary to use pseudo-versions for diagnostics based on empty space
distances). For instance, for the first test case (Section 12) the best compensator
plot is that in Figure 4a based on pairwise distances (K̂ and C K̂) which makes
it easy to identify the correct model. On the other hand in this test case the best
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Fig 13: Goodness-of-fit diagnostics based on nearest neighbour distances for
each of the models (H)–(J) fitted to the Japanese pines data in Figure 1a. (a) Ĝ
and its compensator; (b) smoothed residual Ĝ; (c) smoothed standardised resid-
ual Ĝ.
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(b)

Fig 14: Smoothed pseudo-residuals for each of the models (H)–(J) fitted to the
Japanese pines data in Figure 1a when the perturbing model is (a) Geyer satura-
tion model with saturation 1 (null fitted on a fine grid) and (b) the Ĝ-model.
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interaction process and (b) the F̂ -model.
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residual type plot is that in Figure 6b based on nearest neighbour distances (T Ĝ)
where the correct model is the only one within the critical bands. However, in
the third test case (Section 14) the best compensator plot is one of the plots in
Figure 15 with pseudo-compensators based on empty space distances (Σ∆ VA

and C∆ VA respectively Σ∆ F̂ and C∆ F̂ ) which clearly indicates which model
is correct.

In the first and third test cases (Sections 12 and 14), which both involve inho-
mogeneous models, it is clear that K̂ and its compensator are more sensitive to
lack of fit in the first order term than Ĝ and its compensator (compare e.g. the
results for the homogeneous model (C) in Figures 4a and 6a). It is our general
experience that diagnostics based on K̂ are particularly well suited to assess the
presence of interaction and to identify the general form of interaction. Diagnos-
tics based on K̂ and in particular on Ĝ seem to be good for assessing the range
of interaction.

Finally, it is worth mentioning the computational difference between the var-
ious diagnostics (timed on a 2.5 GHz laptop). The calculations for K̂ and C K̂
used in Figure 2 are carried out in approximately five seconds whereas the cor-
responding calculations for Ĝ and C Ĝ only take a fraction of a second. For e.g.
Σ∆ F̂ and C∆ F̂ the calculations take about 45 seconds.
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APPENDIX A: FURTHER DIAGNOSTICS

In this appendixwe present other diagnostics whichwe have not implemented
in software. The examples are therefore not accompanied by experimental re-
sults.

A.1 Third and higher order functional summary statistics

While the intensity and K-function are frequently-used summaries for the
first and second order moment properties of a spatial point process, third and
higher order summaries have been less used, though various such summaries
have been suggested in e.g. [66, 48, 68, 70].

Statistic of order k For a functional summary statistic of k-th order, say

(57) S(x, r) =
∑

{xi1
,...,xik

}⊆x

q({xi1 , . . . , xik}, r)

we obtain

(58) Σ∆ S(x, r) = k!S(x, r) = k!
∑

{xi1
,...,xik

}⊆x

q({xi1 , . . . , xik}, r)

(59)

C∆ S(x, r) = k!CS(x, r) = (k − 1)!
∫

W

∑
{xi1

,...,xik−1
}⊆x

q({xi1 , . . . , xik−1
, u}, r)λθ̂(u,x) du

(60) PU(θ̂, r) = k!RS(x, r) = k!S(x, r)− k!CS(x, r)

where i1, i2, . . . are pairwise distinct in the sums in (58)-(59). So in this case again,
pseudo-residual diagnostics are equivalent to those based on residuals.

Third order example For a stationary and isotropic point process (i.e., when
the distribution of X is invariant under translations and rotations), the inten-
sity and K-function of the process completely determine its first and second
order moment properties. However, even in this case, the simplest description
of third order moments depends on a three-dimensional vector specified from
triplets (xi, xj , xk) of points from X such as the lengths and angle between the
vectors xi − xj and xj − xk. This is often considered too complex, and instead
one considers a certain one-dimensional property of the triangle T (xi, xj , xk) as
exemplified below, where L(xi, xj , xk) denotes the largest side in T (xi, xj, xk).

Let the canonical sufficient statistic of the perturbing density (27) be

(61) S(x, r) = VT (x, r) =
∑

i<j<k

I(L(xi, xj , xk) ≤ r).

The perturbing model is a special case of the triplet interaction point process stud-
ied in [30]. It is also a special case of (57) with

q({xi, xj , xk}, r) = I(L(xi, xj , xk) ≤ r)

and so residual and pseudo-residual diagnostics are equivalent and given by
(58)-(60).
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A.2 Tessellation functional summary statistics

Some authors have suggested the use of tessellation methods for characteriz-
ing spatial point processes; see [37] and the references therein. A planar tessella-
tion is a subdivision of planar region such as W or the entire plane R2.

For example, consider the Dirichlet tessellation of W generated by x, that is,
the tessellation with cells

C(xi|x) = {u ∈ W | ‖u− xi‖ ≤ ‖u− xj‖ for all xj in x}, i = 1, . . . , n.

Suppose the canonical sufficient statistic of the perturbing density (27) is

(62) S(x, r) = VO(x, r) =
∑

i

I(|C(xi|x)| ≤ r).

This is a sum of local contributions as in (33), although not of local statistics
in the sense mentioned in Section 6.3, since I(|C(xi|x)| ≤ r) depends on those
points in x−i which are Dirichlet neighbours to xi and such points may of course
not be r-close to xi (unless r is larger than the diameter of W ). We call this per-
turbing model for a soft Ord’s process; Ord’s process as defined in [10] is the lim-
iting case φ → −∞ in (27), i.e. when r is the lower bound on the size of cells.
Since VO(x) ≤ n(x), the perturbing model is well-defined for all φ ∈ R.

Let ∼x denote the Dirichlet neighbour relation for the points in x, that is,
xi ∼x xj if C(xi|x) ∩ C(xj|x) 6= ∅. Note that xi ∼x xi. Now,

∆uS(x, r) =I(|C(u|x ∪ {u})| ≤ r)

+
∑

v 6=u: v∼
x∪{u}u

[I(|C(v|x ∪ {u})| ≤ r)− I(|C(v|x \ {u})| ≤ r)](63)

depends not only on the points in x which are Dirichlet neighbours to u (with
respect to ∼x∪{u}) but also on the Dirichlet neighbours to those points (with
respect to ∼x∪{u} or with respect to ∼x\{u}). In other words, if we define the
iterated Dirichlet neighbour relation by that xi ∼2

x xj if there exists some xk

such that xi ∼x xk and xj ∼x xk, then t(u,x) depends on those points in xwhich
are iterated Dirichlet neighbours to u with respect to ∼x∪{u} or with respect to
∼x\{u}. The pseudo-sum associated to the soft Ord’s process is

Σ∆ VO(x, r) = VO(x, r) +
∑

i

∑
j 6=i:xj∼xxi

[I(|C(xj |x)| ≤ r)− I(|C(xj |x−i)| ≤ r))]

and from (29) and (63) we obtain the pseudo-compensator. From (36) and (62),
we obtain the Papangelou compensator

CVO(x, r) =
∫

W
I(|C(u|x ∪ {u})| ≤ r)λθ̂(u,x) du.

Many other examples of tessellation characteristics may be of interest. For
example, often the Delaunay tessellation is used instead of the Dirichlet tessella-
tion. This is the dual tessellation to the Dirichlet tessellation, where the Delaunay
cells generated by x are given by those triangles T (xi, xj, xk) such that the disc
containing xi, xj , xk in its boundary does not contain any further points from
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x (strictly speaking we need to assume a regularity condition, namely that x
has to be in general quadratic position; for such details, see [10]. For instance,
the summary statistic t(x, r) given by the number of Delaunay cells T (xi, xj , xk)
with L(xi, xj , xk) ≤ r is related to (61) but concerns only the maximal cliques of
Dirichlet neighbours (assuming again the general quadratic position condition).
The corresponding perturbing model has to the best of our knowledge not been
studied in the literature.

APPENDIX B: VARIANCE FORMULAE

This Appendix concerns the variance of diagnostic quantities of the form

I =
∑

i

h(xi,X−i)−
∫

W
h(u,x)λθ(u,X) du

R =
∑

i

h(xi,X−i)−
∫

W
h(u,x)λθ̂(u,X) du

where h(·) is a functional for which these quantities are almost surely finite, X
is a point process on W with conditional intensity λθ(u,X) and θ̂ is an estimate
of θ (e.g. the MPLE).

B.1 General identity

Exact formulae for the variance of the innovation I and residual R are given
in [3]. Expressions for VarR are unwieldy [3, Sect. 6], but to a first approxima-
tion we may ignore the effect of estimating θ and consider the variance of I .
Suppressing the dependence on θ, this is [3, Prop. 4]

VarI =
∫

W
E

[
h(u,X)2λ(u,X)

]
du

+
∫

W 2

E [A(u, v,X) + B(u, v,X)] dudv(64)

where

A(u, v,X) = ∆uh(v,X)∆vh(u,X)λ2(u, v,X)
B(u, v,X) = h(u,X)h(v,X) {λ2(u, v,X)− λ(u,X)λ(v,X)}

where λ2(u, v,x) = λ(u,x)λ(v,x∪{u}) is the second order conditional intensity.
Note that for a Poisson process B(u, v,X) is identically zero since
λ(u,X) = λ(u).

B.2 Pseudo-score

Let S(x, z) be a functional summary statistic with function argument z. Take
h(u,X) = ∆uS(x, z). Then the innovation I is the pseudo-score (23), and the
variance formula (64) becomes

Var [PU(θ)] =
∫

W
E

[
(∆uS(X , z))2 λ(u,X)

]
du

+
∫

W 2

E
[
(∆u∆vS(X, z))2 λ2(u, v,X)

]
dudv

+
∫

W 2

E [∆uS(x, z)∆vS(x, z) {λ2(u, v,X)− λ(u,X)λ(v,X)}] dudv(65)
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where for u 6= v and {u, v} ∩ x = ∅,

∆u∆vS(x, z) = ∆v∆uS(x, z)
= S(x ∪ {u, v}, z) − S(x ∪ {u}, z) − S(x ∪ {v}, z) + S(x, z).

APPENDIX C: MODIFIED EDGE CORRECTIONS

Appendices C–E describe modifications to the standard edge corrected esti-
mators of K(r) and G(r) that are required in the conditional case (Section 2.3)
because the Papangelou conditional intensity λ(u,x) can or should only be eval-
uated at locations u ∈ W ◦ where W ◦ ⊂ W . The corresponding compensators are
also given.

Assume the point process is Markov and we are in the conditional case as
described in Section 5.4. Consider an empirical functional statistic of the form

(66) SW (x, r) =
∑
xi∈x

sW (xi,x \ {xi}, r)

with compensator (in the unconditional case)

CSW (x, r) =
∫

W
sW (u,x, r)λθ̂(u,x) du.

We explore two different strategies for modifying the edge correction.
In the restriction approach, we replace W by W ◦ and x by x◦ = x∩W ◦ yielding

SW ◦(x, r) =
∑

xi∈x◦
sW ◦(xi,x

◦ \ {xi}, r)(67)

CSW ◦(x, r) =
∫

W ◦
sW ◦(u,x◦, r)λθ̂(u,x◦ | x+) du.

In this approach, data points in the boundary region W+ are ignored in the cal-
culation of the empirical statistic S. The boundary configuration x+ = x ∩W+

contributes only to the estimation of θ and the calculation of the conditional in-
tensity λθ̂(·, · | x+). This has the advantage that the modified empirical statistic
(67) is identical to the standard statistic S computed on the subdomain W ◦; it
can be computed using existing software, and requires no new theoretical justi-
fication.

The disadvantage of the restriction approach is that we lose information by
discarding some of the data. In the reweighting approach we retain the boundary
points and compute

SW ◦,W (x, r) =
∑

xi∈x◦
sW ◦,W (xi,x \ {xi}, r)

CSW ◦,W (x, r) =
∫

W ◦
sW ◦,W (u,x, r)λθ̂(u,x◦ | x+) du

where sW ◦,W (·) is a modified version of sW (·). Thus, boundary points contribute
to the computation of the modified summary statistic SW ◦,W and its compen-
sator. The modification is designed so that SW ◦,W has properties analogous to
SW .
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The K-function and G-function of a point process Y in R2 is defined [62, 63]
under the assumption that Y is second-order stationary. The standard estima-
tors K̂W (r) respectively Ĝx(r) of the K-function and G-function are designed
to be approximately pointwise unbiased estimators of K(r) respectively G(r)
when applied to X = Y ∩W .

We do not necessarily assume stationarity, but when constructing modified
summary statistics K̂W ◦,W (r) and ĜW ◦,W (r), we shall require that they are also
approximately pointwise unbiased estimators of K(r) respectively G(r) when
Y is stationary. This greatly simplifies the interpretation of plots of K̂W ◦,W (r)
and ĜW ◦,W (r) and their compensators.

APPENDIX D: MODIFIED EDGE CORRECTIONS FOR THE K-FUNCTION

D.1 Horvitz-Thompson estimators

The most common nonparametric estimators of the K-function [62, 56, 9] are
continuous Horvitz-Thompson type estimators [8, 19] of the form

(68) K̂(r) = K̂W (r) =
1

ρ̂2(x)|W |
∑
i 6=j

eW (xi, xj)I{‖xi − xj‖ ≤ r}.

Here ρ̂2 = ρ̂2(x) should be an approximately unbiased estimator of the squared

intensity ρ2 for stationary processes. Usually ρ̂2(x) = n(n − 1)/|W |2 where
n = n(x).

The term eW (u, v) is an edge correction weight, depending on the geometry

of W , designed so that the double sum in (68), say Ŷ (r) = ρ̂2(x)|W |K̂(r), is
an unbiased estimator of Y (r) = ρ2|W |K(r). Popular examples are the Ohser-
Stoyan translation edge correction with

(69) eW (u, v) = etransW (u, v) =
|W |

|W ∩ (W + (u− v))|
and Ripley’s isotropic correction with

(70) eW (u, v) = eisoW (u, v) =
2π||u − v||

length(∂B(u, ||u − v||) ∩W )
.

Estimators of the form (68) satisfy the local decomposition (66) where

sW (u,x, r) =
1

ρ̂2(x ∪ {u})|W |
∑

j

eW (u, xj)I{||u − xj || ≤ r}, u 6∈ x.

Now we wish to modify (68) so that the outer summation is restricted to data
points xi in W ◦ ⊂ W , while retaining the property of unbiasedness for station-
ary and isotropic point processes.

The restriction estimator is

(71) K̂W ◦(r) =
1

ρ̂2(x◦)|W ◦|
∑

xi∈x◦

∑
xj∈x◦−i

eW ◦(xi, xj)I{‖xi − xj‖ ≤ r}

where the edge correction weight is given by (69) or (70) with W replaced by
W ◦.
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A more efficient alternative is to replace (68) by the reweighting estimator

(72) K̂W ◦,W (r) =
1

ρ̂2(x)|W ◦|
∑

xi∈x◦

∑
xj∈x−i

eW ◦,W (xi, xj)I{||xi − xj || ≤ r}

where eW ◦,W (u, v) is a modified version of eW (·) constructed so that the double
sum in (72) is unbiased for Y (r). Compared to the restriction estimator (71), the
reweighting estimator (72) contains additional contributions from point pairs
(xi, xj) where xi ∈ x◦ and xj ∈ x+.

Themodified edge correction factor eW ◦,W (·) for (72) is theHorvitz-Thompson
weight [9] in an appropriate sampling context. Ripley’s [62, 63] isotropic correc-
tion (70) is derived assuming isotropy, by Palm conditioning on the location of
the first point xi, and determining the probability that xj would be observed
inside W after a random rotation about xi. Since the constraint on xj is un-
changed, no modification of the edge correction weight is required, and we
take eW ◦,W (·) = eW (·) as in (70). Note however that the denominator in (72)
is changed from |W | to |W ◦|.

The Ohser-Stoyan [57] translation correction (69) is derived by considering
two-point sets (xi, xj) sampled under the constraint that both xi and xj are in-
side W . Under the modified constraint that xi ∈ W ◦ and xj ∈ W , the appropri-
ate edge correction weight is

eW ◦,W (u, v) = eW ◦,W (u− v) =
|W ∩ (W ◦ + (u− v))|

|W ◦|
so that 1/eW ◦,W (z) is the fraction of locations u in W ◦ such that u + z ∈ W .

D.2 Border correction

A slightly different creature is the border corrected estimator (using usual
intensity estimator ρ̂ = n(x)/|W |)

K̂W (r) =
|W |

n(x)n(x ∩W⊖r)

∑
xi∈x

∑
xj∈x−i

I{xi ∈ W⊖r}I{||xi − xj|| ≤ r}

with compensator (in the unconditional case)

C K̂W (r) =
∫

W⊖r

|W |∑xj∈x I{||u − xj|| ≤ r}
(n(x) + 1)(n(x ∩W⊖r) + 1)

λθ̂(u,x◦ | x+) du.

The restriction estimator is

K̂W ◦(r) =
|W ◦|

n(x◦)n(x ∩W ◦⊖r)

∑
xi∈x◦

∑
xj∈x◦−i

I{xi ∈ W ◦
⊖r}I{||xi − xj || ≤ r}

and the compensator is

C K̂W ◦(r) =
∫

W ◦
⊖r

|W ◦|∑xj∈x◦ I{||u− xj || ≤ r}
(n(x◦) + 1)(n(x ∩W ◦⊖r) + 1)

λθ̂(u,x◦ | x+) du.

Typically, W ◦ = W⊖R, so W ◦⊖r is equal to W⊖(R+r).
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The reweighting estimator is

K̂W ◦,W (r) =
|W |

n(x)n(x◦ ∩W⊖r)

∑
xi∈x◦

∑
xj∈x−i

I{xi ∈ W⊖r}I{||xi − xj || ≤ r}

and the compensator is

C K̂W ◦,W (r) =
∫

W ◦∩W⊖r

|W |∑xj∈x I{||u− xj || ≤ r}
(n(x) + 1)(n(x◦ ∩W⊖r) + 1)

λθ̂(u,x◦ | x+) du.

Usually W ◦ = W⊖R, so W ◦∩W⊖r is equal to W⊖max(R,r). From this we conclude
that when using border correction we should always use the reweighting esti-
mator since the restriction estimator discards additional information and neither
the implementation nor the interpretation is easier.

APPENDIX E: MODIFIED EDGE CORRECTIONS FOR NEAREST
NEIGHBOUR FUNCTION G

E.1 Hanisch estimators

Hanisch [31] considered estimators for G(r) of the form ĜW (r) = D̂x(r)/ρ̂,
where ρ̂ is some estimator of the intensity ρ, and

(73) D̂x(r) =
∑
xi∈x

I{xi ∈ W⊖di
}I{di ≤ r}

|W⊖di
|

where di = d(xi,x \ {xi}) is the nearest neighbour distance for xi. If ρ̂ were
replaced by ρ then ĜW (r) would be an unbiased, Horvitz-Thompson estimator
of G(r). See [69, pp. 128–129], [9].

Hanisch’s recommended estimator D4 is the one in which ρ̂ is taken to be

D̂x(∞) =
∑
xi∈x

I{xi ∈ W⊖di
}

|W⊖di
|.

This is sensible because D̂x(∞) is an unbiased estimator of ρ and is positively
correlated with D̂x(r). The resulting estimator ĜW (r) can be decomposed in the
form (66) where

sW (u,x, r) =
I{u ∈ W⊖d(u,x)}I{d(u,x) ≤ r}

D̂x∪{u}(∞)|W⊖d(u,x)|

for u 6∈ x, where d(u,x) is the (‘empty space’) distance from location u to the
nearest point of x. Hence the corresponding compensator is

C ĜW (r) =
∫

W

I{u ∈ W⊖d(u,x)}I{d(u,x) ≤ r}
D̂x∪{u}(∞)|W⊖d(u,x)|

λθ̂(u,x) du

This is difficult to evaluate, since the denominator of the integrand involves a
summation over all data points: Dx∪{u}(∞) is not related in a simple way to
Dx(∞).
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Instead, we choose ρ̂ to be the conventional estimator ρ̂ = n(x)/|W |. Then

ĜW (r) =
|W |
n(x)

D̂x(r)

which can be decomposed in the form (66) with

sW (u,x, r) =
|W |

n(x) + 1
I{u ∈ W⊖d(u,x)}I{d(u,x) ≤ r}

|W⊖d(u,x)|
for u 6∈ x, so that the compensator is

(74) C ĜW (r) =
|W |

n(x) + 1

∫
W

I{u ∈ W⊖d(u,x)}I{d(u,x) ≤ r}
|W⊖d(u,x)|

λθ̂(u,x) du.

In the restriction estimator we exclude the boundary points and take
di
◦ = d(xi,x

◦
−i), effectively replacing the dataset x by its restriction x◦ = x∩W ◦.

ĜW ◦(r) =
|W ◦|
n(x◦)

∑
xi∈x◦

I{xi ∈ W ◦
⊖di

◦}I{di
◦ ≤ r}

|W ◦
⊖di

◦ |

The compensator is (74) but computed for the point pattern x◦ in the window
W ◦:

C ĜW ◦(r) =
|W ◦|

n(x◦) + 1

∫
W ◦

I{u ∈ W ◦
⊖d(u,x◦)}I{d(u,x◦) ≤ r}
|W ◦

⊖d(u,x◦)|
λθ̂(u,x◦ | x+) du.

In the usual case W ◦ = W⊖R, we have W ◦
⊖d = W⊖(R+d).

In the reweighting estimator we take di = d(xi,x \ {xi}). To retain the Horvitz-
Thompson property we must replace the weights 1/|W⊖di

| in (73) by
1/|W ◦ ∩W⊖di

|. Thus the modified statistics are

(75) ĜW ◦,W (r) =
|W |
n(x)

∑
xi∈x◦

I{xi ∈ W⊖di
}I{di ≤ r}

|W ◦ ∩W⊖di
|

and
(76)

C ĜW ◦,W (r) =
|W |

n(x) + 1

∫
W ◦

I{u ∈ W⊖d(u,x)}I{d(u,x) ≤ r}
|W ◦ ∩W⊖d(u,x)|

λθ̂(u,x◦ | x+) du.

In the usual case where W ◦ = W⊖R we have W ◦ ∩W⊖di
= W⊖max(R,di).

Optionally we may also replace |W |/n(x) in (75) by |W ◦|/n(x ∩ W ◦), and
correspondingly replace |W |

n(x)+1 in (76) by |W ◦|/(n(x ∩W ◦) + 1).

E.2 Border correction

The classical border correction estimate of G is

(77) ĜW (r) =
1

n(x ∩W⊖r)

∑
xi∈x

I{xi ∈ W⊖r}I{d(xi,x−i) ≤ r}

with compensator (in the unconditional case)

(78) C ĜW (r) =
1

1 + n(x ∩W⊖r)

∫
W⊖r

I{d(u,x) ≤ r}λθ̂(u,x) du.
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In the conditional case, the Papangelou conditional intensity λθ̂(u,x) must be
replaced by λθ̂(u,x◦ | x+) given in (24). The restriction estimator is obtained by
replacing W by W ◦ and x by x◦ in (77)–(78) yielding

ĜW ◦(r) =
1

n(x ∩W ◦⊖r)

∑
xi∈x◦

I{xi ∈ W ◦
⊖r}I{d(xi,x

◦
−i) ≤ r}

C ĜW ◦(r) =
1

1 + n(x ∩W ◦⊖r)

∫
W ◦
⊖r

I{d(u,x◦) ≤ r}λθ̂(u,x◦ | x+) du.

Typically W ◦ = W⊖R so that W ◦⊖r = W⊖(R+r). The reweighting estimator is ob-
tained by restricting xi and u in (77)–(78) to lie in W ◦, yielding

ĜW ◦,W (r) =
1

n(x◦ ∩W⊖r)

∑
xi∈x◦

I{xi ∈ W⊖r}I{d(xi,x−i) ≤ r}

C ĜW ◦,W (r) =
1

1 + n(x◦ ∩W⊖r)

∫
W ◦∩W⊖r

I{d(u,x) ≤ r}λθ̂(u,x◦ | x+) du.

In the usual case where W ◦ = W⊖R we have W ◦ ∩W⊖r = W⊖max(R,r).
In the same way as for the border corrected estimate for the K-function we

always choose to use the reweighting estimator rather than the restriction esti-
mator since there are no disadvantages connected with this.

The border corrected estimator Ĝ(r) is well known for having relatively poor
performance and sample properties. It is not guaranteed to be a monotonically
increasing function of r, and its bias and variance are generally greater than
those of the Horvitz-Thompson style estimators. The main reason for choosing
the border corrected estimator is its computational efficiency in large datasets.
We may expect similar considerations to apply to its compensator.


