On q-covering designs

Francesco Pavese*
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy.
francesco.pavese@poliba.it

Submitted: May 7, 2019; Accepted: Dec 30, 2019; Published: Feb 7, 2020
(c) The author. Released under the CC BY-ND license (International 4.0).

Abstract

A q-covering design $\mathbb{C}_{q}(n, k, r), k \geqslant r$, is a collection \mathcal{X} of $(k-1)$-spaces of $\operatorname{PG}(n-1, q)$ such that every $(r-1)$-space of $\operatorname{PG}(n-1, q)$ is contained in at least one element of \mathcal{X}. Let $\mathcal{C}_{q}(n, k, r)$ denote the minimum number of $(k-1)$-spaces in a q-covering design $\mathbb{C}_{q}(n, k, r)$. In this paper improved upper bounds on $\mathcal{C}_{q}(2 n, 3,2)$, $n \geqslant 4, \mathcal{C}_{q}(3 n+8,4,2), n \geqslant 0$, and $\mathcal{C}_{q}(2 n, 4,3), n \geqslant 4$, are presented. The results are achieved by constructing the related q-covering designs.

Mathematics Subject Classifications: 51E20, 05B40, 05B25, 51A05

1 Introduction

Let q be any prime power, let $\operatorname{GF}(q)$ be the finite field with q elements and let $\operatorname{PG}(n-1, q)$ be the $(n-1)$-dimensional projective space over $\operatorname{GF}(q)$. We will use the term k-space to denote a subspace of $\mathrm{PG}(n-1, q)$ of projective dimension k. Let $t \leqslant s$. A blocking set \mathbb{B} is a set of $(t-1)$-spaces of $\mathrm{PG}(n-1, q)$ such that every $(s-1)$-space of $\mathrm{PG}(n-1, q)$ contains at least one element of \mathbb{B}. In the last fifty years the general problem of determining the smallest cardinality of a blocking set \mathbb{B} has been studied by several authors (see [17, 4] and references therein) and in very few cases has been completely solved [5, 2, 3, 9, 18].

A blocking set \mathbb{B} can be seen as a q-analog of a well known combinatorial design, called Turán design, see [11], [10]. Indeed, a blocking set \mathbb{B} is also called a q-Turán design $\mathbb{T}_{q}(n, t, s)$. The dual structure of a q-Turán design $\mathbb{T}_{q}(n, t, s)$ is called q-covering design and it is denoted with $\mathbb{C}_{q}(n, n-t, n-s)$. In other words, a q-covering design $\mathbb{C}_{q}(n, k, r)$ is a collection \mathcal{X} of $(k-1)$-spaces of $\operatorname{PG}(n-1, q)$ such that every $(r-1)$ space of $\operatorname{PG}(n-1, q)$ is contained in at least one element of \mathcal{X}. Let $\mathcal{C}_{q}(n, k, r)$ denote

[^0]the minimum number of $(k-1)$-spaces in a q-covering design $\mathbb{C}_{q}(n, k, r)$. Lower and upper bounds on $\mathcal{C}_{q}(n, k, r)$ were considered in [11], [10]. Lower bounds are obtained by providing q-analogs of classical results which have been proved in the context of covering designs and Turán designs; upper bounds are obtained by explicit constructions of the related q-covering designs. A q-covering design $\mathbb{C}_{q}(n, k, r)$ which cover every $(r-1)$-space exactly once is called q-Steiner system. If $r=1$, a q-Steiner system $\mathbb{C}_{q}(n, k, r)$ is also known as $(k-1)$-spread of $\operatorname{PG}(n-1, q)$; spreads have been widely investigated in finite geometry and it is known that a $(k-1)$-spread of $\operatorname{PG}(n-1, q)$ exists if and only if k divides n, see [20].

The concept of q-covering design is of interest not only in projective geometry and design theory, but also in coding theory. Indeed, in recent years there has been an increasing interest in q-covering designs due to their connections with constant-dimension codes. An $(n, M, 2 \delta ; k)_{q}$ constant-dimension subspace code (CDC) is a set \mathcal{S} of $(k-1)$ spaces of $\operatorname{PG}(n-1, q)$ such that $|\mathcal{S}|=M$ and every $(k-\delta)$-space of $\operatorname{PG}(n-1, q)$ is contained in at most one member of \mathcal{S} or, equivalently, any two distinct codewords of \mathcal{S} intersect in at most a $(k-\delta-1)$-space. Subspace codes of largest possible size are said to be optimal. Therefore, a q-Steiner system is an optimal constant-dimension code (so far, apart from spreads, there is only one known example of q-Steiner system, i.e., the 2 -covering design $\mathbb{C}_{2}(13,3,2)$ of smallest possible size $\left.[6]\right)$. Observe that, as shown in the inspiring article by Koetter and Kschischang [16], constant-dimension codes can be used for error-correction in random linear network coding theory.

In this paper we discuss bounds on q-covering designs. In Section 3, based on the $q-$ covering design $\mathbb{C}_{q}(6,3,2)$ constructed in [7], an improved upper bound on $\mathcal{C}_{q}(2 n, 3,2), n \geqslant$ 4 , is presented. In the last two sections, starting from a lifted MRD-code, improvements on the upper bounds of $\mathcal{C}_{q}(3 n+8,4,2), n \geqslant 0$, and $\mathcal{C}_{q}(2 n, 4,3), n \geqslant 4$, are obtained. In particular, first q-covering designs $\mathbb{C}_{q}(8,4, r), r=2,3$, of $\operatorname{PG}(7, q)$ are constructed. Then, by induction, q-covering designs $\mathbb{C}_{q}(3 n+8,4,2), n \geqslant 0$, and $\mathbb{C}_{q}(2 n, 4,3), n \geqslant 4$, are presented.

In the sequel we will use the following notation $\theta_{n, q}:=\left[\begin{array}{c}n+1 \\ 1\end{array}\right]_{q}=q^{n}+\ldots+q+1$.

2 Preliminaries

A conic of $\operatorname{PG}(2, q)$ is the set of points of $\mathrm{PG}(2, q)$ satisfying a quadratic equation: $a_{11} X_{1}^{2}+$ $a_{22} X_{2}^{2}+a_{33} X_{3}^{2}+a_{12} X_{1} X_{2}+a_{13} X_{1} X_{3}+a_{23} X_{2} X_{3}=0$. There exist four kinds of conics in $\operatorname{PG}(2, q)$, three of which are degenerate (splitting into lines, which could be in the plane $\left.\mathrm{PG}\left(2, q^{2}\right)\right)$ and one of which is non-degenerate, see [13].

A regulus is the set of lines intersecting three skew (disjoint) lines and has size $q+1$. The hyperbolic quadric $\mathcal{Q}^{+}(3, q)$, is the set of points of $\operatorname{PG}(3, q)$ which satisfy the equation $X_{1} X_{2}+X_{3} X_{4}=0$. The hyperbolic quadric $\mathcal{Q}^{+}(3, q)$ consists of $(q+1)^{2}$ points and $2(q+1)$ lines that are the union of two reguli. Through a point of $\mathcal{Q}^{+}(3, q)$ there pass two lines belonging to different reguli.

A 1-spread is also called line-spread. Recall that a line-spread of $\mathrm{PG}(3, q)$ is a set \mathcal{S} of $q^{2}+1$ lines of $\operatorname{PG}(3, q)$ with the property that each point of $\operatorname{PG}(3, q)$ is incident
with exactly one element of \mathcal{S}. A 1-parallelism of $\mathrm{PG}(3, q)$ is a collection \mathcal{P} of $q^{2}+q+1$ line-spreads such that each line of $\operatorname{PG}(3, q)$ is contained in exactly one line-spread of \mathcal{P}. In [1] the author proved that there exist 1-parallelisms in $\operatorname{PG}(3, q)$.

The Klein quadric $\mathcal{Q}^{+}(5, q)$, is the set of points of $\operatorname{PG}(5, q)$ which satisfy the equation $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$. The Klein quadric contains $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ points of and two families each consisting of $q^{3}+q^{2}+q+1$ planes called Latin planes and Greek planes. Two distinct planes in the same family share exactly one point, whereas planes lying in distinct families are either disjoint or meet in a line. A line of $\operatorname{PG}(5, q)$ not contained in $\mathcal{Q}^{+}(5, q)$ is either external, or tangent, or secant to $\mathcal{Q}^{+}(5, q)$, according as it contains 0,1 or 2 points of $\mathcal{Q}^{+}(5, q)$. A hyperplane of $\mathrm{PG}(5, q)$ contains either $q^{3}+2 q^{2}+q+1$ or $q^{3}+q^{2}+q+1$ points of $\mathcal{Q}^{+}(5, q)$. In the former case the hyperplane is called tangent, contains the $2(q+1)$ planes of $\mathcal{Q}^{+}(5, q)$ through one of its points, say R, and meets $\mathcal{Q}^{+}(5, q)$ in a cone having as vertex the point R and as base a hyperbolic quadric $\mathcal{Q}^{+}(3, q)$. In the latter case the hyperplane is called secant and contains no plane of $\mathcal{Q}^{+}(5, q)$. The stabilizer of $\mathcal{Q}^{+}(5, q)$ in $\operatorname{PGL}(6, q)$, say G, contains a subgroup isomorphic to $\operatorname{PGL}(4, q)$. Also, the stabilizer in G of a plane g of $\mathcal{Q}^{+}(5, q)$ contains a subgroup H isomorphic to $\operatorname{PGL}(3, q)$ acting in its natural representation on the points and lines of g. For more details see [14, Chapter 1]. A Singer cyclic subgroup of $\operatorname{PGL}(k, q)$ is a cyclic group acting regularly on points and hyperplanes of a projective space $\operatorname{PG}(k-1, q)$.

2.1 Lifting an MRD-code

The set $\mathcal{M}_{n \times m}(q), n \leqslant m$, of $n \times m$ matrices over the finite field $\operatorname{GF}(q)$ forms a metric space with respect to the rank distance defined by $d_{r}(A, B)=\operatorname{rank}(A-B)$. The maximum size of a code of minimum distance δ, with $1 \leqslant \delta \leqslant n$, in $\left(\mathcal{M}_{n \times m}(q), d_{r}\right)$ is $q^{m(n-\delta+1)}$. A code $\mathcal{A} \subset \mathcal{M}_{n \times m}(q)$ attaining this bound is said to be a $(n \times m, \delta)_{q}$ maximum rank distance code (or MRD-code in short). A rank distance code \mathcal{A} is called $\operatorname{GF}(q)$-linear if \mathcal{A} is a subspace of $\mathcal{M}_{n \times m}(q)$ considered as a vector space over $\operatorname{GF}(q)$. Linear MRD-codes exist for all possible parameters [8, 12, 19, 21].

We recall the so-called lifting process for a matrix $A \in \mathcal{M}_{n \times m}(q)$, see [22]. Let I_{n} be the $n \times n$ identity matrix. The rows of the $n \times n+m$ matrix $\left(I_{n} \mid A\right)$ can be viewed as coordinates of points in general position of an $(n-1)$-space of $\mathrm{PG}(n+m-1, q)$. This subspace is denoted by $L(A)$. Hence the matrix A can be "lifted" to the ($n-1$)-space $L(A)$.

Here and in the sequel we denote by U_{i} the point of the ambient projective space represented by the vector having 1 in i-th position and 0 elsewhere; furthermore we denote by Σ the $(m-1)$-space of $\mathrm{PG}(n+m-1, q)$ containing U_{n+1}, \ldots, U_{n+m}. Note that if $A \in \mathcal{A}$, then $L(A)$ is disjoint from Σ. The following results are well known, see for instance [10, Theorem 12].

Proposition 1.

i) If \mathcal{A} is a $(3 \times m, 2)_{q} M R D$-code, $m \geqslant 3$, then $\mathcal{X}=\{L(A) \mid A \in \mathcal{A}\}$ is a set of $q^{2 m}$ planes of $\mathrm{PG}(m+2, q)$ such that every line of $\mathrm{PG}(m+2, q)$ disjoint from Σ is contained in exactly one element of \mathcal{X}.
ii) If \mathcal{A} is a $(4 \times m, 3)_{q}$ MRD-code, $m \geqslant 4$, then $\mathcal{X}=\{L(A) \mid A \in \mathcal{A}\}$ is a set of $q^{2 m}$ solids of $\mathrm{PG}(m+3, q)$ such that every line of $\mathrm{PG}(m+3, q)$ disjoint from Σ is contained in exactly one element of \mathcal{X}.
iii) If \mathcal{A} is a $(4 \times m, 2)_{q}$ MRD-code, $m \geqslant 4$, then $\mathcal{X}=\{L(A) \mid A \in \mathcal{A}\}$ is a set of $q^{3 m}$ solids of $\mathrm{PG}(m+3, q)$ such that every plane of $\mathrm{PG}(m+3, q)$ disjoint from Σ is contained in exactly one element of \mathcal{X}.

In [10, Theorem 15, Theorem 17], the author showed that it is possible to obtain a 2 -covering design $\mathbb{C}_{2}(n+k-1, k, 2)$ or $\mathbb{C}_{2}(n+2,4,3)$ starting form a 2 -covering design $\mathbb{C}_{2}(n, k, 2)$ or $\mathbb{C}_{2}(n, 4,3)$, respectively. These results can be easily generalized for any q.

Theorem 2. If there exists a q-covering design $\mathbb{C}_{q}(n, k, 2), n \geqslant 6$, say \mathbb{S}_{n}, and a hyperplane Λ_{n} of $\operatorname{PG}(n-1, q)$ such that there are $x_{n}(k-1)$-spaces of \mathbb{S}_{n} not contained in Λ_{n} and $y_{n}(k-1)$-spaces of \mathbb{S}_{n} contained in Λ_{n}, then there exists a q-covering design $\mathbb{C}_{q}(n+k-1, k, 2)$, say \mathbb{S}_{n+k-1}, such that $\left|\mathbb{S}_{n+k-1}\right|=q^{2(n-1)}+\frac{q^{k}-1}{q-1} x_{n}+y_{n}$.

Moreover there exists an $(n+k-3)$-space of $\mathrm{PG}(n+k-2, q)$, say Λ_{n+k-1}, such that there are $x_{n+k-1}=q^{2 n-2}+q^{k-1} x_{n}(k-1)$-spaces of \mathbb{S}_{n+k-1} not contained in Λ_{n+k-1} and $y_{n+k-1}=\frac{q^{k-1}-1}{q-1} x_{n}+y_{n}(k-1)$-spaces of \mathbb{S}_{n+k-1} contained in Λ_{n+k-1}.

Proof. In $\operatorname{PG}(n+k-2, q)$, let Λ_{n} be the $(n-2)$-space $\left\langle U_{k+1}, \ldots, U_{n+k-1}\right\rangle$. Let \mathcal{A} be a $(k \times(n-1), k-1)_{q}$ MRD-code and let $\mathcal{U}=\{L(A) \mid A \in \mathcal{A}\}$ be the set of $q^{2(n-1)}(k-1)-$ spaces of $\mathrm{PG}(n+k-2, q)$ obtained by lifting the matrices of \mathcal{A}. Let Π be the $(k-1)$-space $\left\langle U_{1}, \ldots, U_{k}\right\rangle$. Thus Π is disjoint from Λ_{n}. Let us fix a point \bar{P} of Π. From the hypothesis there is a q-covering design $\mathbb{C}_{q}(n, k, 2)$ of $\left\langle\Lambda_{n}, \bar{P}\right\rangle$, say \mathbb{S}_{n}, such that $\left|\mathbb{S}_{n}\right|=x_{n}+y_{n}$ and y_{n} is the number of $(k-1)$-spaces of \mathbb{S}_{n} contained in Λ_{n}.

Let $M \in \mathrm{GL}(k, q)$ such that the projectivities of $\operatorname{PGL}(k, q)$ induced by the matrices $M^{i}, 1 \leqslant i \leqslant q^{k}-1$, form a Singer cyclic group of PGL (k, q). Then the projectivities of $\operatorname{PGL}(n+k-1, q)$ associated with the matrices

$$
\left(\begin{array}{c|c}
M^{i(q-1)} & 0 \\
\hline 0 & I_{n-1}
\end{array}\right), 1 \leqslant i \leqslant q^{k}-1,
$$

give rise to a subgroup C of $\operatorname{PGL}(n+k-1, q)$ having order $\left(q^{k}-1\right) /(q-1)$. In particular, the group C fixes pointwise Λ_{n} and permutes the points of Π in a single orbit. Hence, if $g, g^{\prime} \in C, g \neq g^{\prime}$, then $\mathbb{S}_{n}^{g} \cap \mathbb{S}_{n}^{g^{\prime}}$ consists of the y_{n} members of \mathbb{S}_{n}^{g} contained in Λ_{n}.

Let $\mathcal{V}=\bigcup_{g \in C} \mathbb{S}_{n}{ }^{g}$. Observe that $\mathcal{U} \cup \mathcal{V}$ is a q-covering design $\mathbb{C}_{q}(n+k-1, k, 2)$. Indeed, from Proposition 1, every line of $\mathrm{PG}(n+k-2, q)$ disjoint from Λ_{n} is contained in exactly one element of \mathcal{U}. On the other hand, if r is a line of $\operatorname{PG}(n+k-2, q)$ meeting
Λ_{n} in at least a point, then r is contained in $\left\langle\Lambda_{n}, \bar{P}^{g}\right\rangle$, for some $g \in C$, and r is contained in at least an element of \mathbb{S}_{n}^{g}. Hence $\mathcal{U} \cup \mathcal{V}$ is a q-covering design $\mathbb{C}_{q}(n+k-1, k, 2)$. Note that $|\mathcal{U} \cup \mathcal{V}|=q^{2(n-1)}+\frac{q^{k}-1}{q-1} x_{n}+y_{n}$.

Let σ be a $(k-2)$-space of Π and let Λ_{n+k-1} be the hyperplane $\left\langle\Lambda_{n}, \sigma\right\rangle$ of $\operatorname{PG}(n+$ $k-2, q)$. Since every $(k-1)$-space of \mathcal{U} is disjoint from Λ_{n}, we have that no member of \mathcal{U} is contained in Λ_{n+k-1}. The elements of \mathcal{V} not contained in Λ_{n+k-1} are $(k-1)$-spaces of $\left\langle\Lambda_{n}, P\right\rangle$, for some point $P \in \Pi \backslash \sigma$, not contained in Λ_{n}. Hence there are

$$
q^{2 n-2}+q^{k-1} x_{n}
$$

$(k-1)$-spaces of $\mathcal{U} \cup \mathcal{V}$ not contained in Λ_{n+k-1}. Finally note that the members of $\mathcal{U} \cup \mathcal{V}$ contained in Λ_{n+k-1} are $(k-1)$-spaces of $\left\langle\Lambda_{n}, P\right\rangle$, for some point $P \in \sigma$. Hence there are

$$
\frac{q^{k-1}-1}{q-1} x_{n}+y_{n}
$$

$(k-1)$-spaces of $\mathcal{U} \cup \mathcal{V}$ contained in Λ_{n+k-1}.
Theorem 3. Let \mathbb{S}_{n} be a q-covering design $\mathbb{C}_{q}(2 n, 4,3)$, $n \geqslant 4$, such that there is a $(2 n-3)$-space of $\mathrm{PG}(2 n-1, q)$, say Λ_{n}, containing precisely α_{n} elements of \mathbb{S}_{n} and every hyperplane of $\operatorname{PG}(2 n-1, q)$ through Λ_{n} contains β_{n} members of \mathbb{S}_{n}. Then there exists a q-covering design $\mathbb{C}_{q}(2 n+2,4,3)$, say \mathbb{S}_{n+1}, where

$$
\left|\mathbb{S}_{n+1}\right|=q^{6(n-1)}+\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left|\mathbb{S}_{n}\right|-q(q+1)^{2}\left(q^{2}+1\right) \beta_{n}+q^{3}\left(q^{2}+q+1\right) \alpha_{n} .
$$

Moreover there exists a $(2 n-1)$-space of $\mathrm{PG}(2 n+1, q)$, say Λ_{n+1}, containing $\alpha_{n+1}=$ $\left|\mathbb{S}_{n}\right|$ elements of \mathbb{S}_{n+1} and such that every hyperplane of $\operatorname{PG}(2 n+1, q)$ through Λ_{n+1} contains β_{n+1} members of \mathbb{S}_{n+1}, where

$$
\beta_{n+1}=\left(q^{2}+q+1\right)\left|\mathbb{S}_{n}\right|-\left(q^{3}+q^{2}+q\right) \beta_{n}+q^{3} \alpha_{n} .
$$

Proof. Let Λ_{n} be the $(2 n-3)$-space of $\operatorname{PG}(2 n+1, q)$ generated by $U_{5}, \ldots, U_{2 n+2}$, let \mathcal{A} be a $(4 \times(2 n-2), 2)$ MRD-code and let \mathcal{U} be the set of $q^{6(n-1)}$ solids obtained by lifting the matrices of \mathcal{A}. Let Π be the solid $\left\langle U_{1}, U_{2}, U_{3}, U_{4}\right\rangle$. Thus Π is disjoint from Λ_{n}. From the hypothesis there is a line ℓ of Π and a q-covering design $\mathbb{C}_{q}(2 n, 4,3)$, say \mathbb{S}_{n}, of $\left\langle\Lambda_{n}, \ell\right\rangle$ such that α_{n} elements of \mathbb{S}_{n} are contained in Λ_{n} and every $2(n-1)$-space of $\left\langle\Lambda_{n}, \ell\right\rangle$ through Λ_{n} contains β_{n} members of \mathbb{S}_{n}. Let $\overline{\mathcal{W}}$ be the set of $\left|\mathbb{S}_{n}\right|-\alpha_{n}$ solids of \mathbb{S}_{n} not contained in Λ_{n} and let \mathcal{Z} denote the α_{n} solids of \mathbb{S}_{n} contained in Λ_{n}. For a point P of ℓ, there are β_{n} solids of \mathbb{S}_{n} contained in $\left\langle\Lambda_{n}, P\right\rangle$, among which α_{n} are contained in Λ_{n}. Let $\overline{\mathcal{V}}$ be the set of solids of \mathbb{S}_{n} not contained in none of the $2(n-1)$-spaces of $\left\langle\Lambda_{n}, \ell\right\rangle$ through Λ_{n}. Then $\overline{\mathcal{V}}$ consists of $\left|\mathbb{S}_{n}\right|-\beta_{n}-q\left(\beta_{n}-\alpha_{n}\right)$ solids and every plane of $\left\langle\Lambda_{n}, \ell\right\rangle$ intersecting Λ_{n} in one point is contained in at least one element of $\overline{\mathcal{V}}$. Note that $\overline{\mathcal{V}} \subset \overline{\mathcal{W}}$.

For a line ℓ^{\prime} of Π, let $M_{\ell^{\prime}} \in \operatorname{GL}(4, q)$ such that the projectivity of $\operatorname{PGL}(4, q)$ induced by the matrix $M_{\ell^{\prime}}$, maps the line ℓ to the line ℓ^{\prime}. Hence the projectivity $g_{\ell^{\prime}}$ of $\operatorname{PGL}(2 n+2, q)$ associated with the matrix

$$
\left(\begin{array}{c|c}
M_{\ell^{\prime}} & 0 \\
\hline 0 & I_{2 n-2}
\end{array}\right)
$$

sends \mathbb{S}_{n} to a q-covering design $\mathbb{C}_{q}(2 n, 4,3)$ of $\left\langle\Lambda_{n}, \ell^{\prime}\right\rangle$. Varying r among the lines of Π, we obtain a set G of $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ projectivities g_{r} of PGL $(2 n+2, q)$ and each of them fixes pointwise Λ_{n}. If r, r^{\prime} are two distinct lines of Π, then $\left\langle\Lambda_{n}, r\right\rangle \cap\left\langle\Lambda_{n}, r^{\prime}\right\rangle$ is at most a $2(n-1)$-space containing Λ_{n}; hence $\left|\overline{\mathcal{V}}^{g_{r}}\right|=\left|\overline{\mathcal{V}}^{g_{r^{\prime}}}\right|$ and $\left|\overline{\mathcal{V}}^{g_{r}} \cap \overline{\mathcal{V}}^{g_{r^{\prime}}}\right|=0$. Let \mathcal{S} be a line-spread of Π such that $\ell \in \mathcal{S}$. We have that if r, r^{\prime} are two distinct lines of \mathcal{S}, then $\left|\overline{\mathcal{W}}^{g_{r}}\right|=\left|\overline{\mathcal{W}}^{g_{r^{\prime}}}\right|$ and $\left|\overline{\mathcal{W}}^{g_{r}} \cap \overline{\mathcal{W}}^{g_{r^{\prime}}}\right|=0$. Denote by \mathcal{V} the following set of solids:

$$
\bigcup_{g_{r} \in G, r \notin \mathcal{S}} \overline{\mathcal{V}}^{g_{r}}
$$

and by \mathcal{W} the following set of solids:

$$
\bigcup_{g_{r} \in G, r \in \mathcal{S}} \overline{\mathcal{W}}^{g_{r}}
$$

Let $\mathbb{S}_{n+1}=\mathcal{U} \cup \mathcal{V} \cup \mathcal{W} \cup \mathcal{Z}$. We claim that \mathbb{S}_{n+1} is a q-covering design $\mathbb{C}_{q}(2 n+2,4,3)$. Let π be a plane of $\mathrm{PG}(2 n+1, q)$. If π is disjoint from Λ_{n}, then, from Proposition 1, there is a unique solid of \mathcal{U} containing π. If π meets Λ_{n} in a point, then $\left\langle\Lambda_{n}, \pi\right\rangle$ is a $(2 n-1)$-space meeting the solid Π in a line, say r. Then there is at least one solid of $\overline{\mathcal{V}}^{g_{r}}$ or of $\overline{\mathcal{W}}^{g_{r}}$ containing π, according as $r \notin \mathcal{S}$ or $r \in \mathcal{S}$, respectively. If π shares with Λ_{n} a line, then $\left\langle\Lambda_{n}, \pi\right\rangle$ is a $2(n-1)$-space meeting the solid Π in a point Q. Let ℓ^{\prime} be the unique member of \mathcal{S} containing Q; thus there is a solid of $\overline{\mathcal{W}}^{g_{\ell^{\prime}}}$ containing π. Finally, if $\pi \subset \Lambda_{n}$, then there is at least a solid of $\overline{\mathcal{W}}^{g_{e}} \cup \mathcal{Z}$ containing π.

By construction it follows that

$$
\begin{aligned}
\left|\mathbb{S}_{n+1}\right|= & q^{6(n-1)}+\left(q^{2}+1\right)\left(q^{2}+q\right)\left(\left|\mathbb{S}_{n}\right|-\beta_{n}-q\left(\beta_{n}-\alpha_{n}\right)\right)+\left(q^{2}+1\right)\left(\left|\mathbb{S}_{n}\right|-\alpha_{n}\right)+\alpha_{n} \\
& =q^{6(n-1)}+\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left|\mathbb{S}_{n}\right|-q(q+1)^{2}\left(q^{2}+1\right) \beta_{n}+q^{3}\left(q^{2}+q+1\right) \alpha_{n} .
\end{aligned}
$$

In order to complete the proof, set $\Lambda_{n+1}=\left\langle\Lambda_{n}, \ell\right\rangle$. The number of solids of \mathbb{S}_{n+1} that are contained in Λ_{n+1} coincides with $\left|\mathbb{S}_{n}\right|$. Hence $\alpha_{n+1}=\left|\mathbb{S}_{n}\right|$. A hyperplane \mathcal{H} of $\operatorname{PG}(2 n+1, q)$ through Λ_{n+1} meets Π in a plane, say σ, where $\ell \subset \sigma$. Since the unique line of \mathcal{S} contained in σ is ℓ, we have that the solids of \mathbb{S}_{n+1} contained in \mathcal{H} are either the solids of $\overline{\mathcal{W}}^{g_{\ell}}$ or the solids contained in

$$
\bigcup_{r \text { line of } \sigma, r \neq \ell} \overline{\mathcal{V}}^{g_{r}},
$$

or the image under $g_{r} \in G$ of the $\beta_{n}-\alpha_{n}$ solids of \mathbb{S}_{n} contained in $\left\langle\Lambda_{n}, P\right\rangle$, where $P \in \ell$, $r \in \mathcal{S}, r \neq \ell$, and $P^{g_{r}} \in \sigma$.

Therefore

$$
\begin{aligned}
\beta_{n+1} & =\left(q^{2}+q\right)\left(\left|\mathbb{S}_{n}\right|-\beta_{n}-q\left(\beta_{n}-\alpha_{n}\right)\right)+q^{2}\left(\beta_{n}-\alpha_{n}\right)+\left|\mathbb{S}_{n}\right| \\
& =\left(q^{2}+q+1\right)\left|\mathbb{S}_{n}\right|-q\left(q^{2}+q+1\right) \beta_{n}+q^{3} \alpha_{n} .
\end{aligned}
$$

3 On $\mathcal{C}_{q}(2 n, 3,2)$

In this section we provide an upper bound on $\mathcal{C}_{q}(2 n, 3,2), n \geqslant 4$. In [7], a constructive upper bound on $\mathcal{C}_{q}(6,3,2)$ has been given. In what follows we recall the construction and some of the properties of this q-covering design.
Construction 4. Let g be a Greek plane of $\mathcal{Q}^{+}(5, q)$. From [7, Lemma 2.2], there exists a set \mathcal{X} of $q^{6}-q^{3}$ planes disjoint from g and meeting $\mathcal{Q}^{+}(5, q)$ in a non-degenerate conic that, together with the set \mathcal{Y} of $q^{3}+q^{2}+q$ Greek planes of $\mathcal{Q}^{+}(5, q)$ distinct from g, cover every line ℓ of $\mathrm{PG}(5, q)$ that is either disjoint from g or contained in $\mathcal{Q}^{+}(5, q) \backslash g$.

Let ℓ be a line of g. Through the line ℓ there pass $q-1$ planes meeting $\mathcal{Q}^{+}(5, q)$ exactly in ℓ and a unique Latin plane π. Varying the line ℓ over the plane g and considering the planes meeting $\mathcal{Q}^{+}(5, q)$ exactly in ℓ, we get a family \mathcal{Z} of consisting of $(q-1)\left(q^{2}+q+1\right)=$ $q^{3}-1$ planes. From [7, Lemma 2.3], every line that is tangent to $\mathcal{Q}^{+}(5, q)$ at a point of g is contained in exactly a plane of \mathcal{Z}.

Let P be a point of ℓ. Through the point P there pass q lines of π and q lines of g distinct from ℓ and contained in $\mathcal{Q}^{+}(5, q)$. Let S be the set of q^{2} planes generated by a line of π through P distinct from ℓ and a line of g through P distinct from ℓ. Let C be a Singer cyclic group of the group $H \simeq \operatorname{PGL}(3, q)$. Here H is a subgroup of G stabilizing the plane g. Let \mathcal{T} be the orbit of the set S under C. Then \mathcal{T} consists of $q^{2}\left(q^{2}+q+1\right)$ planes and each of these planes has $2 q+1$ points in common with $\mathcal{Q}^{+}(5, q)$ on two intersecting lines of $\mathcal{Q}^{+}(5, q)$. From [7, Lemma 2.4], every line that is secant to $\mathcal{Q}^{+}(5, q)$ and has a point on g is contained in exactly one plane of \mathcal{T}.

Theorem 5 ([7, Theorem 2.5]). The set $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \cup \mathcal{T}$ is a q-covering design $\mathbb{C}_{q}(6,3,2)$ of size $q^{6}+q^{4}+2 q^{3}+2 q^{2}+q-1$.

We will need the following result.
Theorem 6. There exists a hyperplane Γ of $\operatorname{PG}(5, q)$ such that $q^{3}+2 q^{2}+q-1$ elements of $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \cup \mathcal{T}$ are contained in Γ.

Proof. Let Γ be a hyperplane of $\operatorname{PG}(5, q)$ containing g. Then Γ is a tangent hyperplane and contains the planes of $\mathcal{Q}^{+}(5, q)$ through a point R of g. In particular, there are q planes of \mathcal{Y} contained in Γ. First of all observe that no plane of \mathcal{X} is contained in Γ. Indeed, by way of contradiction, assume that a plane of \mathcal{X} is contained in Γ. Then such a plane would meet g in at least a point, contradicting the fact that every plane of \mathcal{X} is disjoint from g. A plane of \mathcal{Z} that is contained in Γ has to contain the point R. On the other hand, the $q-1$ planes of \mathcal{Z}, passing through a line of g which is incident with R, are contained in Γ. Hence there are $(q+1)(q-1)=q^{2}-1$ planes of \mathcal{Z} contained in Γ. If π is a Latin plane contained in Γ, then $\pi \cap g$ is a line, say ℓ. By construction there is a point $P \in \ell$ such that the set \mathcal{T} contains q^{2} planes meeting π in a line through P and g in a line through P. Note that these q^{2} planes of \mathcal{T} are contained in Γ. It follows that there are $q^{2}(q+1)$ planes of \mathcal{T} contained in Γ. The result follows.

Starting from the q-covering design $\mathbb{C}_{q}(6,3,2)$ of Theorem 5 , Theorem 2 can be used recursively to obtain a q-covering design $\mathbb{C}_{q}(2 n, 3,2), n \geqslant 4$, of size

$$
q^{2} \theta_{2 n-4, q^{2}}+q^{2 n-3}-1+\sum_{i=2}^{n-1}\left(\theta_{4 i-5, q}-\theta_{2 i-4, q}\right)
$$

In particular there is a hyperplane Γ of $\operatorname{PG}(2 n-1, q)$ such that there are

$$
q^{2 n-3}+\sum_{j=0}^{n-2} q^{2(n+j-1)}
$$

planes of $\mathbb{C}_{q}(2 n, 3,2)$ not contained in Γ and

$$
(q+1)\left(\sum_{i=2}^{n-1}\left(q^{2 i-3}+\sum_{j=0}^{i-2} q^{2(i+j-1)}\right)\right)-1
$$

planes of $\mathbb{C}_{q}(2 n, 3,2)$ contained in Γ.
Theorem 7. If $n \geqslant 3$, then

$$
\mathcal{C}_{q}(2 n, 3,2) \leqslant q^{2} \theta_{2 n-4, q^{2}}+q^{2 n-3}-1+\sum_{i=2}^{n-1}\left(\theta_{4 i-5, q}-\theta_{2 i-4, q}\right) .
$$

$4 \quad$ On $\mathcal{C}_{q}(3 n+8,4,2)$

In this section we provide an upper bound on $\mathcal{C}_{q}(3 n+8,4,2), n \geqslant 0$. We first deal with the case $n=0$.
Construction 8. Let \mathcal{A} be a $(4 \times 4,3)_{q}$ MRD-code and let $\mathcal{X}=\{L(A) \mid A \in \mathcal{A}\}$ be the set of q^{8} solids of $\operatorname{PG}(7, q)$ obtained by lifting the matrices of \mathcal{A}. Let Σ^{\prime} be the solid of $\operatorname{PG}(7, q)$ containing $U_{1}, U_{2}, U_{3}, U_{4}$. Then Σ^{\prime} is disjoint from Σ. Let $\mathcal{S}=\left\{\ell_{i} \mid 1 \leqslant i \leqslant q^{2}+1\right\}$ be a line-spread of Σ, let $\mathcal{S}^{\prime}=\left\{\ell_{i}^{\prime} \mid 1 \leqslant i \leqslant q^{2}+1\right\}$ be a line-spread of Σ^{\prime} and let $\mu: \ell_{i}^{\prime} \in \mathcal{S}^{\prime} \longmapsto \ell_{i} \in \mathcal{S}$ be a bijection. Let Γ_{i} denote the 5 -space containing Σ and ℓ_{i}^{\prime}, $1 \leqslant i \leqslant q^{2}+1$. If γ is a plane of Σ, then there are $q^{2}+q$ solids of Γ_{i} meeting Σ exactly in γ. Let \mathcal{Y}_{i} be the set of $q(q+1)^{2}$ solids of Γ_{i} (distinct from Σ) meeting Σ in a plane containing $\mu\left(\ell_{i}^{\prime}\right)$. Let $\mathcal{Y}=\bigcup_{i=1}^{q^{2}+1} \mathcal{Y}_{i}$. Then \mathcal{Y} consists of $q(q+1)^{2}\left(q^{2}+1\right)$ solids.
Theorem 9. The set $\mathcal{X} \cup \mathcal{Y}$ is a q-covering design $\mathbb{C}_{q}(8,4,2)$ of size $q^{8}+q(q+1)^{2}\left(q^{2}+1\right)$.
Proof. Let r be a line of $\operatorname{PG}(7, q)$. If r is disjoint from Σ, then from Proposition 1, we have that r is contained in exactly one element of \mathcal{X}. If r meets Σ in one point, say P, then let Λ be the 4 -space $\langle\Sigma, r\rangle$, let ℓ_{j} be the unique line of \mathcal{S} containing P, let P^{\prime} be the point $\Sigma^{\prime} \cap \Lambda$ and let ℓ_{k}^{\prime} be the unique line of \mathcal{S}^{\prime} containing P^{\prime}. If $j=k$, then $P \in \ell_{k}$ and r is contained in the $q+1$ solids $\langle\alpha, r\rangle$ of \mathcal{Y}, where α is a plane of Σ containing ℓ_{k}. If $j \neq k$, then $P \notin \ell_{k}$. Let β be the plane of Σ containing ℓ_{k} and P. Then r is contained in $\langle\beta, r\rangle$, where $\langle\beta, r\rangle$ is a solid of \mathcal{Y}. Finally let r be a line of Σ, then r is contained in $q(q+1)^{2}$ solids of \mathcal{Y}.

Remark 10. Let \mathcal{L} be a Desarguesian line-spread of $\mathrm{PG}(7, q)$. There are $\left(q^{4}+1\right)\left(q^{4}+q^{2}+1\right)$ solids of $\operatorname{PG}(7, q)$ containing exactly $q^{2}+1$ lines of \mathcal{L}. If \mathcal{Z} denotes the set of these solids, then it is not difficult to see that every line of $\operatorname{PG}(7, q)$ is contained in at least a solid of \mathcal{Z}. In [17, p. 221], K. Metsch posed the following question: "Is $\left(q^{4}+1\right)\left(q^{4}+q^{2}+1\right)$ the smallest cardinality of a set of 3 -spaces of $\operatorname{PG}(7, q)$ that cover every line?" Theorem 9 provides a negative answer to this question.
Remark 11. When $q=2$, in the proof of [10, Theorem 13], the existence of a 2 -covering design $\mathbb{C}_{2}(8,4,2)$ of size 346 has been shown.

Proposition 12. There exists a hyperplane Γ of $\mathrm{PG}(7, q)$ such that precisely $q(q+1)(2 q+$ 1) members of $\mathcal{X} \cup \mathcal{Y}$ are contained in Γ.

Proof. Let Γ be a hyperplane of $\operatorname{PG}(7, q)$ containing Σ. Then no element of \mathcal{X} is contained in Γ, otherwise such a solid would meet Σ, contradicting the fact that every solid in \mathcal{X} is disjoint from Σ. The hyperplane Γ intersects Σ^{\prime} in a plane σ. The plane σ contains exactly one line of \mathcal{S}^{\prime}, say ℓ_{k}^{\prime}. Hence the $q(q+1)^{2}$ solids of \mathcal{Y} meeting Σ in a plane through the line $\mu\left(\ell_{k}^{\prime}\right)=\ell_{k}$ are contained in Γ. Let $\ell_{j}^{\prime} \in \mathcal{S}^{\prime}$, with $j \neq k$, then $\ell_{j}^{\prime} \cap \sigma$ is a point, say R. In this case the $q+1$ solids generated by R and a plane of Σ through $\mu\left(\ell_{j}^{\prime}\right)=\ell_{j}$ is contained in Γ. Since the elements of \mathcal{Y} are those contained in the 5 -space $\left\langle\Sigma, \ell_{i}^{\prime}\right\rangle$, where $\ell_{i}^{\prime} \in \mathcal{S}^{\prime}$, and meeting Σ in a plane through ℓ_{i}, the proof is complete.

As before, by using Theorem 2, the q-covering design of Theorem 9 can be used recursively to obtain a q-covering design $\mathbb{C}_{q}(3 n+8,4,2), n \geqslant 1$, of size

$$
q^{3 n+5} \theta_{n+1, q^{3}}+\sum_{i=0}^{n-1}\left(\theta_{6 i+10, q}-\theta_{3 i+4, q}\right)+\sum_{i=0}^{n}\left(q^{3 i+2}\left(2 q^{2}-1\right)\right)+q(q+1)(2 q+1)
$$

In particular, there exists a hyperplane Γ of $\operatorname{PG}(3 n+7, q)$ such that there are

$$
q^{3 n+2}\left(2 q^{2}-1\right)+\sum_{j=0}^{n+1} q^{3(n+j)+5}
$$

solids of $\mathbb{C}_{q}(3 n+8,4,2)$ not contained in Γ and

$$
\left(q^{2}+q+1\right)\left(\sum_{i=0}^{n-1}\left(q^{3 i+2}\left(2 q^{2}-1\right)+\sum_{j=0}^{i+1} q^{3(i+j)+5}\right)\right)+q(q+1)(2 q+1)
$$

solids of $\mathbb{C}_{q}(3 n+8,4,2)$ contained in Γ.
Theorem 13. If $n \geqslant 0$, then
$\mathcal{C}_{q}(3 n+8,4,2) \leqslant q^{3 n+5} \theta_{n+1, q^{3}}+\sum_{i=0}^{n-1}\left(\theta_{6 i+10, q}-\theta_{3 i+4, q}\right)+\sum_{i=0}^{n}\left(q^{3 i+2}\left(2 q^{2}-1\right)\right)+q(q+1)(2 q+1)$.

5 On $\mathcal{C}_{q}(2 n, 4,3)$

The main goal of this section is to give an upper bound on $\mathcal{C}_{q}(2 n, 4,3)$, $n \geqslant 4$. We begin by providing a construction in the case $n=4$.
Construction 14. Let \mathcal{A} be a $(4 \times 4,2)_{q}$ MRD-code and let $\mathcal{X}=\{L(A) \mid A \in \mathcal{A}\}$ be the set of q^{12} solids of $\operatorname{PG}(7, q)$ obtained by lifting the matrices of \mathcal{A}. Let Σ^{\prime} be the solid of $\operatorname{PG}(7, q)$ containing $U_{1}, U_{2}, U_{3}, U_{4}$. Then Σ^{\prime} is disjoint from Σ. Let $\mathcal{P}=\left\{\mathcal{S}_{i} \mid 1 \leqslant i \leqslant\right.$ $\left.q^{2}+q+1\right\}$ be a 1 -parallelism of Σ, let $\mathcal{P}^{\prime}=\left\{\mathcal{S}_{i}^{\prime} \mid 1 \leqslant i \leqslant q^{2}+q+1\right\}$ be a 1-parallelism of Σ^{\prime} and let $\mu: \mathcal{S}_{i}^{\prime} \in \mathcal{P}^{\prime} \longmapsto \mathcal{S}_{i} \in \mathcal{P}_{i}$ be a bijection. For a line ℓ^{\prime} of Σ^{\prime}, let $\Gamma_{\ell^{\prime}}$ denote the 5 -space containing Σ and ℓ^{\prime}. Since \mathcal{P}^{\prime} is a 1 -parallelism of Σ^{\prime}, there exists a unique j, with $1 \leqslant j \leqslant q^{2}+q+1$, such that $\ell^{\prime} \in \mathcal{S}_{j}^{\prime}$. Note that $\mu\left(\mathcal{S}_{j}^{\prime}\right)=\mathcal{S}_{j}$ is a line-spread of Σ. Let ℓ be a line of \mathcal{S}_{j} and let \mathcal{Y}_{ℓ} be the set of q^{4} solids of $\Gamma_{\ell^{\prime}}$ (distinct from Σ) meeting Σ exactly in ℓ. Let $\mathcal{Z}_{\ell^{\prime}}=\bigcup_{\ell \in \mathcal{S}_{j}} \mathcal{Y}_{\ell}$. Then $\mathcal{Z}_{\ell^{\prime}}$ consists of $q^{4}\left(q^{2}+1\right)$ solids. Varying ℓ^{\prime} among the lines of Σ^{\prime}, we get a set

$$
\mathcal{Z}=\bigcup_{\ell^{\prime} \text { line of } \Sigma^{\prime}} \mathcal{Z}_{\ell^{\prime}}
$$

consisting of $q^{4}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)$ solids.
Theorem 15. The set $\mathcal{X} \cup \mathcal{Z} \cup\{\Sigma\}$ is a q-covering design $\mathbb{C}_{q}(8,4,3)$ of size $q^{12}+q^{4}\left(q^{2}+\right.$ $1)^{2}\left(q^{2}+q+1\right)+1$.

Proof. Let π be a plane of $\operatorname{PG}(7, q)$. If π is disjoint from Σ, then, from Proposition 1 , we have that π is contained in exactly one element of \mathcal{X}. If π meets Σ in one point, say P, then let Λ be the 5 -space $\langle\Sigma, \pi\rangle$ and let ℓ^{\prime} be the line of Σ^{\prime} obtained by intersecting Σ^{\prime} with Λ. Note that $\Lambda=\Gamma_{\ell^{\prime}}$. Let \mathcal{S}_{j}^{\prime} be the unique line-spread of \mathcal{P}^{\prime} containing ℓ^{\prime}. Then there exists a unique line ℓ of $\mathcal{S}_{j}=\mu\left(\mathcal{S}_{j}^{\prime}\right)$ such that $P \in \ell$ and π is contained in $\langle\pi, \ell\rangle$, that is a solid of \mathcal{Z}. If π meets Σ in a line, say r, then let \mathcal{S}_{k} be the unique line-spread of \mathcal{P} containing r and let Λ be the 4 -space $\langle\Sigma, \pi\rangle$. Then $\Lambda \cap \Sigma^{\prime}$ is a point, which belongs to a unique line, say r^{\prime}, of the line-spread $\mu^{-1}\left(\mathcal{S}_{k}\right)=\mathcal{S}_{k}^{\prime}$ of \mathcal{P}^{\prime}. Since there are q^{2} solids of $\Gamma_{r^{\prime}}$ meeting Σ exactly in r and containing π, we have that in this case π is contained in q^{2} members of \mathcal{Z}. Finally if π is a plane of Σ, then π is contained in Σ.

Remark 16. Note that, as regard as the case $q=2$, in the proof of [10, Theorem 16] the author exhibited a 2 -covering design $\mathbb{C}_{2}(8,4,3)$ of size 6897 .

Proposition 17. There exists a 5-space Λ of $\operatorname{PG}(7, q)$ containing exactly $q^{4}\left(q^{2}+1\right)+1$ members of $\mathcal{X} \cup \mathcal{Z} \cup\{\Sigma\}$. Moreover every hyperplane of $\operatorname{PG}(7, q)$ through Λ contains precisely $q^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)+1$ solids of $\mathcal{X} \cup \mathcal{Z} \cup\{\Sigma\}$.

Proof. Let Λ be a 5 -space containing Σ. Then Λ meets Σ^{\prime} in a line, say r, and $\Lambda=\langle\Sigma, r\rangle$. The line r belongs to a unique line-spread \mathcal{S}_{i}^{\prime} of the 1 -parallelism \mathcal{P}^{\prime} of Σ^{\prime}. Then $\mu\left(\mathcal{S}_{i}^{\prime}\right)=\mathcal{S}_{i}$ is a line-spread belonging to the 1 -parallelism \mathcal{P} of Σ. The $q^{4}\left(q^{2}+1\right)$ solids of \mathcal{Z} lying in $\langle\Sigma, r\rangle$ meet Σ in a line of \mathcal{S}_{i} and are contained in Λ. Let s be a line of Σ^{\prime} such that $s \neq r$. In this case none of the $q^{4}\left(q^{2}+1\right)$ solids of \mathcal{Z} lying in $\langle\Sigma, s\rangle$ is contained in Λ. Indeed,
assume by contradiction that there is a solid Δ contained in $\Lambda \cap\langle\Sigma, s\rangle$, then $\Delta \subset\langle\Sigma, s \cap r\rangle$ and hence $\Delta \cap \Sigma$ is a plane of Σ, contradicing the fact that every solid of \mathcal{Z} meets Σ in a line. On the other hand, no solid of \mathcal{X} is contained in Λ, otherwise such a solid would meet Σ not trivially. Finally note that Σ is a solid of Λ.

Let Γ be a hyperplane of $\operatorname{PG}(7, q)$ through Λ. Then $\Gamma \cap \Sigma^{\prime}$ is a plane, say σ, containing the line r. Repeating the previous argument for every line of the plane σ, it turns out that there are $q^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ solids of \mathcal{Z} in Γ, as required.

Let \mathbb{S}_{4} denotes $\mathcal{X} \cup \mathcal{Z} \cup\{\Sigma\}$. As in the previous sections, \mathbb{S}_{4} can be used as a basis for a recursive construction of a q-covering designs $\mathbb{C}_{q}(2 n, 4,3), n \geqslant 5$.

Theorem 18.

$$
\begin{gathered}
\mathcal{C}_{q}(8,4,3) \leqslant q^{12}+q^{4}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)+1 \\
\mathcal{C}_{q}(10,4,3) \leqslant q^{18}+q^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{8}+q^{6}+q^{4}+q^{3}+q^{2}+1\right)+1
\end{gathered}
$$

Acknowledgements

We would like to thank the anonymous referee for his valuable comments.

References

[1] A. Beutelspacher. On parallelisms in finite projective spaces. Geom. Dedicata, 3:3540, 1974.
[2] A. Beutelspacher. On t-covers in finite projective spaces. J. Geom., 12(1):10-16, 1979.
[3] A. Beutelspacher and J. Ueberberg. A characteristic property of geometric t-spreads in finite projective spaces. European J. Combin., 12(4):277-281, 1991.
[4] A. Blokhuis, P. Sziklai and T. Szőnyi. Blocking sets in projective spaces. In Current Research Topics in Galois Geometry, Nova Science Publishers, Inc., pp. 63-86, 2014.
[5] R. C. Bose and R. C. Burton. A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combinatorial Theory, 1:96-104, 1966.
[6] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy, and A. Wassermann. Existence of q-analogs of Steiner systems. Forum Math. Pi, 4 e7:14 pp., 2016.
[7] A. Cossidente and F. Pavese. A note on q-covering designs in $\operatorname{PG}(5, q)$. J. Combin. Des., 24:383-388, 2016.
[8] P. Delsarte. Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A, 25:226-241, 1978.
[9] J. Eisfeld and K. Metsch. Blocking s-dimensional subspaces by lines in $\operatorname{PG}(2 s, q)$. Combinatorica, 17(2):151-162, 1997.
[10] T. Etzion. Covering of subspaces by subspaces. Des. Codes Cryptogr., 72:405-421, 2014.
[11] T. Etzion and A. Vardy. On q-Analogs for Steiner Systems and Covering Designs. Adv. Math. Commun., 5:161-176, 2011.
[12] E. M. Gabidulin. Theory of codes with maximum rank distance. Problems of Information Transmission, 21:1-12, 1985.
[13] J. W. P. Hirschfeld. Projective Geometries over Finite Fields. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.
[14] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985.
[15] J. W. P. Hirschfeld and J. A. Thas. General Galois Geometries. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.
[16] R. Koetter and F. R. Kschischang. Coding for errors and erasures in random network coding. IEEE Trans. on Inform. Theory, 54:3579-3591, 2008.
[17] K. Metsch. Blocking sets in projective spaces and polar spaces. J. Geom., 76:216-232, 2003.
[18] K. Metsch. Blocking subspaces by lines in PG(n,q). Combinatorica, 24:459-486, 2004.
[19] R. M. Roth. Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inform. Theory, 37:328-336, 1991.
[20] B. Segre. Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl., 64:1-76, 1964.
[21] J. Sheekey. MRD Codes: Constructions and Connections. In Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.), De Gruyter, 2019.
[22] D. Silva, F. R. Kschischang, and R. Koetter. A rank-metric approach to error control in random network coding. IEEE Trans. Inform. Theory, 54:3951-3967, 2008.

[^0]: *This work was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA- INdAM).

