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Abstract

A q–covering design Cq(n, k, r), k > r, is a collection X of (k − 1)–spaces of
PG(n − 1, q) such that every (r − 1)–space of PG(n − 1, q) is contained in at least
one element of X . Let Cq(n, k, r) denote the minimum number of (k−1)–spaces in a
q–covering design Cq(n, k, r). In this paper improved upper bounds on Cq(2n, 3, 2),
n > 4, Cq(3n+8, 4, 2), n > 0, and Cq(2n, 4, 3), n > 4, are presented. The results are
achieved by constructing the related q–covering designs.

Mathematics Subject Classifications: 51E20, 05B40, 05B25, 51A05

1 Introduction

Let q be any prime power, let GF(q) be the finite field with q elements and let PG(n−1, q)
be the (n− 1)–dimensional projective space over GF(q). We will use the term k–space to
denote a subspace of PG(n−1, q) of projective dimension k. Let t 6 s. A blocking set B is
a set of (t−1)–spaces of PG(n−1, q) such that every (s−1)–space of PG(n−1, q) contains
at least one element of B. In the last fifty years the general problem of determining the
smallest cardinality of a blocking set B has been studied by several authors (see [17, 4]
and references therein) and in very few cases has been completely solved [5, 2, 3, 9, 18].

A blocking set B can be seen as a q–analog of a well known combinatorial design,
called Turán design, see [11], [10]. Indeed, a blocking set B is also called a q–Turán
design Tq(n, t, s). The dual structure of a q–Turán design Tq(n, t, s) is called q–covering
design and it is denoted with Cq(n, n − t, n − s). In other words, a q–covering design
Cq(n, k, r) is a collection X of (k − 1)–spaces of PG(n − 1, q) such that every (r − 1)–
space of PG(n − 1, q) is contained in at least one element of X . Let Cq(n, k, r) denote
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the minimum number of (k − 1)–spaces in a q–covering design Cq(n, k, r). Lower and
upper bounds on Cq(n, k, r) were considered in [11], [10]. Lower bounds are obtained by
providing q–analogs of classical results which have been proved in the context of covering
designs and Turán designs; upper bounds are obtained by explicit constructions of the
related q–covering designs. A q–covering design Cq(n, k, r) which cover every (r−1)–space
exactly once is called q–Steiner system. If r = 1, a q–Steiner system Cq(n, k, r) is also
known as (k − 1)–spread of PG(n− 1, q); spreads have been widely investigated in finite
geometry and it is known that a (k − 1)–spread of PG(n − 1, q) exists if and only if k
divides n, see [20].

The concept of q–covering design is of interest not only in projective geometry and
design theory, but also in coding theory. Indeed, in recent years there has been an
increasing interest in q–covering designs due to their connections with constant–dimension
codes. An (n,M, 2δ; k)q constant–dimension subspace code (CDC) is a set S of (k − 1)–
spaces of PG(n − 1, q) such that |S| = M and every (k − δ)–space of PG(n − 1, q) is
contained in at most one member of S or, equivalently, any two distinct codewords of S
intersect in at most a (k − δ − 1)–space. Subspace codes of largest possible size are said
to be optimal. Therefore, a q–Steiner system is an optimal constant–dimension code (so
far, apart from spreads, there is only one known example of q–Steiner system, i.e., the
2–covering design C2(13, 3, 2) of smallest possible size [6]). Observe that, as shown in the
inspiring article by Koetter and Kschischang [16], constant–dimension codes can be used
for error–correction in random linear network coding theory.

In this paper we discuss bounds on q–covering designs. In Section 3, based on the q–
covering design Cq(6, 3, 2) constructed in [7], an improved upper bound on Cq(2n, 3, 2), n >
4, is presented. In the last two sections, starting from a lifted MRD–code, improvements
on the upper bounds of Cq(3n + 8, 4, 2), n > 0, and Cq(2n, 4, 3), n > 4, are obtained.
In particular, first q–covering designs Cq(8, 4, r), r = 2, 3, of PG(7, q) are constructed.
Then, by induction, q–covering designs Cq(3n + 8, 4, 2), n > 0, and Cq(2n, 4, 3), n > 4,
are presented.

In the sequel we will use the following notation θn,q :=
[
n+1

1

]
q

= qn + . . .+ q + 1.

2 Preliminaries

A conic of PG(2, q) is the set of points of PG(2, q) satisfying a quadratic equation: a11X
2
1 +

a22X
2
2 + a33X

2
3 + a12X1X2 + a13X1X3 + a23X2X3 = 0. There exist four kinds of conics in

PG(2, q), three of which are degenerate (splitting into lines, which could be in the plane
PG(2, q2)) and one of which is non–degenerate, see [13].

A regulus is the set of lines intersecting three skew (disjoint) lines and has size q + 1.
The hyperbolic quadric Q+(3, q), is the set of points of PG(3, q) which satisfy the equation
X1X2 +X3X4 = 0. The hyperbolic quadric Q+(3, q) consists of (q+1)2 points and 2(q+1)
lines that are the union of two reguli. Through a point of Q+(3, q) there pass two lines
belonging to different reguli.

A 1–spread is also called line–spread. Recall that a line–spread of PG(3, q) is a set
S of q2 + 1 lines of PG(3, q) with the property that each point of PG(3, q) is incident
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with exactly one element of S. A 1–parallelism of PG(3, q) is a collection P of q2 + q + 1
line–spreads such that each line of PG(3, q) is contained in exactly one line–spread of P .
In [1] the author proved that there exist 1–parallelisms in PG(3, q).

The Klein quadric Q+(5, q), is the set of points of PG(5, q) which satisfy the equation
X1X2+X3X4+X5X6 = 0. The Klein quadric contains (q2+1)(q2+q+1) points of and two
families each consisting of q3 +q2 +q+1 planes called Latin planes and Greek planes. Two
distinct planes in the same family share exactly one point, whereas planes lying in distinct
families are either disjoint or meet in a line. A line of PG(5, q) not contained in Q+(5, q) is
either external, or tangent, or secant to Q+(5, q), according as it contains 0, 1 or 2 points of
Q+(5, q). A hyperplane of PG(5, q) contains either q3 +2q2 +q+1 or q3 +q2 +q+1 points
of Q+(5, q). In the former case the hyperplane is called tangent, contains the 2(q + 1)
planes of Q+(5, q) through one of its points, say R, and meets Q+(5, q) in a cone having
as vertex the point R and as base a hyperbolic quadric Q+(3, q). In the latter case the
hyperplane is called secant and contains no plane of Q+(5, q). The stabilizer of Q+(5, q)
in PGL(6, q), say G, contains a subgroup isomorphic to PGL(4, q). Also, the stabilizer
in G of a plane g of Q+(5, q) contains a subgroup H isomorphic to PGL(3, q) acting in
its natural representation on the points and lines of g. For more details see [14, Chapter
1]. A Singer cyclic subgroup of PGL(k, q) is a cyclic group acting regularly on points and
hyperplanes of a projective space PG(k − 1, q).

2.1 Lifting an MRD–code

The set Mn×m(q), n 6 m, of n ×m matrices over the finite field GF(q) forms a metric
space with respect to the rank distance defined by dr(A,B) = rank(A−B). The maximum
size of a code of minimum distance δ, with 1 6 δ 6 n, in (Mn×m(q), dr) is qm(n−δ+1). A
code A ⊂ Mn×m(q) attaining this bound is said to be a (n × m, δ)q maximum rank
distance code (or MRD–code in short). A rank distance code A is called GF(q)–linear if
A is a subspace ofMn×m(q) considered as a vector space over GF(q). Linear MRD–codes
exist for all possible parameters [8, 12, 19, 21].

We recall the so–called lifting process for a matrix A ∈ Mn×m(q), see [22]. Let In be
the n × n identity matrix. The rows of the n × n + m matrix (In|A) can be viewed as
coordinates of points in general position of an (n − 1)–space of PG(n + m − 1, q). This
subspace is denoted by L(A). Hence the matrix A can be “lifted” to the (n − 1)–space
L(A).

Here and in the sequel we denote by Ui the point of the ambient projective space
represented by the vector having 1 in i–th position and 0 elsewhere; furthermore we
denote by Σ the (m − 1)–space of PG(n + m − 1, q) containing Un+1, . . . , Un+m. Note
that if A ∈ A, then L(A) is disjoint from Σ. The following results are well known, see for
instance [10, Theorem 12].
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Proposition 1.

i) If A is a (3 × m, 2)q MRD–code, m > 3, then X = {L(A) | A ∈ A} is a set of
q2m planes of PG(m+ 2, q) such that every line of PG(m+ 2, q) disjoint from Σ is
contained in exactly one element of X .

ii) If A is a (4 × m, 3)q MRD–code, m > 4, then X = {L(A) | A ∈ A} is a set of
q2m solids of PG(m + 3, q) such that every line of PG(m + 3, q) disjoint from Σ is
contained in exactly one element of X .

iii) If A is a (4 × m, 2)q MRD–code, m > 4, then X = {L(A) | A ∈ A} is a set of
q3m solids of PG(m+ 3, q) such that every plane of PG(m+ 3, q) disjoint from Σ is
contained in exactly one element of X .

In [10, Theorem 15, Theorem 17], the author showed that it is possible to obtain a
2–covering design C2(n + k − 1, k, 2) or C2(n + 2, 4, 3) starting form a 2–covering design
C2(n, k, 2) or C2(n, 4, 3), respectively. These results can be easily generalized for any q.

Theorem 2. If there exists a q–covering design Cq(n, k, 2), n > 6, say Sn, and a hyper-
plane Λn of PG(n − 1, q) such that there are xn (k − 1)–spaces of Sn not contained in
Λn and yn (k − 1)–spaces of Sn contained in Λn, then there exists a q–covering design

Cq(n+ k − 1, k, 2), say Sn+k−1, such that |Sn+k−1| = q2(n−1) + qk−1
q−1

xn + yn.

Moreover there exists an (n+ k− 3)–space of PG(n+ k− 2, q), say Λn+k−1, such that
there are xn+k−1 = q2n−2 + qk−1xn (k − 1)–spaces of Sn+k−1 not contained in Λn+k−1 and

yn+k−1 = qk−1−1
q−1

xn + yn (k − 1)–spaces of Sn+k−1 contained in Λn+k−1.

Proof. In PG(n + k − 2, q), let Λn be the (n − 2)–space 〈Uk+1, . . . , Un+k−1〉. Let A be a
(k× (n− 1), k− 1)q MRD–code and let U = {L(A) | A ∈ A} be the set of q2(n−1) (k− 1)–
spaces of PG(n+k−2, q) obtained by lifting the matrices of A. Let Π be the (k−1)–space
〈U1, . . . , Uk〉. Thus Π is disjoint from Λn. Let us fix a point P̄ of Π. From the hypothesis
there is a q–covering design Cq(n, k, 2) of 〈Λn, P̄ 〉, say Sn, such that |Sn| = xn + yn and
yn is the number of (k − 1)–spaces of Sn contained in Λn.

Let M ∈ GL(k, q) such that the projectivities of PGL(k, q) induced by the matrices
M i, 1 6 i 6 qk − 1, form a Singer cyclic group of PGL(k, q). Then the projectivities of
PGL(n+ k − 1, q) associated with the matrices(

M i(q−1) 0
0 In−1

)
, 1 6 i 6 qk − 1,

give rise to a subgroup C of PGL(n+k−1, q) having order (qk−1)/(q−1). In particular,
the group C fixes pointwise Λn and permutes the points of Π in a single orbit. Hence, if
g, g′ ∈ C, g 6= g′, then Sgn ∩ Sg′n consists of the yn members of Sgn contained in Λn.

Let V =
⋃
g∈C Sng. Observe that U ∪ V is a q–covering design Cq(n + k − 1, k, 2).

Indeed, from Proposition 1, every line of PG(n + k − 2, q) disjoint from Λn is contained
in exactly one element of U . On the other hand, if r is a line of PG(n+ k− 2, q) meeting
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Λn in at least a point, then r is contained in 〈Λn, P̄
g〉, for some g ∈ C, and r is contained

in at least an element of Sgn. Hence U ∪V is a q–covering design Cq(n+ k− 1, k, 2). Note

that |U ∪ V| = q2(n−1) + qk−1
q−1

xn + yn.

Let σ be a (k − 2)–space of Π and let Λn+k−1 be the hyperplane 〈Λn, σ〉 of PG(n +
k − 2, q). Since every (k − 1)–space of U is disjoint from Λn, we have that no member of
U is contained in Λn+k−1. The elements of V not contained in Λn+k−1 are (k − 1)–spaces
of 〈Λn, P 〉, for some point P ∈ Π \ σ, not contained in Λn. Hence there are

q2n−2 + qk−1xn

(k− 1)–spaces of U ∪V not contained in Λn+k−1. Finally note that the members of U ∪V
contained in Λn+k−1 are (k− 1)–spaces of 〈Λn, P 〉, for some point P ∈ σ. Hence there are

qk−1 − 1

q − 1
xn + yn

(k − 1)–spaces of U ∪ V contained in Λn+k−1.

Theorem 3. Let Sn be a q–covering design Cq(2n, 4, 3), n > 4, such that there is a
(2n−3)–space of PG(2n−1, q), say Λn, containing precisely αn elements of Sn and every
hyperplane of PG(2n − 1, q) through Λn contains βn members of Sn. Then there exists a
q–covering design Cq(2n+ 2, 4, 3), say Sn+1, where

|Sn+1| = q6(n−1) + (q2 + 1)(q2 + q + 1)|Sn| − q(q + 1)2(q2 + 1)βn + q3(q2 + q + 1)αn.

Moreover there exists a (2n− 1)–space of PG(2n+ 1, q), say Λn+1, containing αn+1 =
|Sn| elements of Sn+1 and such that every hyperplane of PG(2n + 1, q) through Λn+1

contains βn+1 members of Sn+1, where

βn+1 = (q2 + q + 1)|Sn| − (q3 + q2 + q)βn + q3αn.

Proof. Let Λn be the (2n−3)–space of PG(2n+1, q) generated by U5, . . . , U2n+2, let A be
a (4× (2n− 2), 2) MRD–code and let U be the set of q6(n−1) solids obtained by lifting the
matrices of A. Let Π be the solid 〈U1, U2, U3, U4〉. Thus Π is disjoint from Λn. From the
hypothesis there is a line ` of Π and a q–covering design Cq(2n, 4, 3), say Sn, of 〈Λn, `〉 such
that αn elements of Sn are contained in Λn and every 2(n − 1)–space of 〈Λn, `〉 through
Λn contains βn members of Sn. Let W̄ be the set of |Sn|−αn solids of Sn not contained in
Λn and let Z denote the αn solids of Sn contained in Λn. For a point P of `, there are βn
solids of Sn contained in 〈Λn, P 〉, among which αn are contained in Λn. Let V̄ be the set
of solids of Sn not contained in none of the 2(n− 1)–spaces of 〈Λn, `〉 through Λn. Then
V̄ consists of |Sn| − βn − q(βn − αn) solids and every plane of 〈Λn, `〉 intersecting Λn in
one point is contained in at least one element of V̄ . Note that V̄ ⊂ W̄ .

For a line `′ of Π, let M`′ ∈ GL(4, q) such that the projectivity of PGL(4, q) induced by
the matrix M`′ , maps the line ` to the line `′. Hence the projectivity g`′ of PGL(2n+ 2, q)
associated with the matrix (

M`′ 0
0 I2n−2

)
,
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sends Sn to a q–covering design Cq(2n, 4, 3) of 〈Λn, `
′〉. Varying r among the lines of Π,

we obtain a set G of (q2 + 1)(q2 + q + 1) projectivities gr of PGL(2n + 2, q) and each of
them fixes pointwise Λn. If r, r′ are two distinct lines of Π, then 〈Λn, r〉 ∩ 〈Λn, r

′〉 is at
most a 2(n− 1)–space containing Λn; hence |V̄gr | = |V̄gr′ | and |V̄gr ∩ V̄gr′ | = 0. Let S be
a line–spread of Π such that ` ∈ S. We have that if r, r′ are two distinct lines of S, then
|W̄gr | = |W̄gr′ | and |W̄gr ∩ W̄gr′ | = 0. Denote by V the following set of solids:⋃

gr∈G,r/∈S

V̄gr

and by W the following set of solids: ⋃
gr∈G,r∈S

W̄gr .

Let Sn+1 = U ∪V ∪W ∪Z. We claim that Sn+1 is a q–covering design Cq(2n+ 2, 4, 3).
Let π be a plane of PG(2n + 1, q). If π is disjoint from Λn, then, from Proposition 1,
there is a unique solid of U containing π. If π meets Λn in a point, then 〈Λn, π〉 is a
(2n− 1)–space meeting the solid Π in a line, say r. Then there is at least one solid of V̄gr
or of W̄gr containing π, according as r /∈ S or r ∈ S, respectively. If π shares with Λn

a line, then 〈Λn, π〉 is a 2(n − 1)–space meeting the solid Π in a point Q. Let `′ be the
unique member of S containing Q; thus there is a solid of W̄g`′ containing π. Finally, if
π ⊂ Λn, then there is at least a solid of W̄g` ∪ Z containing π.

By construction it follows that

|Sn+1| = q6(n−1) + (q2 + 1)(q2 + q) (|Sn| − βn − q(βn − αn)) + (q2 + 1)(|Sn| − αn) + αn

= q6(n−1) + (q2 + 1)(q2 + q + 1)|Sn| − q(q + 1)2(q2 + 1)βn + q3(q2 + q + 1)αn.

In order to complete the proof, set Λn+1 = 〈Λn, `〉. The number of solids of Sn+1

that are contained in Λn+1 coincides with |Sn|. Hence αn+1 = |Sn|. A hyperplane H of
PG(2n + 1, q) through Λn+1 meets Π in a plane, say σ, where ` ⊂ σ. Since the unique
line of S contained in σ is `, we have that the solids of Sn+1 contained in H are either the
solids of W̄g` or the solids contained in ⋃

r line of σ, r 6=`

V̄gr ,

or the image under gr ∈ G of the βn − αn solids of Sn contained in 〈Λn, P 〉, where P ∈ `,
r ∈ S, r 6= `, and P gr ∈ σ.

Therefore

βn+1 = (q2 + q) (|Sn| − βn − q(βn − αn)) + q2(βn − αn) + |Sn|
= (q2 + q + 1)|Sn| − q(q2 + q + 1)βn + q3αn.
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3 On Cq(2n, 3, 2)

In this section we provide an upper bound on Cq(2n, 3, 2), n > 4. In [7], a constructive
upper bound on Cq(6, 3, 2) has been given. In what follows we recall the construction and
some of the properties of this q–covering design.

Construction 4. Let g be a Greek plane of Q+(5, q). From [7, Lemma 2.2], there exists
a set X of q6 − q3 planes disjoint from g and meeting Q+(5, q) in a non–degenerate conic
that, together with the set Y of q3 + q2 + q Greek planes of Q+(5, q) distinct from g, cover
every line ` of PG(5, q) that is either disjoint from g or contained in Q+(5, q) \ g.

Let ` be a line of g. Through the line ` there pass q−1 planes meeting Q+(5, q) exactly
in ` and a unique Latin plane π. Varying the line ` over the plane g and considering the
planes meeting Q+(5, q) exactly in `, we get a family Z of consisting of (q−1)(q2+q+1) =
q3 − 1 planes. From [7, Lemma 2.3], every line that is tangent to Q+(5, q) at a point of g
is contained in exactly a plane of Z.

Let P be a point of `. Through the point P there pass q lines of π and q lines of g
distinct from ` and contained in Q+(5, q). Let S be the set of q2 planes generated by a
line of π through P distinct from ` and a line of g through P distinct from `. Let C be a
Singer cyclic group of the group H ' PGL(3, q). Here H is a subgroup of G stabilizing the
plane g. Let T be the orbit of the set S under C. Then T consists of q2(q2 + q+ 1) planes
and each of these planes has 2q + 1 points in common with Q+(5, q) on two intersecting
lines of Q+(5, q). From [7, Lemma 2.4], every line that is secant to Q+(5, q) and has a
point on g is contained in exactly one plane of T .

Theorem 5 ([7, Theorem 2.5]). The set X ∪Y ∪Z ∪T is a q–covering design Cq(6, 3, 2)
of size q6 + q4 + 2q3 + 2q2 + q − 1.

We will need the following result.

Theorem 6. There exists a hyperplane Γ of PG(5, q) such that q3 + 2q2 + q− 1 elements
of X ∪ Y ∪ Z ∪ T are contained in Γ.

Proof. Let Γ be a hyperplane of PG(5, q) containing g. Then Γ is a tangent hyperplane
and contains the planes of Q+(5, q) through a point R of g. In particular, there are q
planes of Y contained in Γ. First of all observe that no plane of X is contained in Γ.
Indeed, by way of contradiction, assume that a plane of X is contained in Γ. Then such
a plane would meet g in at least a point, contradicting the fact that every plane of X is
disjoint from g. A plane of Z that is contained in Γ has to contain the point R. On the
other hand, the q − 1 planes of Z, passing through a line of g which is incident with R,
are contained in Γ. Hence there are (q + 1)(q − 1) = q2 − 1 planes of Z contained in Γ.
If π is a Latin plane contained in Γ, then π ∩ g is a line, say `. By construction there is
a point P ∈ ` such that the set T contains q2 planes meeting π in a line through P and
g in a line through P . Note that these q2 planes of T are contained in Γ. It follows that
there are q2(q + 1) planes of T contained in Γ. The result follows.
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Starting from the q–covering design Cq(6, 3, 2) of Theorem 5, Theorem 2 can be used
recursively to obtain a q–covering design Cq(2n, 3, 2), n > 4, of size

q2θ2n−4,q2 + q2n−3 − 1 +
n−1∑
i=2

(θ4i−5,q − θ2i−4,q) .

In particular there is a hyperplane Γ of PG(2n− 1, q) such that there are

q2n−3 +
n−2∑
j=0

q2(n+j−1)

planes of Cq(2n, 3, 2) not contained in Γ and

(q + 1)

(
n−1∑
i=2

(
q2i−3 +

i−2∑
j=0

q2(i+j−1)

))
− 1

planes of Cq(2n, 3, 2) contained in Γ.

Theorem 7. If n > 3, then

Cq(2n, 3, 2) 6 q2θ2n−4,q2 + q2n−3 − 1 +
n−1∑
i=2

(θ4i−5,q − θ2i−4,q) .

4 On Cq(3n + 8, 4, 2)

In this section we provide an upper bound on Cq(3n + 8, 4, 2), n > 0. We first deal with
the case n = 0.

Construction 8. Let A be a (4× 4, 3)q MRD–code and let X = {L(A) | A ∈ A} be the
set of q8 solids of PG(7, q) obtained by lifting the matrices of A. Let Σ′ be the solid of
PG(7, q) containing U1, U2, U3, U4. Then Σ′ is disjoint from Σ. Let S = {`i | 1 6 i 6 q2+1}
be a line–spread of Σ, let S ′ = {`′i | 1 6 i 6 q2 + 1} be a line–spread of Σ′ and let
µ : `′i ∈ S ′ 7−→ `i ∈ S be a bijection. Let Γi denote the 5–space containing Σ and `′i,
1 6 i 6 q2 + 1. If γ is a plane of Σ, then there are q2 + q solids of Γi meeting Σ exactly
in γ. Let Yi be the set of q(q + 1)2 solids of Γi (distinct from Σ) meeting Σ in a plane

containing µ(`′i). Let Y =
⋃q2+1
i=1 Yi. Then Y consists of q(q + 1)2(q2 + 1) solids.

Theorem 9. The set X ∪Y is a q–covering design Cq(8, 4, 2) of size q8 +q(q+1)2(q2 +1).

Proof. Let r be a line of PG(7, q). If r is disjoint from Σ, then from Proposition 1, we
have that r is contained in exactly one element of X . If r meets Σ in one point, say P ,
then let Λ be the 4–space 〈Σ, r〉, let `j be the unique line of S containing P , let P ′ be
the point Σ′ ∩ Λ and let `′k be the unique line of S ′ containing P ′. If j = k, then P ∈ `k
and r is contained in the q + 1 solids 〈α, r〉 of Y , where α is a plane of Σ containing `k.
If j 6= k, then P /∈ `k. Let β be the plane of Σ containing `k and P . Then r is contained
in 〈β, r〉, where 〈β, r〉 is a solid of Y . Finally let r be a line of Σ, then r is contained in
q(q + 1)2 solids of Y .
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Remark 10. Let L be a Desarguesian line–spread of PG(7, q). There are (q4+1)(q4+q2+1)
solids of PG(7, q) containing exactly q2 + 1 lines of L. If Z denotes the set of these solids,
then it is not difficult to see that every line of PG(7, q) is contained in at least a solid of
Z. In [17, p. 221], K. Metsch posed the following question: “Is (q4 + 1)(q4 + q2 + 1) the
smallest cardinality of a set of 3–spaces of PG(7, q) that cover every line?” Theorem 9
provides a negative answer to this question.

Remark 11. When q = 2, in the proof of [10, Theorem 13], the existence of a 2–covering
design C2(8, 4, 2) of size 346 has been shown.

Proposition 12. There exists a hyperplane Γ of PG(7, q) such that precisely q(q+1)(2q+
1) members of X ∪ Y are contained in Γ.

Proof. Let Γ be a hyperplane of PG(7, q) containing Σ. Then no element of X is contained
in Γ, otherwise such a solid would meet Σ, contradicting the fact that every solid in X
is disjoint from Σ. The hyperplane Γ intersects Σ′ in a plane σ. The plane σ contains
exactly one line of S ′, say `′k. Hence the q(q+1)2 solids of Y meeting Σ in a plane through
the line µ(`′k) = `k are contained in Γ. Let `′j ∈ S ′, with j 6= k, then `′j ∩ σ is a point, say
R. In this case the q + 1 solids generated by R and a plane of Σ through µ(`′j) = `j is
contained in Γ. Since the elements of Y are those contained in the 5–space 〈Σ, `′i〉, where
`′i ∈ S ′, and meeting Σ in a plane through `i, the proof is complete.

As before, by using Theorem 2, the q–covering design of Theorem 9 can be used
recursively to obtain a q–covering design Cq(3n+ 8, 4, 2), n > 1, of size

q3n+5θn+1,q3 +
n−1∑
i=0

(θ6i+10,q − θ3i+4,q) +
n∑
i=0

(
q3i+2(2q2 − 1)

)
+ q(q + 1)(2q + 1).

In particular, there exists a hyperplane Γ of PG(3n+ 7, q) such that there are

q3n+2(2q2 − 1) +
n+1∑
j=0

q3(n+j)+5

solids of Cq(3n+ 8, 4, 2) not contained in Γ and

(q2 + q + 1)

(
n−1∑
i=0

(
q3i+2(2q2 − 1) +

i+1∑
j=0

q3(i+j)+5

))
+ q(q + 1)(2q + 1)

solids of Cq(3n+ 8, 4, 2) contained in Γ.

Theorem 13. If n > 0, then

Cq(3n+8, 4, 2) 6 q3n+5θn+1,q3 +
n−1∑
i=0

(θ6i+10,q − θ3i+4,q) +
n∑
i=0

(
q3i+2(2q2 − 1)

)
+ q(q+1)(2q+1).
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5 On Cq(2n, 4, 3)

The main goal of this section is to give an upper bound on Cq(2n, 4, 3), n > 4. We begin
by providing a construction in the case n = 4.

Construction 14. Let A be a (4 × 4, 2)q MRD–code and let X = {L(A) | A ∈ A} be
the set of q12 solids of PG(7, q) obtained by lifting the matrices of A. Let Σ′ be the solid
of PG(7, q) containing U1, U2, U3, U4. Then Σ′ is disjoint from Σ. Let P = {Si | 1 6 i 6
q2 + q + 1} be a 1–parallelism of Σ, let P ′ = {S ′i | 1 6 i 6 q2 + q + 1} be a 1–parallelism
of Σ′ and let µ : S ′i ∈ P ′ 7−→ Si ∈ Pi be a bijection. For a line `′ of Σ′, let Γ`′ denote
the 5–space containing Σ and `′. Since P ′ is a 1–parallelism of Σ′, there exists a unique
j, with 1 6 j 6 q2 + q + 1, such that `′ ∈ S ′j. Note that µ(S ′j) = Sj is a line–spread of Σ.
Let ` be a line of Sj and let Y` be the set of q4 solids of Γ`′ (distinct from Σ) meeting Σ
exactly in `. Let Z`′ =

⋃
`∈Sj Y`. Then Z`′ consists of q4(q2 + 1) solids. Varying `′ among

the lines of Σ′, we get a set

Z =
⋃

`′ line of Σ′

Z`′

consisting of q4(q2 + 1)2(q2 + q + 1) solids.

Theorem 15. The set X ∪Z ∪{Σ} is a q–covering design Cq(8, 4, 3) of size q12 + q4(q2 +
1)2(q2 + q + 1) + 1.

Proof. Let π be a plane of PG(7, q). If π is disjoint from Σ, then, from Proposition 1, we
have that π is contained in exactly one element of X . If π meets Σ in one point, say P ,
then let Λ be the 5–space 〈Σ, π〉 and let `′ be the line of Σ′ obtained by intersecting Σ′

with Λ. Note that Λ = Γ`′ . Let S ′j be the unique line–spread of P ′ containing `′. Then
there exists a unique line ` of Sj = µ(S ′j) such that P ∈ ` and π is contained in 〈π, `〉,
that is a solid of Z. If π meets Σ in a line, say r, then let Sk be the unique line–spread
of P containing r and let Λ be the 4–space 〈Σ, π〉. Then Λ∩Σ′ is a point, which belongs
to a unique line, say r′, of the line–spread µ−1(Sk) = S ′k of P ′. Since there are q2 solids
of Γr′ meeting Σ exactly in r and containing π, we have that in this case π is contained
in q2 members of Z. Finally if π is a plane of Σ, then π is contained in Σ.

Remark 16. Note that, as regard as the case q = 2, in the proof of [10, Theorem 16] the
author exhibited a 2–covering design C2(8, 4, 3) of size 6897.

Proposition 17. There exists a 5–space Λ of PG(7, q) containing exactly q4(q2 + 1) + 1
members of X ∪ Z ∪ {Σ}. Moreover every hyperplane of PG(7, q) through Λ contains
precisely q4(q2 + 1)(q2 + q + 1) + 1 solids of X ∪ Z ∪ {Σ}.

Proof. Let Λ be a 5–space containing Σ. Then Λ meets Σ′ in a line, say r, and Λ = 〈Σ, r〉.
The line r belongs to a unique line–spread S ′i of the 1–parallelism P ′ of Σ′. Then µ(S ′i) = Si
is a line–spread belonging to the 1–parallelism P of Σ. The q4(q2 + 1) solids of Z lying in
〈Σ, r〉 meet Σ in a line of Si and are contained in Λ. Let s be a line of Σ′ such that s 6= r.
In this case none of the q4(q2 + 1) solids of Z lying in 〈Σ, s〉 is contained in Λ. Indeed,
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assume by contradiction that there is a solid ∆ contained in Λ∩〈Σ, s〉, then ∆ ⊂ 〈Σ, s∩r〉
and hence ∆ ∩ Σ is a plane of Σ, contradicing the fact that every solid of Z meets Σ in
a line. On the other hand, no solid of X is contained in Λ, otherwise such a solid would
meet Σ not trivially. Finally note that Σ is a solid of Λ.

Let Γ be a hyperplane of PG(7, q) through Λ. Then Γ∩Σ′ is a plane, say σ, containing
the line r. Repeating the previous argument for every line of the plane σ, it turns out
that there are q4(q2 + 1)(q2 + q + 1) solids of Z in Γ, as required.

Let S4 denotes X ∪ Z ∪ {Σ}. As in the previous sections, S4 can be used as a basis
for a recursive construction of a q–covering designs Cq(2n, 4, 3), n > 5.

Theorem 18.
Cq(8, 4, 3) 6 q12 + q4(q2 + 1)2(q2 + q + 1) + 1

Cq(10, 4, 3) 6 q18 + q4(q2 + 1)(q2 + q + 1)(q8 + q6 + q4 + q3 + q2 + 1) + 1
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