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1. Introduction

This chapter is an overview of the subject starting from the 

early landmark achievements, and includes papers, extended 

articles, reviews and books. Heparin and LMWHs are widely used 

for the prevention and treatment of thrombotic events by inhibiting 

antithrombin III (AT) and factor Xa through a specific oligosaccharide 

binding sequence (ATBR) present in only one third of unfractionated 

heparin chains as has been well-documented in two recent reviews 

[1,2]. Heparin, the most negatively charged biopolymer has an average 

of four negative charges for each disaccharide unit, can interact with 

a wide range of proteins, with interactions that exhibit a range of 

specificities [3] and induce several associated biological activities. 

These involve plasma or tissue proteins such as heparin cofactor II 

(HCII), tissue factor plasminogen inhibitor (TFPI), lipoproteinlipase, 

growth factors and heparanase. Interestingly, when a heparin 

ATIII-no-affinity fraction was added to normal plasma containing 

heparin, a marked increase in anti-factor Xa activity was observed, 

presumably due to the displacement of heparin with affinity for 

ATIII from binding plasma proteins [4].

2. Heparin and low molecular weight heparins (LMWH)

2.1. Anti-inflammatory, cardiovascular and tissue protection activities

The early reports of the beneficial effects of heparin in 

inflammation were attributed to the heparin binding and inhibition 

of chemokines, complement, growth and angiogenic factors, as 

reviewed recently [1,5,6,7]. Heparin can also bind to adhesion 

mediators expressed during inflammation, such as selectins, 

integrins and their receptors [8,9]. Tissue protection and repair were 

observed after heparin was inhaled to treat hot smoke inhalation 

injury in human fire survivors [5]. Topical, ophthalmic and 

parenteral formulations were also used to treat burns and lesions 

[10]. In low doses, heparin showed activity in several experimental 

models of inflammation as well as in the treatment of human 

chronic pulmonary diseases, by inhalation, or topically in allergic 

rhinitis [5]. Under various experimental and clinical conditions, such 

as oedema formation and pulmonary hypertension, heparin reduces 

leucocyte recruitment at the site of injury or inflammation stimuli, 

down-regulating cytokines, TNF-, endotoxins and inhibiting human 

leukocyte elastase (HLE), as well as heparanase [5]. In response 

to vascular injuries, excessive repair by artery smooth muscle 

cells (SMC) can induce vascular disorders such as restenosis and 

hypoxy-pulmonary hypertension. SMC proliferation was inhibited 

by heparin in tissue culture and in rat, and rabbit injury models 
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The aim of this chapter is to provide an overview of non-anticoagulant effects of heparins and their potential 

use in new therapeutic applications. Heparin and heparin derivatives have been tested in inflammatory, 

pulmonary and reproductive diseases, in cardiovascular, nephro- and neuro-tissue protection and repair, 

but also as agents against angiogenesis, atheroschlerosis, metastasis, protozoa and viruses. Targeting 

and inhibition of specific mediators involved in the inflammatory process, promoting some of the above 

mentioned pathologies, are reported along with recent studies of heparin conjugates and oral delivery 

systems. Some reports from the institute of the authors, such as those devoted to glycol-split heparins are 

also included. Among the members and derivatives of this class, several are undergoing clinical trials as 

antimetastatic and antimalarial agents and for the treatment of labour pain and severe hereditary anaemia. 

Other heparins, whose therapeutic targets are non-anticoagulant such as nephropathies, retinopathies and 

cystic fibrosis are also under investigation.
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[12]. A recent systematic review with meta-analysis showed the 

beneficial effects of heparin treatment in asthmatic patients [13]. In 

normal subjects, heparin can inhibit reactive oxygen species (ROS) 

generation [14], supporting the observed cardiovascular protective 

effects, and also increases nitric oxide bioavailability through the 

release of vessel immobilized myeloperoxidase [15]. The role of 

neutrophil elastase, a highly aggressive endopeptidase, seems 

to be crucial and is provoked by imbalances of natural inhibitors 

leading to degradation of connective and tissue components as 

observed in emphysema, cystic fibrosis, rheumatoid arthritis, 

psoriasis, perodontitis, mucopolysaccharidosis, wound healing and 

tumour invasion. Elastase can be inhibited “in vitro” by heparin and 

derivatives [16–18] as well as in emphysema experimental models 

[19].

2.2. Heparanase inhibition: implication in various pathologies

Heparin can also inhibit the endo--D (1-4) glucuronidase, 

heparanase [20,21] that through cleavage of HS chains of heparan 

sulfate proteoglycans affects their functions, the integrity and 

functional state of the extracellular matrix (ECM) and basement 

membrane of vessel walls. Owing to the ubiquitous presence and 

multiple roles of HS, such as growth factor storage and activity, 

cytokines, chemokines and heparanase degrading activity, it is 

involved in several pathological conditions including inflammation, 

amyloidosis, diabetic and glomerular nephropathies, cancer meta-

stasis and angiogenesis. Overexpression and enhanced local activity 

of heparanase were observed particularly in atherosclerosis [22], 

type 2 diabetes [23], inflammatory bowel disease [24], in synovial 

fluid from rheumatoid arthritis patients [25], as well as in kidneys 

from both diabetic nephropathic and glomerular disease patients 

[26]. The first clinical trial of low dose heparin (in combination) 

dates back to the 1960s, followed in 1971 by long term high dose 

heparin in chronic glomerular nephritis [26]. The use of heparin and 

glycosaminoglycans as potential anti-complement agents in renal 

dysfunctions has been hypothesized [27].

2.3. Anticancer activity of heparin and LMWHs

The inhibitory activity of heparin on the growth of transplanted 

tumour tissues was first reported in 1930 [28]. Heparin and LMWHs 

have shown “in vivo” inhibitory activity in several experimental 

models. Their anti-metastatic activity seems to be based mainly on 

interference with the spreading of tumour cells in the blood and 

inhibition of angiogenesis, selectins as well as heparanase [29] and 

tissue factor (TF) over-expressed during inflammation and in the 

presence of aggressive cancers [30]. A recent report indicated an 

additional chemo-sensitizing activity of heparin through inhibition 

of P-glycoprotein- mediated multidrug resistance [31]. The results 

of “in vitro”, “in vivo” studies and clinical trials have been reviewed 

[29,32–34]. Retrospective evaluation of early clinical trials indicated 

that heparin can provide survival benefits to cancer patients 

compared to other anti-thrombotics [32]. The inhibition of clots 

associated with tumour tissues, by heparin and LMWHs can increase 

accessibility of anticancer drugs and the efficacy of chemotherapy, 

but also induces drug resistance in some cases [35,36]. LMWHs are 

considered by current clinical guidelines to be the drug of choice 

for antithrombotic treatment in cancer patients. Adjunct therapy 

in small cell lung cancer patients with or without Bemiparin 

compared to chemo-radiation showed increased response rates and 

median survival times [37]. Comparable results were obtained with 

Dalteparin combined with chemotherapy in non-small cell lung 

cancer patients when compared with chemotherapy alone [38]. 

Other positive effects were observed in terminal cancer patients 

treated with Nadroparin or Dalteparin, as well as with Enoxaparin 

combined with chemotherapy in pancreatic cancer patients [29]. An 

updated systematic review and meta-analysis of randomized trials 

on survival of cancer patients treated with LMWHs has been reported 

[39]. A retrospective study on small cell lung cancer patients treated 

with heparin showed overall beneficial effects even when using 

different commercial heparin preparations [38]. Their intrinsic 

heterogeneity, despite their comparable anticoagulant activity, was 

probably one of the major factors behind some irreproducible or 

conflicting results. In this context the seminal report of J. Folkman 

et al. “Angiogenesis inhibition and tumour regression caused 

by heparin or a heparin fragments in the presence of cortisone” 

[40]. Following a preliminary selection from commercial heparins 

for their anti-angiogenic activity, the most active heparin found 

was “Panheprin” from Abbot that was discontinued soon after. 

Difficulties in reproducing the results using different commercial 

heparins interrupted this line of research [42]. Beneficial effects 

observed in anecdotal and clinical trials are reported in Table 1.

2.4. Other experimentally investigated activities

After an early report [56] on the “in vitro” inhibition of Herpes 

simplex virus, in the mid-1980s, the potential for heparin and sulfated 

polysaccharides, to inhibit HIV in vitro [57], were investigated. 

Other reports showed the broad spectrum of “in vitro” activity of 

heparin on a variety of RNA and DNA viruses [58,59]. As for other 

therapeutic applications, anticoagulant activity limited doses, 

poor pharmacokinetics and the poor oral absorption of heparin 

were the major drawbacks to further developments. Heparin can 

exert neuroprotective effects in some models of neurodegenerative 

diseases inhibiting apoptotic processes [60]. Table 2 shows some 

other “in vitro” and “in vivo” activities of heparin that have been 

investigated.

2.5. LMWHs, ultra LMWHs and related oligosaccharides as nephro- and 

neuroprotective agents

Experimental and clinical studies in patients with proteinuric 

glomerulonephritis showed benefit by oral treatment with 

sulodexide, a mixture of LMW heparin and dermatan sulfate in a 

Table 1
Heparin: anecdotal* and clinical trials

Target References

Acute respiratory distress syndrome* [5,42]

Allergic rhinitis [43]

Antimalarica [44]

Antiphospholipid syndrome [45]

Asthma and bronchial constriction [5,13]

Cardioversion of atrial fibrillation [46]

Cardiopathies [47]

Chronic obstructive pulmonary diseases [5]

Cystic fibrosis [18,48]

Glomerulonephritis [26]

Hyperlipemias [49]

Inflammatory bowel diseases [5,29,50]

Mucolytic agent (Inhaled) [51]

Nervous system protection by radiation  [52]

Rheumatoid arthritis [5,53]

Severe sepsis [54]

Tissue repair and wound healing [5]

Vasoprotection  [55]

a Heparin, inhibiting and reversing cytoadherence and rosetting of Plasmodium 

falciparium infected erythrocytes “in vitro”. Tested from 1967 in severe malaria 

clinical trials, after some overall promising outcomes, were discontinued due to 

severe intracranial bleeding [44]
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4:1 weight ratio [26]. Clinical trials of parental LMHWs and oral 

sulodexide in diabetic nephropathic patients were also reported and 

their beneficial effects correlated principally with their inhibition of 

heparanase and oxidative renal insult [71]. In the early 1990s, clinical 

trials showed that “Ateroid” (present in the Italian market until 2014 

as oral and parental formulations), a mixture of glycosaminoglycans 

(GAGs) similar to Sulodexide, may have improved the cognitive 

function of patients with various degenerative conditions correlated 

to amyloid diseases, such as Alzheimer’s (AD), Parkinson’s (PD) 

diseases and transmissible spongiform encephalopathy (TSE) 

[60]. In 1998 some heparin oligosaccharides were found able to 

cross the blood-brain barrier and inhibit -amyloid precursor 

protein secretion [72]. Enoxaparin was also found to be active in 

an AD murine model [73]. Enoxaparin and Dalteparin inhibited 

experimental amyloidosis in clinically relevant doses [74]. To avoid 

anticoagulant effects, a mixture of oligosaccharides, named C3 or 

Neuroparin, prepared by -irradiation of high molecular weight 

heparin, showed neuroprotective effects in AD experimental models, 

also by the oral route [60].

2.6. Other investigated activities of LMWHs

Following randomized applications in vitreoretinal surgery 

[75] LMWHs have been used alone [76] or in combination with 

5-fluoro-uracil [77], to mitigate the high risk of post-operative 

vitreoretinopathies, with significant improvement. As recently 

reviewed [78] in other clinical trials there was no statistical 

difference in the primary outcome, showing a narrow spectrum of 

experimental activity compared to heparin. In another recent review 

with meta-analysis, heparin and derivatives showed positive effects 

in cataract surgery [13]. LMWHs compared with heparin, showed 

more benefit as nephro- and neuroprotective agents. Other activities 

are listed in Table 3.

3. Chemical derivatives of heparin and LMWHs

The majority of biochemical, pharmacological and clinical 

investi gations of heparins reported here, have employed heparin 

preparations manufactured as anticoagulants that can induce, 

in other therapeutic applications, side effects such as bleeding. 

This drove the investigation into the properties of heparin chains 

with no-affinity for AT and of chemically modified heparin with 

reduced anticoagulant activity. More selective approaches have 

been considered for both heparin fractions, with reduced AT affinity 

and anticoagulant activity, as well as rationally designed heparin 

derivatives targeting more specific interacting proteins. Comparison 

of the peculiar heparin sequences with libraries of amino acid 

sequences of heparin binding proteins may allow the prediction and 

identification of more specific interactions and new leads [85,86].

3.1. Sulfation degree modifications

Although the highly sulfated sequences of heparin show protein 

high-affinity binding, some of the sulfated groups can be compatible, 

but are not necessary for certain interactions. Selective desulfation 

can avoid or reduce heparin anticoagulant activity, by removing 

essential sulfated groups from the antithrombin binding region 

(ATBR) and induce selectivity among different protein targets. 

Similar results can be achieved by introducing sulfated groups in 

un-natural positions inducing conformational changes to impair 

ATIII binding.

Early chemical modifications included selective O-acylation 

in 1947 and N-desulfation in 1958 [87]. N-desulfated heparin, 

named “heparamine”, showed reduced anticoagulant activity, 

experimental beneficial effects in preventing hepatic and renal 

damage by ischemia and reperfusion, as well as in inhibiting 

angiogenesis and experimental metastatic gastric cancer [88]. 

Structural modifications and structural activity relationship studies 

were mainly targeted towards inflammation [5], angiogenesis, 

cardiovascular and pulmo nary diseases [11], metastasis [89] as 

well as Alzheimer’s disease [90] and cerebral malaria [91]. The 

last two reports demonstrated the activity of N-desulfated-N-

acetylated heparin (named heparide) and LMWHs. These and 

some N-acyl analogues showed beneficial effects in inflammation 

myocardial ischemic and reperfusion injury [5], inhibitory 

activity of angiogenesis and metastasis [89] in a broad spectrum 

of experimental models. An oversulfated LMWH preparation was 

found beneficial in an iron restricted anaemia model through 

inhibition of the peptide hormone Hepcidin [68]. Various types of 

derivatives, chemical processes, some biological interactions and 

activities are reported in dedicated reviews [87,89,92,93]. While 

the early structurally defined heparin binding to AT and thrombin 

supported the search of new anticoagulants and antithrombotics, 

only a few of the heparin interactions with the multitude of 

proteins involved, for example in inflammation [5], angiogenesis, 

metastasis and cancer [94] as well as atherosclerosis (LDL) 

[95] have been fully investigated to date. Owing to the intrinsic 

heterogeneity of heparin, which is sometimes increased by side 

reactions resulting from the difficulties of chemical handling and 

lack of selectivity, gave rise up to the 1990s to the development of 

a few leads and approved drugs. To our knowledge, Hirudoid, an 

oversulfated heparin is still on the market as a local vasoprotective 

formulation [93]. An O-butanoyl heparin derivative was found 

active in lung cancer experimental models [96]. Clinical trials 

of 2-O, 3-O desulfated heparin (ODSH), in combination with 

chemotherapy, showed benefits in untreated metastatic pancreatic 

cancer patients [97]. In the early 1990s another ODSH formulation 

was developed for the treatment of chronic obstructive pulmonary 

disease, but discontinued in 1994 [5].

Table 2
Heparin activity investigated “in vitro” and “in vivo”

Target References

Allergic encephalomyelitis [5]

Auto-immuno diseases [61]

Anti-complement [29,62,63]

Anti-atherosclerosis [64]

Diabetic nephropathies [26,65]

Emphysema [66,67]

Iron-restricted anemia [68]

Neuroprotection [60]

Osteogenesis [69] 

Periodontal diseases [70]

Table 3
Other clinical and experimental activities of LMWHs

Target Compound References

Asthmaa IVX0142 (Sulfate disaccharide) inhaled [79]

Cystic fibrosisb  [80]

Emphysemab Fraxiparine [81]

Hematopoiesic  [82]

Obstetricsc,e Dalteparin [83]

Retinal angiogenesisc Suloparoidd [84]

Ulcerative colitisc LMWHs [9]

a Anecdotal trial; b experimental models; c clinical trials; d LMW heparan sulfate; 
e shorter human labor.
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3.2. Glycol-split heparins (gs-heparins)

Periodate oxidation has been applied to obtain non-anticoagulant 

heparins without impairing other biological activities and inducing 

reduced side reactions, i.e. depolymerization, and preserves both 

the pattern and degree of sulfation [98,99]. Periodate can selectively 

oxidize adjacent carbons bearing unsubstituted hydroxyl and /or 

amino groups [100], leading, in heparins, to the splitting of C(2)-C(3) 

bonds of un-sulfated uronic acids including the glucuronic acid, 

within the ATBR, essential for high anticoagulant activity [101]. 

Subsequent borohydride reduction leads to the “glycol-split” (gs) 

derivatives, also named reduced oxyheparins (ROHs), as shown in 

Fig. 1 Under well-controlled conditions, the first intermediate oxy-

heparin and final gs-heparin samples, that preserved the original 

Mws, were fully-characterized in terms of their chemical-physical 

properties and “in vivo” anti-lipemic activity, as well as residual 

anticoagulant activity in 1986 [99]. The increase of chain flexibility, 

induced by gs-residues and the ability to maintain the principal 

biological interactions of heparin has led in the last thirty years to a 

number of active gs-heparins differing in size and extent of glycol-

splitting, shown in Table 4.

Among the gs-heparins under development, only SST0001 

(N-desulfated-N-acetyl gs-heparin) shows a size comparable to 

that of high molecular weight heparin. This inhibits heparanase, 

angiogenesis, downregulates FGF-2, HGF, MMP9 and PDGF 

abrogating PDGF receptor tyrosine phosphorylation. The heparanase 

role in radiation-enhanced invasiveness of pancreatic carcinoma 

is abolished by SST001 “in vivo” [102]. The SST0001 inhibition of 

heparanase mediated signaling overcame the resistance in Lapatinib 

resistant brain metastatic breast cancer cells [103]. An additional 

heparanase mediated pathway inhibited by SST0001 “in vitro” is 

the stimulation of chondrogenesis up-regulated by heparanase 

in human ectopic cartilage and possibly involved in hereditary 

multiple exostoses, a pediatric skeletal disorder characterized by 

benign cartilaginous tumours [104]. SST0001 was found effective in 

several tumour xenografts of hematologic (myeloma) [105] and solid 

(sarcoma) malignancies [106, 107]. Roneparstat has been tested in a 

Phase I trial for advanced myelomas and patients are being enrolled 

for a Phase II trial.

All the other gs-heparins including those in clinical trials show 

low or very low Mw. Vasoflux, obtained by glycol splitting of a LMWH, 

afforded anticoagulant activity independent of AT and HCII [108]. 

Addition of Vasoflux to streptokinase and Aspirin in a randomized 

clinical trial for prevention of acute myocardial infarction, did not 

improve the response compared to heparin [109].

M402, a gs-LMWH, inhibits heparanase, growth factors involved 

in angiogenesis, other pathways and metastasis in orthoptic murine 

carcinoma models [110]. Since June 2005, Nocuparanib has been a 

candidate in Phase II clinical trial for metastatic pancreatic cancer in 

combination with chemotherapy. Clinical trials of DF01 (Tafoxiparin) 

for the prevention and treatment of protracted labour are ongoing 

[111]. DFX -232 and Sevuparin, as inhibitors of red cell aggregation, 

known as rosetting, arising from “Plasmodium falciparium” infection, 

are under clinical trial as anti-malarials and for prevention of 

vascular occlusion by sickle red cells in severe hereditary anaemia 

[112].

3.3. Heparin oligosaccharides

The biosynthetic structural heterogeneity of heparin chains, 

further enhanced by chemical treatments during manufacture and 

purification, make their sequence analysis very difficult. To prepare 

a library of pure oligosaccharides from natural heparin is another 

very challenging task. Nevertheless hundreds of oligosaccharide 

have been isolated over the years, mainly by enzymatic or nitrous 

acid partial depolymerization, and tested for a broad range of 

biological activities and protein interactions. Through a recent 

rational approach, active oligosaccharides from hexa- up to 

dodecasaccharides have been chemo-enzymatically prepared 

starting from the structural homogeneous bacterial polysaccharide 

K5 [129] using recombinant versions of the heparin biosynthesis 

enzymes [130].

4. Heparin conjugates and orally delivery systems

An oxy-heparin preparation, (from heparin periodate oxida-

tion) was linked through the newly formed aldehyde groups 

to polystyrene to provide the conjugate NAC-HCPS, inhibiting 

angiogenesis and metastasis in experimental models [131], the 

same activity shown by a conjugate of Fraxiparin (LH17), through a 

diaminoethylene bridge with taurocholate [132]. Other conjugates 

have been designed as delivery systems for anticancer drugs, such 

as Doxorubicin [133]. An orally active 6-O-desulfated Nadroparin 

conjugate with deoxycholate (6ODS-LHbD) was found to inhibit 

angiogenesis and bone destructive arthritis in experimental models 

[134]. Ignoring anecdotal reports, orally active heparin formulations 

have been the aim of formulation scientists and clinicians for some 

time. A variety of approaches have been summarized recently [135]. 

To mention one instance, N-[8-(2-hydroxyl benzoyl)amino]caprilate 

(SNAC) was selected as an oral enhancing delivery agent for heparin. 

I G

gsI gsG

ANAc6S ANS6SANS3S6SANS6SI2S G ANAc6OH

gsG

I2S

Fig. 1. Simplified formula of representative ATBR- containing chain of porcine mucosal heparin (a) and the corresponding gs derivative (b) obtained by periodate oxidation/

borohydride reduction. I = Iduronic acid, A= Glucosamine, G = glucuronic acid, gs = glicol-split, ATBR = antithrombin binding region.
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The efficacy of two liquid formulations in a thromboprophylaxis 

Phase III clinical trial, in comparison with standard s.c. LMWH 

therapy, did not show significant benefits [136].

5. Conclusion

Up-dating the non-anticoagulant activities of heparins has not 

been an easy task considering the number of reports disclosing 

their new roles in signaling and pathways involved in a variety of 

pathologies. In competition with chemo-enzymatic approaches, 

natural heparins, may improve their chances. The manufacture of 

pharmaceutical grade heparin has been optimized for anticoagulant 

efficacy which mainly represents the principal side effect for other 

applications. Given the heterogeneity of raw heparin chains, it 

is probable that sequences and chains better involved in other 

applications may be lost but, also selected in processing natural 

heparins. In the future, selection based on size or lack of AT-binding, 

followed by compositional and structural characterization would 

provide more useful and rational preparations preserving particular 

sequences, for new non-anticoagulant leads and applications.
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