On q-covering designs

Francesco Pavese*

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy. francesco.pavese@poliba.it

Submitted: May 7, 2019; Accepted: Dec 30, 2019; Published: Feb 7, 2020 (c) The author. Released under the CC BY-ND license (International 4.0).

Abstract

A q-covering design $\mathbb{C}_q(n,k,r)$, $k \ge r$, is a collection \mathcal{X} of (k-1)-spaces of $\mathrm{PG}(n-1,q)$ such that every (r-1)-space of $\mathrm{PG}(n-1,q)$ is contained in at least one element of \mathcal{X} . Let $\mathcal{C}_q(n,k,r)$ denote the minimum number of (k-1)-spaces in a q-covering design $\mathbb{C}_q(n,k,r)$. In this paper improved upper bounds on $\mathcal{C}_q(2n,3,2)$, $n \ge 4$, $\mathcal{C}_q(3n+8,4,2)$, $n \ge 0$, and $\mathcal{C}_q(2n,4,3)$, $n \ge 4$, are presented. The results are achieved by constructing the related q-covering designs.

Mathematics Subject Classifications: 51E20, 05B40, 05B25, 51A05

1 Introduction

Let q be any prime power, let GF(q) be the finite field with q elements and let PG(n-1,q) be the (n-1)-dimensional projective space over GF(q). We will use the term k-space to denote a subspace of PG(n-1,q) of projective dimension k. Let $t \leq s$. A blocking set \mathbb{B} is a set of (t-1)-spaces of PG(n-1,q) such that every (s-1)-space of PG(n-1,q) contains at least one element of \mathbb{B} . In the last fifty years the general problem of determining the smallest cardinality of a blocking set \mathbb{B} has been studied by several authors (see [17, 4] and references therein) and in very few cases has been completely solved [5, 2, 3, 9, 18].

A blocking set \mathbb{B} can be seen as a q-analog of a well known combinatorial design, called *Turán design*, see [11], [10]. Indeed, a blocking set \mathbb{B} is also called a q-*Turán design* $\mathbb{T}_q(n,t,s)$. The dual structure of a q-Turán design $\mathbb{T}_q(n,t,s)$ is called q-covering design and it is denoted with $\mathbb{C}_q(n,n-t,n-s)$. In other words, a q-covering design $\mathbb{C}_q(n,k,r)$ is a collection \mathcal{X} of (k-1)-spaces of $\mathrm{PG}(n-1,q)$ such that every (r-1)-space of $\mathrm{PG}(n-1,q)$ is contained in at least one element of \mathcal{X} . Let $\mathcal{C}_q(n,k,r)$ denote

^{*}This work was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA– INdAM).

the minimum number of (k - 1)-spaces in a q-covering design $\mathbb{C}_q(n, k, r)$. Lower and upper bounds on $\mathcal{C}_q(n, k, r)$ were considered in [11], [10]. Lower bounds are obtained by providing q-analogs of classical results which have been proved in the context of covering designs and Turán designs; upper bounds are obtained by explicit constructions of the related q-covering designs. A q-covering design $\mathbb{C}_q(n, k, r)$ which cover every (r-1)-space exactly once is called q-Steiner system. If r = 1, a q-Steiner system $\mathbb{C}_q(n, k, r)$ is also known as (k - 1)-spread of PG(n - 1, q); spreads have been widely investigated in finite geometry and it is known that a (k - 1)-spread of PG(n - 1, q) exists if and only if kdivides n, see [20].

The concept of q-covering design is of interest not only in projective geometry and design theory, but also in coding theory. Indeed, in recent years there has been an increasing interest in q-covering designs due to their connections with constant-dimension codes. An $(n, M, 2\delta; k)_q$ constant-dimension subspace code (CDC) is a set S of (k - 1)spaces of PG(n - 1, q) such that |S| = M and every $(k - \delta)$ -space of PG(n - 1, q) is contained in at most one member of S or, equivalently, any two distinct codewords of Sintersect in at most a $(k - \delta - 1)$ -space. Subspace codes of largest possible size are said to be *optimal*. Therefore, a q-Steiner system is an optimal constant-dimension code (so far, apart from spreads, there is only one known example of q-Steiner system, i.e., the 2-covering design $\mathbb{C}_2(13, 3, 2)$ of smallest possible size [6]). Observe that, as shown in the inspiring article by Koetter and Kschischang [16], constant-dimension codes can be used for error-correction in random linear network coding theory.

In this paper we discuss bounds on q-covering designs. In Section 3, based on the qcovering design $\mathbb{C}_q(6,3,2)$ constructed in [7], an improved upper bound on $\mathcal{C}_q(2n,3,2), n \ge$ 4, is presented. In the last two sections, starting from a lifted MRD-code, improvements
on the upper bounds of $\mathcal{C}_q(3n + 8, 4, 2), n \ge 0$, and $\mathcal{C}_q(2n, 4, 3), n \ge 4$, are obtained.
In particular, first q-covering designs $\mathbb{C}_q(8, 4, r), r = 2, 3$, of PG(7, q) are constructed.
Then, by induction, q-covering designs $\mathbb{C}_q(3n + 8, 4, 2), n \ge 0$, and $\mathbb{C}_q(2n, 4, 3), n \ge 4$,
are presented.

In the sequel we will use the following notation $\theta_{n,q} := {n+1 \brack 1}_q = q^n + \ldots + q + 1.$

2 Preliminaries

A conic of PG(2, q) is the set of points of PG(2, q) satisfying a quadratic equation: $a_{11}X_1^2 + a_{22}X_2^2 + a_{33}X_3^2 + a_{12}X_1X_2 + a_{13}X_1X_3 + a_{23}X_2X_3 = 0$. There exist four kinds of conics in PG(2, q), three of which are degenerate (splitting into lines, which could be in the plane $PG(2, q^2)$) and one of which is non-degenerate, see [13].

A regulus is the set of lines intersecting three skew (disjoint) lines and has size q + 1. The hyperbolic quadric $Q^+(3,q)$, is the set of points of PG(3,q) which satisfy the equation $X_1X_2 + X_3X_4 = 0$. The hyperbolic quadric $Q^+(3,q)$ consists of $(q+1)^2$ points and 2(q+1) lines that are the union of two reguli. Through a point of $Q^+(3,q)$ there pass two lines belonging to different reguli.

A 1-spread is also called *line-spread*. Recall that a line-spread of PG(3,q) is a set S of $q^2 + 1$ lines of PG(3,q) with the property that each point of PG(3,q) is incident

with exactly one element of S. A 1-parallelism of PG(3,q) is a collection \mathcal{P} of $q^2 + q + 1$ line-spreads such that each line of PG(3,q) is contained in exactly one line-spread of \mathcal{P} . In [1] the author proved that there exist 1-parallelisms in PG(3,q).

The Klein quadric $\mathcal{Q}^+(5,q)$, is the set of points of PG(5,q) which satisfy the equation $X_1X_2 + X_3X_4 + X_5X_6 = 0$. The Klein quadric contains $(q^2+1)(q^2+q+1)$ points of and two families each consisting of $q^3 + q^2 + q + 1$ planes called *Latin planes* and *Greek planes*. Two distinct planes in the same family share exactly one point, whereas planes lying in distinct families are either disjoint or meet in a line. A line of PG(5,q) not contained in $\mathcal{Q}^+(5,q)$ is either external, or tangent, or secant to $Q^+(5,q)$, according as it contains 0, 1 or 2 points of $\mathcal{Q}^+(5,q)$. A hyperplane of PG(5,q) contains either $q^3 + 2q^2 + q + 1$ or $q^3 + q^2 + q + 1$ points of $\mathcal{Q}^+(5,q)$. In the former case the hyperplane is called *tangent*, contains the 2(q+1)planes of $\mathcal{Q}^+(5,q)$ through one of its points, say R, and meets $\mathcal{Q}^+(5,q)$ in a cone having as vertex the point R and as base a hyperbolic quadric $\mathcal{Q}^+(3,q)$. In the latter case the hyperplane is called *secant* and contains no plane of $\mathcal{Q}^+(5,q)$. The stabilizer of $\mathcal{Q}^+(5,q)$ in PGL(6,q), say G, contains a subgroup isomorphic to PGL(4,q). Also, the stabilizer in G of a plane g of $\mathcal{Q}^+(5,q)$ contains a subgroup H isomorphic to $\mathrm{PGL}(3,q)$ acting in its natural representation on the points and lines of q. For more details see [14, Chapter 1]. A Singer cyclic subgroup of PGL(k,q) is a cyclic group acting regularly on points and hyperplanes of a projective space PG(k-1,q).

2.1 Lifting an MRD–code

The set $\mathcal{M}_{n \times m}(q)$, $n \leq m$, of $n \times m$ matrices over the finite field $\mathrm{GF}(q)$ forms a metric space with respect to the rank distance defined by $d_r(A, B) = \operatorname{rank}(A-B)$. The maximum size of a code of minimum distance δ , with $1 \leq \delta \leq n$, in $(\mathcal{M}_{n \times m}(q), d_r)$ is $q^{m(n-\delta+1)}$. A code $\mathcal{A} \subset \mathcal{M}_{n \times m}(q)$ attaining this bound is said to be a $(n \times m, \delta)_q$ maximum rank distance code (or MRD-code in short). A rank distance code \mathcal{A} is called $\mathrm{GF}(q)$ -linear if \mathcal{A} is a subspace of $\mathcal{M}_{n \times m}(q)$ considered as a vector space over $\mathrm{GF}(q)$. Linear MRD-codes exist for all possible parameters [8, 12, 19, 21].

We recall the so-called *lifting process* for a matrix $A \in \mathcal{M}_{n \times m}(q)$, see [22]. Let I_n be the $n \times n$ identity matrix. The rows of the $n \times n + m$ matrix $(I_n|A)$ can be viewed as coordinates of points in general position of an (n-1)-space of PG(n+m-1,q). This subspace is denoted by L(A). Hence the matrix A can be "lifted" to the (n-1)-space L(A).

Here and in the sequel we denote by U_i the point of the ambient projective space represented by the vector having 1 in *i*-th position and 0 elsewhere; furthermore we denote by Σ the (m-1)-space of PG(n+m-1,q) containing U_{n+1}, \ldots, U_{n+m} . Note that if $A \in \mathcal{A}$, then L(A) is disjoint from Σ . The following results are well known, see for instance [10, Theorem 12].

Proposition 1.

- i) If \mathcal{A} is a $(3 \times m, 2)_q$ MRD-code, $m \ge 3$, then $\mathcal{X} = \{L(\mathcal{A}) \mid \mathcal{A} \in \mathcal{A}\}$ is a set of q^{2m} planes of $\mathrm{PG}(m+2,q)$ such that every line of $\mathrm{PG}(m+2,q)$ disjoint from Σ is contained in exactly one element of \mathcal{X} .
- ii) If \mathcal{A} is a $(4 \times m, 3)_q$ MRD-code, $m \ge 4$, then $\mathcal{X} = \{L(\mathcal{A}) \mid \mathcal{A} \in \mathcal{A}\}$ is a set of q^{2m} solids of PG(m+3,q) such that every line of PG(m+3,q) disjoint from Σ is contained in exactly one element of \mathcal{X} .
- iii) If \mathcal{A} is a $(4 \times m, 2)_q$ MRD-code, $m \ge 4$, then $\mathcal{X} = \{L(A) \mid A \in \mathcal{A}\}$ is a set of q^{3m} solids of PG(m+3,q) such that every plane of PG(m+3,q) disjoint from Σ is contained in exactly one element of \mathcal{X} .

In [10, Theorem 15, Theorem 17], the author showed that it is possible to obtain a 2-covering design $\mathbb{C}_2(n+k-1,k,2)$ or $\mathbb{C}_2(n+2,4,3)$ starting form a 2-covering design $\mathbb{C}_2(n,k,2)$ or $\mathbb{C}_2(n,4,3)$, respectively. These results can be easily generalized for any q.

Theorem 2. If there exists a q-covering design $\mathbb{C}_q(n, k, 2)$, $n \ge 6$, say \mathbb{S}_n , and a hyperplane Λ_n of $\mathrm{PG}(n-1,q)$ such that there are x_n (k-1)-spaces of \mathbb{S}_n not contained in Λ_n and y_n (k-1)-spaces of \mathbb{S}_n contained in Λ_n , then there exists a q-covering design $\mathbb{C}_q(n+k-1,k,2)$, say \mathbb{S}_{n+k-1} , such that $|\mathbb{S}_{n+k-1}| = q^{2(n-1)} + \frac{q^k-1}{q-1}x_n + y_n$. Moreover there exists an (n+k-3)-space of $\mathrm{PG}(n+k-2,q)$, say Λ_{n+k-1} , such that

Moreover there exists an (n+k-3)-space of PG(n+k-2,q), say Λ_{n+k-1} , such that there are $x_{n+k-1} = q^{2n-2} + q^{k-1}x_n$ (k-1)-spaces of \mathbb{S}_{n+k-1} not contained in Λ_{n+k-1} and $y_{n+k-1} = \frac{q^{k-1}-1}{q-1}x_n + y_n$ (k-1)-spaces of \mathbb{S}_{n+k-1} contained in Λ_{n+k-1} .

Proof. In $\mathrm{PG}(n+k-2,q)$, let Λ_n be the (n-2)-space $\langle U_{k+1}, \ldots, U_{n+k-1} \rangle$. Let \mathcal{A} be a $(k \times (n-1), k-1)_q$ MRD-code and let $\mathcal{U} = \{L(A) \mid A \in \mathcal{A}\}$ be the set of $q^{2(n-1)}$ (k-1)-spaces of $\mathrm{PG}(n+k-2,q)$ obtained by lifting the matrices of \mathcal{A} . Let Π be the (k-1)-space $\langle U_1, \ldots, U_k \rangle$. Thus Π is disjoint from Λ_n . Let us fix a point \overline{P} of Π . From the hypothesis there is a q-covering design $\mathbb{C}_q(n,k,2)$ of $\langle \Lambda_n, \overline{P} \rangle$, say \mathbb{S}_n , such that $|\mathbb{S}_n| = x_n + y_n$ and y_n is the number of (k-1)-spaces of \mathbb{S}_n contained in Λ_n .

Let $M \in GL(k,q)$ such that the projectivities of PGL(k,q) induced by the matrices M^i , $1 \leq i \leq q^k - 1$, form a Singer cyclic group of PGL(k,q). Then the projectivities of PGL(n+k-1,q) associated with the matrices

$$\left(\begin{array}{c|c} M^{i(q-1)} & 0\\ \hline 0 & I_{n-1} \end{array}\right), 1 \leqslant i \leqslant q^k - 1,$$

give rise to a subgroup C of $\operatorname{PGL}(n+k-1,q)$ having order $(q^k-1)/(q-1)$. In particular, the group C fixes pointwise Λ_n and permutes the points of Π in a single orbit. Hence, if $g, g' \in C, g \neq g'$, then $\mathbb{S}_n^g \cap \mathbb{S}_n^{g'}$ consists of the y_n members of \mathbb{S}_n^g contained in Λ_n .

Let $\mathcal{V} = \bigcup_{g \in C} \mathbb{S}_n^{g}$. Observe that $\mathcal{U} \cup \mathcal{V}$ is a *q*-covering design $\mathbb{C}_q(n+k-1,k,2)$. Indeed, from Proposition 1, every line of $\mathrm{PG}(n+k-2,q)$ disjoint from Λ_n is contained in exactly one element of \mathcal{U} . On the other hand, if *r* is a line of $\mathrm{PG}(n+k-2,q)$ meeting Λ_n in at least a point, then r is contained in $\langle \Lambda_n, \bar{P}^g \rangle$, for some $g \in C$, and r is contained in at least an element of \mathbb{S}_n^g . Hence $\mathcal{U} \cup \mathcal{V}$ is a q-covering design $\mathbb{C}_q(n+k-1,k,2)$. Note that $|\mathcal{U} \cup \mathcal{V}| = q^{2(n-1)} + \frac{q^k-1}{q-1}x_n + y_n$.

Let σ be a (k-2)-space of Π and let Λ_{n+k-1} be the hyperplane $\langle \Lambda_n, \sigma \rangle$ of PG(n+k-2,q). Since every (k-1)-space of \mathcal{U} is disjoint from Λ_n , we have that no member of \mathcal{U} is contained in Λ_{n+k-1} . The elements of \mathcal{V} not contained in Λ_{n+k-1} are (k-1)-spaces of $\langle \Lambda_n, P \rangle$, for some point $P \in \Pi \setminus \sigma$, not contained in Λ_n . Hence there are

$$q^{2n-2} + q^{k-1}x_n$$

(k-1)-spaces of $\mathcal{U} \cup \mathcal{V}$ not contained in Λ_{n+k-1} . Finally note that the members of $\mathcal{U} \cup \mathcal{V}$ contained in Λ_{n+k-1} are (k-1)-spaces of $\langle \Lambda_n, P \rangle$, for some point $P \in \sigma$. Hence there are

$$\frac{q^{k-1}-1}{q-1}x_n + y_r$$

(k-1)-spaces of $\mathcal{U} \cup \mathcal{V}$ contained in Λ_{n+k-1} .

Theorem 3. Let \mathbb{S}_n be a q-covering design $\mathbb{C}_q(2n, 4, 3)$, $n \ge 4$, such that there is a (2n-3)-space of $\mathrm{PG}(2n-1,q)$, say Λ_n , containing precisely α_n elements of \mathbb{S}_n and every hyperplane of $\mathrm{PG}(2n-1,q)$ through Λ_n contains β_n members of \mathbb{S}_n . Then there exists a q-covering design $\mathbb{C}_q(2n+2,4,3)$, say \mathbb{S}_{n+1} , where

$$|\mathbb{S}_{n+1}| = q^{6(n-1)} + (q^2+1)(q^2+q+1)|\mathbb{S}_n| - q(q+1)^2(q^2+1)\beta_n + q^3(q^2+q+1)\alpha_n.$$

Moreover there exists a (2n-1)-space of PG(2n+1,q), say Λ_{n+1} , containing $\alpha_{n+1} = |\mathbb{S}_n|$ elements of \mathbb{S}_{n+1} and such that every hyperplane of PG(2n+1,q) through Λ_{n+1} contains β_{n+1} members of \mathbb{S}_{n+1} , where

$$\beta_{n+1} = (q^2 + q + 1)|\mathbb{S}_n| - (q^3 + q^2 + q)\beta_n + q^3\alpha_n.$$

Proof. Let Λ_n be the (2n-3)-space of $\operatorname{PG}(2n+1,q)$ generated by U_5, \ldots, U_{2n+2} , let \mathcal{A} be a $(4 \times (2n-2), 2)$ MRD-code and let \mathcal{U} be the set of $q^{6(n-1)}$ solids obtained by lifting the matrices of \mathcal{A} . Let Π be the solid $\langle U_1, U_2, U_3, U_4 \rangle$. Thus Π is disjoint from Λ_n . From the hypothesis there is a line ℓ of Π and a q-covering design $\mathbb{C}_q(2n, 4, 3)$, say \mathbb{S}_n , of $\langle \Lambda_n, \ell \rangle$ such that α_n elements of \mathbb{S}_n are contained in Λ_n and every 2(n-1)-space of $\langle \Lambda_n, \ell \rangle$ through Λ_n contains β_n members of \mathbb{S}_n . Let $\overline{\mathcal{W}}$ be the set of $|\mathbb{S}_n| - \alpha_n$ solids of \mathbb{S}_n not contained in Λ_n and let \mathcal{Z} denote the α_n solids of \mathbb{S}_n contained in Λ_n . For a point P of ℓ , there are β_n solids of \mathbb{S}_n not contained in none of the 2(n-1)-spaces of $\langle \Lambda_n, \ell \rangle$ through Λ_n . Then $\overline{\mathcal{V}}$ consists of $|\mathbb{S}_n| - \beta_n - q(\beta_n - \alpha_n)$ solids and every plane of $\langle \Lambda_n, \ell \rangle$ intersecting Λ_n in one point is contained in at least one element of $\overline{\mathcal{V}}$. Note that $\overline{\mathcal{V}} \subset \overline{\mathcal{W}}$.

For a line ℓ' of Π , let $M_{\ell'} \in \operatorname{GL}(4, q)$ such that the projectivity of $\operatorname{PGL}(4, q)$ induced by the matrix $M_{\ell'}$, maps the line ℓ to the line ℓ' . Hence the projectivity $g_{\ell'}$ of $\operatorname{PGL}(2n+2,q)$ associated with the matrix

$$\left(\begin{array}{c|c} M_{\ell'} & 0\\ \hline 0 & I_{2n-2} \end{array}\right),$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(1) (2020), #P1.35

sends \mathbb{S}_n to a q-covering design $\mathbb{C}_q(2n, 4, 3)$ of $\langle \Lambda_n, \ell' \rangle$. Varying r among the lines of Π , we obtain a set G of $(q^2 + 1)(q^2 + q + 1)$ projectivities g_r of PGL(2n + 2, q) and each of them fixes pointwise Λ_n . If r, r' are two distinct lines of Π , then $\langle \Lambda_n, r \rangle \cap \langle \Lambda_n, r' \rangle$ is at most a 2(n-1)-space containing Λ_n ; hence $|\bar{\mathcal{V}}^{g_r}| = |\bar{\mathcal{V}}^{g_{r'}}|$ and $|\bar{\mathcal{V}}^{g_r} \cap \bar{\mathcal{V}}^{g_{r'}}| = 0$. Let \mathcal{S} be a line-spread of Π such that $\ell \in \mathcal{S}$. We have that if r, r' are two distinct lines of \mathcal{S} , then $|\bar{\mathcal{W}}^{g_r}| = |\bar{\mathcal{W}}^{g_{r'}}|$ and $|\bar{\mathcal{W}}^{g_r} \cap \bar{\mathcal{W}}^{g_{r'}}| = 0$. Denote by \mathcal{V} the following set of solids:

$$\bigcup_{g_r \in G, r \notin \mathcal{S}} \bar{\mathcal{V}}^{g_r}$$

and by \mathcal{W} the following set of solids:

$$\bigcup_{g_r \in G, r \in \mathcal{S}} \bar{\mathcal{W}}^{g_r}$$

Let $\mathbb{S}_{n+1} = \mathcal{U} \cup \mathcal{V} \cup \mathcal{W} \cup \mathcal{Z}$. We claim that \mathbb{S}_{n+1} is a *q*-covering design $\mathbb{C}_q(2n+2,4,3)$. Let π be a plane of $\mathrm{PG}(2n+1,q)$. If π is disjoint from Λ_n , then, from Proposition 1, there is a unique solid of \mathcal{U} containing π . If π meets Λ_n in a point, then $\langle \Lambda_n, \pi \rangle$ is a (2n-1)-space meeting the solid Π in a line, say r. Then there is at least one solid of $\overline{\mathcal{V}}^{g_r}$ or of $\overline{\mathcal{W}}^{g_r}$ containing π , according as $r \notin \mathcal{S}$ or $r \in \mathcal{S}$, respectively. If π shares with Λ_n a line, then $\langle \Lambda_n, \pi \rangle$ is a 2(n-1)-space meeting the solid Π in a point Q. Let ℓ' be the unique member of \mathcal{S} containing Q; thus there is a solid of $\overline{\mathcal{W}}^{g_{\ell'}}$ containing π . Finally, if $\pi \subset \Lambda_n$, then there is at least a solid of $\overline{\mathcal{W}}^{g_\ell} \cup \mathcal{Z}$ containing π .

By construction it follows that

$$\begin{aligned} |\mathbb{S}_{n+1}| &= q^{6(n-1)} + (q^2+1)(q^2+q) \left(|\mathbb{S}_n| - \beta_n - q(\beta_n - \alpha_n)\right) + (q^2+1)(|\mathbb{S}_n| - \alpha_n) + \alpha_n \\ &= q^{6(n-1)} + (q^2+1)(q^2+q+1)|\mathbb{S}_n| - q(q+1)^2(q^2+1)\beta_n + q^3(q^2+q+1)\alpha_n. \end{aligned}$$

In order to complete the proof, set $\Lambda_{n+1} = \langle \Lambda_n, \ell \rangle$. The number of solids of \mathbb{S}_{n+1} that are contained in Λ_{n+1} coincides with $|\mathbb{S}_n|$. Hence $\alpha_{n+1} = |\mathbb{S}_n|$. A hyperplane \mathcal{H} of $\mathrm{PG}(2n+1,q)$ through Λ_{n+1} meets Π in a plane, say σ , where $\ell \subset \sigma$. Since the unique line of \mathcal{S} contained in σ is ℓ , we have that the solids of \mathbb{S}_{n+1} contained in \mathcal{H} are either the solids of $\overline{\mathcal{W}}^{g_\ell}$ or the solids contained in

$$\bigcup_{r \ line \ of \ \sigma, \ r \neq \ell} \bar{\mathcal{V}}^{g_r}$$

or the image under $g_r \in G$ of the $\beta_n - \alpha_n$ solids of \mathbb{S}_n contained in $\langle \Lambda_n, P \rangle$, where $P \in \ell$, $r \in \mathcal{S}, r \neq \ell$, and $P^{g_r} \in \sigma$.

Therefore

$$\beta_{n+1} = (q^2 + q) \left(|\mathbb{S}_n| - \beta_n - q(\beta_n - \alpha_n) \right) + q^2(\beta_n - \alpha_n) + |\mathbb{S}_n| \\ = (q^2 + q + 1) |\mathbb{S}_n| - q(q^2 + q + 1)\beta_n + q^3\alpha_n.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(1) (2020), #P1.35

3 On $\mathcal{C}_q(2n,3,2)$

In this section we provide an upper bound on $C_q(2n, 3, 2)$, $n \ge 4$. In [7], a constructive upper bound on $C_q(6, 3, 2)$ has been given. In what follows we recall the construction and some of the properties of this *q*-covering design.

Construction 4. Let g be a Greek plane of $\mathcal{Q}^+(5,q)$. From [7, Lemma 2.2], there exists a set \mathcal{X} of $q^6 - q^3$ planes disjoint from g and meeting $\mathcal{Q}^+(5,q)$ in a non-degenerate conic that, together with the set \mathcal{Y} of $q^3 + q^2 + q$ Greek planes of $\mathcal{Q}^+(5,q)$ distinct from g, cover every line ℓ of PG(5, q) that is either disjoint from g or contained in $\mathcal{Q}^+(5,q) \setminus g$.

Let ℓ be a line of g. Through the line ℓ there pass q-1 planes meeting $\mathcal{Q}^+(5,q)$ exactly in ℓ and a unique Latin plane π . Varying the line ℓ over the plane g and considering the planes meeting $\mathcal{Q}^+(5,q)$ exactly in ℓ , we get a family \mathcal{Z} of consisting of $(q-1)(q^2+q+1) = q^3 - 1$ planes. From [7, Lemma 2.3], every line that is tangent to $\mathcal{Q}^+(5,q)$ at a point of gis contained in exactly a plane of \mathcal{Z} .

Let P be a point of ℓ . Through the point P there pass q lines of π and q lines of gdistinct from ℓ and contained in $Q^+(5,q)$. Let S be the set of q^2 planes generated by a line of π through P distinct from ℓ and a line of g through P distinct from ℓ . Let C be a Singer cyclic group of the group $H \simeq \operatorname{PGL}(3,q)$. Here H is a subgroup of G stabilizing the plane g. Let \mathcal{T} be the orbit of the set S under C. Then \mathcal{T} consists of $q^2(q^2+q+1)$ planes and each of these planes has 2q + 1 points in common with $Q^+(5,q)$ on two intersecting lines of $Q^+(5,q)$. From [7, Lemma 2.4], every line that is secant to $Q^+(5,q)$ and has a point on g is contained in exactly one plane of \mathcal{T} .

Theorem 5 ([7, Theorem 2.5]). The set $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \cup \mathcal{T}$ is a q-covering design $\mathbb{C}_q(6,3,2)$ of size $q^6 + q^4 + 2q^3 + 2q^2 + q - 1$.

We will need the following result.

Theorem 6. There exists a hyperplane Γ of PG(5,q) such that $q^3 + 2q^2 + q - 1$ elements of $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \cup \mathcal{T}$ are contained in Γ .

Proof. Let Γ be a hyperplane of $\mathrm{PG}(5,q)$ containing g. Then Γ is a tangent hyperplane and contains the planes of $\mathcal{Q}^+(5,q)$ through a point R of g. In particular, there are qplanes of \mathcal{Y} contained in Γ . First of all observe that no plane of \mathcal{X} is contained in Γ . Indeed, by way of contradiction, assume that a plane of \mathcal{X} is contained in Γ . Then such a plane would meet g in at least a point, contradicting the fact that every plane of \mathcal{X} is disjoint from g. A plane of \mathcal{Z} that is contained in Γ has to contain the point R. On the other hand, the q-1 planes of \mathcal{Z} , passing through a line of g which is incident with R, are contained in Γ . Hence there are $(q+1)(q-1) = q^2 - 1$ planes of \mathcal{Z} contained in Γ . If π is a Latin plane contained in Γ , then $\pi \cap g$ is a line, say ℓ . By construction there is a point $P \in \ell$ such that the set \mathcal{T} contains q^2 planes meeting π in a line through P and g in a line through P. Note that these q^2 planes of \mathcal{T} are contained in Γ . It follows that there are $q^2(q+1)$ planes of \mathcal{T} contained in Γ . The result follows. Starting from the q-covering design $\mathbb{C}_q(6,3,2)$ of Theorem 5, Theorem 2 can be used recursively to obtain a q-covering design $\mathbb{C}_q(2n,3,2)$, $n \ge 4$, of size

$$q^2\theta_{2n-4,q^2} + q^{2n-3} - 1 + \sum_{i=2}^{n-1} (\theta_{4i-5,q} - \theta_{2i-4,q}).$$

In particular there is a hyperplane Γ of PG(2n-1,q) such that there are

$$q^{2n-3} + \sum_{j=0}^{n-2} q^{2(n+j-1)}$$

planes of $\mathbb{C}_q(2n, 3, 2)$ not contained in Γ and

$$(q+1)\left(\sum_{i=2}^{n-1}\left(q^{2i-3}+\sum_{j=0}^{i-2}q^{2(i+j-1)}\right)\right)-1$$

planes of $\mathbb{C}_q(2n, 3, 2)$ contained in Γ .

Theorem 7. If $n \ge 3$, then

$$C_q(2n,3,2) \leqslant q^2 \theta_{2n-4,q^2} + q^{2n-3} - 1 + \sum_{i=2}^{n-1} (\theta_{4i-5,q} - \theta_{2i-4,q})$$

4 On $C_q(3n+8,4,2)$

In this section we provide an upper bound on $C_q(3n+8,4,2)$, $n \ge 0$. We first deal with the case n = 0.

Construction 8. Let \mathcal{A} be a $(4 \times 4, 3)_q$ MRD-code and let $\mathcal{X} = \{L(A) \mid A \in \mathcal{A}\}$ be the set of q^8 solids of PG(7, q) obtained by lifting the matrices of \mathcal{A} . Let Σ' be the solid of PG(7, q) containing U_1, U_2, U_3, U_4 . Then Σ' is disjoint from Σ . Let $\mathcal{S} = \{\ell_i \mid 1 \leq i \leq q^2 + 1\}$ be a line-spread of Σ , let $\mathcal{S}' = \{\ell'_i \mid 1 \leq i \leq q^2 + 1\}$ be a line-spread of Σ' and let $\mu : \ell'_i \in \mathcal{S}' \longmapsto \ell_i \in \mathcal{S}$ be a bijection. Let Γ_i denote the 5-space containing Σ and ℓ'_i , $1 \leq i \leq q^2 + 1$. If γ is a plane of Σ , then there are $q^2 + q$ solids of Γ_i meeting Σ exactly in γ . Let \mathcal{Y}_i be the set of $q(q+1)^2$ solids of Γ_i (distinct from Σ) meeting Σ in a plane containing $\mu(\ell'_i)$. Let $\mathcal{Y} = \bigcup_{i=1}^{q^2+1} \mathcal{Y}_i$. Then \mathcal{Y} consists of $q(q+1)^2(q^2+1)$ solids.

Theorem 9. The set $\mathcal{X} \cup \mathcal{Y}$ is a q-covering design $\mathbb{C}_q(8,4,2)$ of size $q^8 + q(q+1)^2(q^2+1)$.

Proof. Let r be a line of PG(7, q). If r is disjoint from Σ , then from Proposition 1, we have that r is contained in exactly one element of \mathcal{X} . If r meets Σ in one point, say P, then let Λ be the 4-space $\langle \Sigma, r \rangle$, let ℓ_j be the unique line of \mathcal{S} containing P, let P' be the point $\Sigma' \cap \Lambda$ and let ℓ'_k be the unique line of \mathcal{S}' containing P'. If j = k, then $P \in \ell_k$ and r is contained in the q + 1 solids $\langle \alpha, r \rangle$ of \mathcal{Y} , where α is a plane of Σ containing ℓ_k . If $j \neq k$, then $P \notin \ell_k$. Let β be the plane of Σ containing ℓ_k and P. Then r is contained in $\langle \beta, r \rangle$, where $\langle \beta, r \rangle$ is a solid of \mathcal{Y} . Finally let r be a line of Σ , then r is contained in $q(q+1)^2$ solids of \mathcal{Y} . Remark 10. Let \mathcal{L} be a Desarguesian line–spread of PG(7, q). There are $(q^4+1)(q^4+q^2+1)$ solids of PG(7, q) containing exactly $q^2 + 1$ lines of \mathcal{L} . If \mathcal{Z} denotes the set of these solids, then it is not difficult to see that every line of PG(7, q) is contained in at least a solid of \mathcal{Z} . In [17, p. 221], K. Metsch posed the following question: "Is $(q^4 + 1)(q^4 + q^2 + 1)$ the smallest cardinality of a set of 3–spaces of PG(7, q) that cover every line?" Theorem 9 provides a negative answer to this question.

Remark 11. When q = 2, in the proof of [10, Theorem 13], the existence of a 2-covering design $\mathbb{C}_2(8, 4, 2)$ of size 346 has been shown.

Proposition 12. There exists a hyperplane Γ of PG(7, q) such that precisely q(q+1)(2q+1) members of $\mathcal{X} \cup \mathcal{Y}$ are contained in Γ .

Proof. Let Γ be a hyperplane of $\mathrm{PG}(7,q)$ containing Σ . Then no element of \mathcal{X} is contained in Γ , otherwise such a solid would meet Σ , contradicting the fact that every solid in \mathcal{X} is disjoint from Σ . The hyperplane Γ intersects Σ' in a plane σ . The plane σ contains exactly one line of \mathcal{S}' , say ℓ'_k . Hence the $q(q+1)^2$ solids of \mathcal{Y} meeting Σ in a plane through the line $\mu(\ell'_k) = \ell_k$ are contained in Γ . Let $\ell'_j \in \mathcal{S}'$, with $j \neq k$, then $\ell'_j \cap \sigma$ is a point, say R. In this case the q + 1 solids generated by R and a plane of Σ through $\mu(\ell'_j) = \ell_j$ is contained in Γ . Since the elements of \mathcal{Y} are those contained in the 5–space $\langle \Sigma, \ell'_i \rangle$, where $\ell'_i \in \mathcal{S}'$, and meeting Σ in a plane through ℓ_i , the proof is complete. \Box

As before, by using Theorem 2, the q-covering design of Theorem 9 can be used recursively to obtain a q-covering design $\mathbb{C}_q(3n+8,4,2)$, $n \ge 1$, of size

$$q^{3n+5}\theta_{n+1,q^3} + \sum_{i=0}^{n-1} \left(\theta_{6i+10,q} - \theta_{3i+4,q}\right) + \sum_{i=0}^n \left(q^{3i+2}(2q^2-1)\right) + q(q+1)(2q+1).$$

In particular, there exists a hyperplane Γ of PG(3n + 7, q) such that there are

$$q^{3n+2}(2q^2-1) + \sum_{j=0}^{n+1} q^{3(n+j)+5}$$

solids of $\mathbb{C}_q(3n+8,4,2)$ not contained in Γ and

$$(q^{2}+q+1)\left(\sum_{i=0}^{n-1}\left(q^{3i+2}(2q^{2}-1)+\sum_{j=0}^{i+1}q^{3(i+j)+5}\right)\right)+q(q+1)(2q+1)$$

solids of $\mathbb{C}_q(3n+8,4,2)$ contained in Γ .

Theorem 13. If $n \ge 0$, then

$$\mathcal{C}_q(3n+8,4,2) \leqslant q^{3n+5}\theta_{n+1,q^3} + \sum_{i=0}^{n-1} \left(\theta_{6i+10,q} - \theta_{3i+4,q}\right) + \sum_{i=0}^n \left(q^{3i+2}(2q^2-1)\right) + q(q+1)(2q+1).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(1) (2020), #P1.35

5 On $\mathcal{C}_q(2n,4,3)$

The main goal of this section is to give an upper bound on $C_q(2n, 4, 3)$, $n \ge 4$. We begin by providing a construction in the case n = 4.

Construction 14. Let \mathcal{A} be a $(4 \times 4, 2)_q$ MRD-code and let $\mathcal{X} = \{L(\mathcal{A}) \mid \mathcal{A} \in \mathcal{A}\}$ be the set of q^{12} solids of PG(7, q) obtained by lifting the matrices of \mathcal{A} . Let Σ' be the solid of PG(7, q) containing U_1, U_2, U_3, U_4 . Then Σ' is disjoint from Σ . Let $\mathcal{P} = \{\mathcal{S}_i \mid 1 \leq i \leq q^2 + q + 1\}$ be a 1-parallelism of Σ , let $\mathcal{P}' = \{\mathcal{S}'_i \mid 1 \leq i \leq q^2 + q + 1\}$ be a 1-parallelism of Σ , let $\mathcal{P}' = \{\mathcal{S}'_i \mid 1 \leq i \leq q^2 + q + 1\}$ be a 1-parallelism of Σ' and let $\mu : \mathcal{S}'_i \in \mathcal{P}' \longmapsto \mathcal{S}_i \in \mathcal{P}_i$ be a bijection. For a line ℓ' of Σ' , let $\Gamma_{\ell'}$ denote the 5-space containing Σ and ℓ' . Since \mathcal{P}' is a 1-parallelism of Σ' , there exists a unique j, with $1 \leq j \leq q^2 + q + 1$, such that $\ell' \in \mathcal{S}'_j$. Note that $\mu(\mathcal{S}'_j) = \mathcal{S}_j$ is a line-spread of Σ . Let ℓ be a line of \mathcal{S}_j and let \mathcal{Y}_ℓ be the set of q^4 solids of $\Gamma_{\ell'}$ (distinct from Σ) meeting Σ exactly in ℓ . Let $\mathcal{Z}_{\ell'} = \bigcup_{\ell \in \mathcal{S}_j} \mathcal{Y}_\ell$. Then $\mathcal{Z}_{\ell'}$ consists of $q^4(q^2 + 1)$ solids. Varying ℓ' among the lines of Σ' , we get a set

$$\mathcal{Z} = \bigcup_{\ell' \text{ line of } \Sigma'} \mathcal{Z}_{\ell'}$$

consisting of $q^4(q^2+1)^2(q^2+q+1)$ solids.

Theorem 15. The set $\mathcal{X} \cup \mathcal{Z} \cup \{\Sigma\}$ is a q-covering design $\mathbb{C}_q(8,4,3)$ of size $q^{12} + q^4(q^2 + 1)^2(q^2 + q + 1) + 1$.

Proof. Let π be a plane of PG(7, q). If π is disjoint from Σ , then, from Proposition 1, we have that π is contained in exactly one element of \mathcal{X} . If π meets Σ in one point, say P, then let Λ be the 5-space $\langle \Sigma, \pi \rangle$ and let ℓ' be the line of Σ' obtained by intersecting Σ' with Λ . Note that $\Lambda = \Gamma_{\ell'}$. Let \mathcal{S}'_j be the unique line-spread of \mathcal{P}' containing ℓ' . Then there exists a unique line ℓ of $\mathcal{S}_j = \mu(\mathcal{S}'_j)$ such that $P \in \ell$ and π is contained in $\langle \pi, \ell \rangle$, that is a solid of \mathcal{Z} . If π meets Σ in a line, say r, then let \mathcal{S}_k be the unique line-spread of \mathcal{P} containing r and let Λ be the 4-space $\langle \Sigma, \pi \rangle$. Then $\Lambda \cap \Sigma'$ is a point, which belongs to a unique line, say r', of the line-spread $\mu^{-1}(\mathcal{S}_k) = \mathcal{S}'_k$ of \mathcal{P}' . Since there are q^2 solids of $\Gamma_{r'}$ meeting Σ exactly in r and containing π , we have that in this case π is contained in q^2 members of \mathcal{Z} . Finally if π is a plane of Σ , then π is contained in Σ .

Remark 16. Note that, as regard as the case q = 2, in the proof of [10, Theorem 16] the author exhibited a 2-covering design $\mathbb{C}_2(8, 4, 3)$ of size 6897.

Proposition 17. There exists a 5-space Λ of PG(7,q) containing exactly $q^4(q^2+1)+1$ members of $\mathcal{X} \cup \mathcal{Z} \cup \{\Sigma\}$. Moreover every hyperplane of PG(7,q) through Λ contains precisely $q^4(q^2+1)(q^2+q+1)+1$ solids of $\mathcal{X} \cup \mathcal{Z} \cup \{\Sigma\}$.

Proof. Let Λ be a 5-space containing Σ . Then Λ meets Σ' in a line, say r, and $\Lambda = \langle \Sigma, r \rangle$. The line r belongs to a unique line-spread \mathcal{S}'_i of the 1-parallelism \mathcal{P}' of Σ' . Then $\mu(\mathcal{S}'_i) = \mathcal{S}_i$ is a line-spread belonging to the 1-parallelism \mathcal{P} of Σ . The $q^4(q^2+1)$ solids of \mathcal{Z} lying in $\langle \Sigma, r \rangle$ meet Σ in a line of \mathcal{S}_i and are contained in Λ . Let s be a line of Σ' such that $s \neq r$. In this case none of the $q^4(q^2+1)$ solids of \mathcal{Z} lying in $\langle \Sigma, s \rangle$ is contained in Λ . Indeed, assume by contradiction that there is a solid Δ contained in $\Lambda \cap \langle \Sigma, s \rangle$, then $\Delta \subset \langle \Sigma, s \cap r \rangle$ and hence $\Delta \cap \Sigma$ is a plane of Σ , contradicing the fact that every solid of \mathcal{Z} meets Σ in a line. On the other hand, no solid of \mathcal{X} is contained in Λ , otherwise such a solid would meet Σ not trivially. Finally note that Σ is a solid of Λ .

Let Γ be a hyperplane of PG(7, q) through Λ . Then $\Gamma \cap \Sigma'$ is a plane, say σ , containing the line r. Repeating the previous argument for every line of the plane σ , it turns out that there are $q^4(q^2 + 1)(q^2 + q + 1)$ solids of \mathcal{Z} in Γ , as required. \Box

Let S_4 denotes $\mathcal{X} \cup \mathcal{Z} \cup \{\Sigma\}$. As in the previous sections, S_4 can be used as a basis for a recursive construction of a *q*-covering designs $\mathbb{C}_q(2n, 4, 3)$, $n \ge 5$.

Theorem 18.

$$\mathcal{C}_q(8,4,3) \leqslant q^{12} + q^4(q^2+1)^2(q^2+q+1) + 1$$

$$\mathcal{C}_q(10,4,3) \leqslant q^{18} + q^4(q^2+1)(q^2+q+1)(q^8+q^6+q^4+q^3+q^2+1) + 1$$

Acknowledgements

We would like to thank the anonymous referee for his valuable comments.

References

- A. Beutelspacher. On parallelisms in finite projective spaces. *Geom. Dedicata*, 3:35–40, 1974.
- [2] A. Beutelspacher. On t-covers in finite projective spaces. J. Geom., 12(1):10–16, 1979.
- [3] A. Beutelspacher and J. Ueberberg. A characteristic property of geometric *t*-spreads in finite projective spaces. *European J. Combin.*, 12(4):277–281, 1991.
- [4] A. Blokhuis, P. Sziklai and T. Szőnyi. Blocking sets in projective spaces. In Current Research Topics in Galois Geometry, Nova Science Publishers, Inc., pp. 63–86, 2014.
- [5] R. C. Bose and R. C. Burton. A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combinatorial Theory, 1:96–104, 1966.
- [6] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy, and A. Wassermann. Existence of q-analogs of Steiner systems. Forum Math. Pi, 4 e7:14 pp., 2016.
- [7] A. Cossidente and F. Pavese. A note on q-covering designs in PG(5,q). J. Combin. Des., 24:383–388, 2016.
- [8] P. Delsarte. Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A, 25:226–241, 1978.
- [9] J. Eisfeld and K. Metsch. Blocking *s*-dimensional subspaces by lines in PG(2s, q). Combinatorica, 17(2):151–162, 1997.
- [10] T. Etzion. Covering of subspaces by subspaces. Des. Codes Cryptogr., 72:405–421, 2014.

- [11] T. Etzion and A. Vardy. On q-Analogs for Steiner Systems and Covering Designs. Adv. Math. Commun., 5:161–176, 2011.
- [12] E. M. Gabidulin. Theory of codes with maximum rank distance. Problems of Information Transmission, 21:1–12, 1985.
- [13] J. W. P. Hirschfeld. Projective Geometries over Finite Fields. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.
- [14] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985.
- [15] J. W. P. Hirschfeld and J. A. Thas. *General Galois Geometries*. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.
- [16] R. Koetter and F. R. Kschischang. Coding for errors and erasures in random network coding. *IEEE Trans. on Inform. Theory*, 54:3579–3591, 2008.
- [17] K. Metsch. Blocking sets in projective spaces and polar spaces. J. Geom., 76:216–232, 2003.
- [18] K. Metsch. Blocking subspaces by lines in PG(n,q). Combinatorica, 24:459–486, 2004.
- [19] R. M. Roth. Maximum-rank array codes and their application to crisscross error correction. *IEEE Trans. Inform. Theory*, 37:328–336, 1991.
- [20] B. Segre. Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl., 64:1–76, 1964.
- [21] J. Sheekey. MRD Codes: Constructions and Connections. In Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.), De Gruyter, 2019.
- [22] D. Silva, F. R. Kschischang, and R. Koetter. A rank-metric approach to error control in random network coding. *IEEE Trans. Inform. Theory*, 54:3951–3967, 2008.