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Abstract

In this paper two-dimensional Boussinesq and dispersive water waves equations
are investigated in exact solutions. The Exp-function method is used for seeking
exact solutions of the equations through symbolic computation.
Keywords: analytical solutions, nonlinear waves equations, Exp-function method.

1 Introduction

Recently new methods have been presented to solve the analytical solutions of
the nonlinear wave equations, tanh-function method [1, 2], homotopy method [3]
and Adomian decomposition method [4]. The Exp-function method was proposed
by He and Wu to obtain solutions of nonlinear evolution equations arising in many
physic problems [5]. It is simple to find numerical solutions of linear systems using
computers, but this is not true for nonlinear problems. Indeed, numerical methods
are connected to initial solutions and it is not easy to have convergent results for
strong nonlinearity.

The procedure of the Exp-function method for the solution of PDE is straightfor-
ward. The symbol computation is an essential tool to apply the presented method.

The examination of two-dimensional Boussinesq equation arises when we
consider the propagation of gravity waves on the surface of water. The structure of
this equation leads to consider the propagation of waves in opposite directions.

Advances in Fluid Mechanics VIII  293

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 69, © 2010 WIT Press

doi:10.2495/AFM100251



The dispersive long wave equations govern the propagation of long waves
in shallow water. This problem consists of pair of coupled partial differential
equations.

2 Exp-function method

We consider nonlinear partial differential equations:

H(u, ux, uy, ut, uxx, uxy, uyy, . . .) = 0 (1)

To find solutions the following transformation needs to be introduced:

u(x, y, t) = u(η), η = kx+ hy − ωt

where k, h and ω are constants and so we can convert Eq. (1) into ordinary
differential equation:

G(u, u′, u′′, u′′′, . . .) = 0 (2)

the prime denoting differentiation respect to η.
According to the Exp-function method, we assume that the solution of Eq. (2)

can be expressed in the following form:

u(η) =

∑d
n=−c an exp(nη)∑q
m=−p bm exp(mη)

(3)

In order to determine the values of c and p, balancing the linear term of the
highest order of Eq. (1) with the highest order nonlinear term, we obtain:

d = c

Similarly, to determine the values of d and q we balance the linear term of the
lowest order of Eq. (1) with the lowest order nonlinear term. So we obtain:

q = p

Substituting Eq. (3) into Eq. (2) we have a system of algebraic equations for an
and bm.

Solving this system using MATHEMATICA we carry out the values of the
coefficients.
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3 Two-dimensional Boussinesq equation

We consider the two-dimensional Boussinesq equation:

vtt − vxx + 3(v2)xx − vxxxx − vyy = 0 (4)

This equation describes the propagation of waves in opposite directions in (2+1)
dimensions [6]. Using the wave variable:

η = kx+ hy − ωt

it is possible to lead Eq. (4) to an ordinary differential equation:

(ω2 − k2 − h2)v′′ + 3k2(v2)′′ − k4v(iv) = 0 (5)

According to the Exp-function method, we assume that the solution of Eq. (5)
can be written as follows:

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)
(6)

We have set c = 1 and q = 2. Without compromising the generality we can
assume a−1 �= 0 and Eq. (6) can be simplified as

v(η) =
a1 exp(η) + a0 + exp(−η)

b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)
(7)

Substituting Eq. (7) into Eq. (5) and equating to zero the coefficients of all
powers of exp(nη) we find a set of algebraic equations for a0, a1, b2, b1, b0, b−1,
b−2. Solving this system we obtain

ω2 = h2 + k2 + k4

and the following coefficients:

a0 = −2k2b0, a1 = k4b20, b1 = b−1 = 0, b2 =
a21

k2a0
, b−2 =

1

k2a0

Substituting ω and the coefficients into Eq. (7), we obtain the following exact
solution of the two-dimensional Boussinesq equation

v(x, y, t) = − 2k4b0 exp (kx+ hy − t
√
h2 + k2 + k4)

(1 + k2b0 exp (kx+ hy − t
√
h2 + k2 + k4))2
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4 Dispersive water waves equations

The problem of the propagation of long waves in shallow water is governed by a
pair of coupled nonlinear partial differential equations [7]:{

ut = uux + hx + θuxx

ht = (hu)x + θhxx

(8)

Using the variable:
η = kx− ωt

it is possible to lead Eq.s (8) to a couple of nonlinear ordinary differential
equations: {

ωuη + kuuη + khη + k2θuηη = 0

ωhη + k(hu)η + k2θhηη = 0
(9)

Following the Exp-function method, we set:

u(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)
(10)

and

h(η) =
c1 exp(η) + c0 + c−1 exp(−η)

d2 exp(2η) + d1 exp(η) + d0 + d−1 exp(−η) + d−2 exp(−2η)
(11)

Substituting Eq. (10) and Eq. (11) into Eq. (9) we obtain

ω = k2

and, solving the system, for dispersive water waves equations, we find:

u(x, t) = − 2kθ exp(kx)

exp(kx)− b−2 exp(k2θt)

and

h(x, t) = − 4k2θ2b−2 exp(k(x+ kθt))

(exp(kx) − b−2 exp(k2θt))
2

5 Conclusions

In this paper we find exact solutions of two-dimensional Boussinesq equation and
of the dispersive water waves equations using a simple and direct method called
the Exp-function method. This is a straight and promising tool to solve non linear
evolution equations arising in physics and engineering.

But, even if this scenario could be straightforward from one hand, the imple-
mentation of it is a difficult task, mainly for the amount of calculations.

In future we propose to solve the massive system of algebraic equations given
by the Exp-function method using the method Gröbner basis of non linear algebra
and numerical methods.
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