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Abstract. We present a case study on the discovery of clinically relevant
domain knowledge in the field of HIV drug resistance. Novel mutations
in the HIV genome associated with treatment failure were identified by
mining a relational clinical database. Hierarchical cluster analysis sug-
gests that two of these mutations form a novel mutational complex, while
all others are involved in known resistance-conferring evolutionary path-
ways. The clustering is shown to be highly stable in a bootstrap proce-
dure. Multidimensional scaling in mutation space indicates that certain
mutations can occur within multiple pathways. Feature ranking based on
support vector machines and matched genotype-phenotype pairs compre-
hensively reproduces current domain knowledge. Moreover, it indicates a
prominent role of novel mutations in determining phenotypic resistance
and in resensitization effects. These effects may be exploited deliberately
to reopen lost treatment options. Together, these findings provide valu-
able insight into the interpretation of genotypic resistance tests.

Keywords: HIV, clustering, multidimensional scaling, support vector
machines, feature ranking.

1 Introduction

1.1 Background: HIV Combination Therapy and Drug Resistance

Human immunodeficiency virus HIV-1 is the causative agent of the acquired
immunodeficiciency syndrome AIDS, a disease in which persistent virus-induced
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depletion of helper T cells leads to immune failure and death due to opportunistic
infections. While to date there is no cure for HIV infection, the introduction of
highly active antiretroviral therapy (HAART), in which three to six antiretrovi-
ral drugs are administered in combination, has significantly improved life quality
and survival time of patients. However, incomplete suppression of HIV replica-
tion by current drugs, combined with high mutation and replication rates of
HIV ultimately results in the selection of viral populations carrying resistance-
conferring mutations in their genomes. The fixation of these strains in the pop-
ulation eventually leads to therapy failure, upon which a new combination of
drugs has to be chosen as next-line regimen.

1.2 Motivation: Evidence for Additional Resistance-Associated
Mutations and Mutational Clusters

To date, the decision for follow-up drug combinations in patients failing therapy
is routinely based on sequencing the relevant genomic region of the viral popu-
lation harbored by the individual. The sequence is then analyzed to identify the
presence of resistance-associated mutations for each of the 19 drugs currently
available for anti-HIV therapy, by using mutation lists annually updated by the
International AIDS Society (IAS) [1] or other panels of human experts.

The situation is complicated by the fact that resistance mutations do not ac-
cumulate independently from each other. Rather, they are loosely time-ordered
along mutational pathways, leading to distinct mutational complexes or clus-
ters.1 Rational therapy planning is severely compromised by our limited under-
standing of these effects. Increasing evidence on additional mutations involved in
the development of drug resistance [2,3], besides those listed by the IAS, provides
the incentive for our present study.

1.3 Outline

We describe an approach towards the discovery and characterization of novel
mutations associated with therapy failure from a large relational database, and
their evolutionary and phenotypic characterization using supervised and unsu-
pervised statistical learning methods. We focus on resistance against seven drugs
from the class of nucleoside reverse transcriptase inhibitors (NRTIs), which tar-
get an HIV protein called reverse transcriptase (RT). This enzyme is responsible
for translating the RNA genome of HIV back to DNA prior to its integration
into the human genome. NRTIs are analogues of the natural building blocks of
DNA, but lack a group essential for chain elongation. Thus, incorporation of a
nucleoside analogue during DNA polymerization terminates the chain elongation
process.

The knowledge discovery process described in this paper combines hetero-
geneous data from three different virological centers. To allow for integrated
1 Throughout this paper, the words complex, cluster, and pathway are used inter-

changeably.
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analysis, these data are stored in a relational database, whose structure is out-
lined in section 2. Systematic mining for mutations with differing propensities
in NRTI-treated and untreated patients, respectively, as detailed in section 3,
leads to the identification of 14 novel mutations associated with therapy fail-
ure. In section 4, we propose an approach towards characterizing the covariation
structure of novel mutations and their association into complexes using hier-
archical clustering and multidimensional scaling. Stability results are provided
using a bootstrap method. Feature ranking based on support vector machines,
described in section 5, allows for assessing the actual phenotypic impact of novel
mutations. In section 6, we conclude by summarizing our approach, related work,
and open problems.

2 The Arevir Database for Managing Multi-center
HIV/AIDS Data

This study is based on multi-center virological data, including HIV genomic se-
quences from over 2500 patients, in vitro measurements of drug resistance [4],
and clinical data such as viral load and helper T cell counts. Our relational
HIV database Arevir, implemented in MySQL and Perl, and in use and ongo-
ing development since 2002, provides an appropriate platform to address the
challenges of data management and integration. The Arevir database schema is
grouped into different modules, each consisting of a few tables, corresponding to
information on patients, therapies, sequences, isolates, and specific (predicted or
measured) isolate properties. Registered users can perform queries or enter data
directly through a web interface. Upload of new data triggers the execution of
several scripts, including programs for sequence alignment. To ensure privacy,
connection between client and server is established via an SSH-tunneled Virtual
Network Computing (VNC) client.2

3 Mining for Novel Mutations

Our approach towards identifying mutations associated with NRTI therapy is
based on the assumption that these should occur with differential frequencies in
treatment-naive subjects and in patients failing therapy, respectively.

Thus, mining for novel mutations was based on contrasting the frequency
of the wild-type residue with that of a specific mutation in 551 isolates from
drug-naive patients and 1355 isolates from patients under therapy failure, at RT
positions 1–320 [5]. Chi-square tests were performed for all pairs of wild-type
and mutant residues to determine mutations for which the null hypothesis that
amino acid choice is independent from the patient population can be rejected.
Correction for multiple testing was performed using the Benjamini-Hochberg
method [6] at a false discovery rate of 0.05.
2 Computational analyses are performed on completely anonymized data, retaining

only patient identifiers instead of full names.



288 T. Sing et al.

This procedure revealed 14 novel mutations significantly associated with
NRTI treatment, in addition to those previously described in [1]: K43E/Q/N,
E203D/K, H208Y, D218E3 were virtually absent in therapy-naives (< 0.5%),
while K20R, V35M, T39A, K122E, and G196E were already present in the naive
population with a frequency of > 2.5% but showed significant increase in treated
patients. Surprisingly, mutations I50V and R83K showed significant decrease in
the treated population as compared to therapy-naives.

4 Identifying Mutational Clusters

In this section we describe an unsupervised learning approach towards charac-
terizing the covariation structure of a set of mutations and its application to
the newly discovered mutations. Mutational complexes can give rise to distinct
physical resistance mechanisms, but can also reflect different ways to achieve the
same resistance mechanism. Indeed, the two most prominent complexes associ-
ated with NRTI resistance, the nucleoside analogue mutations (NAMs), groups 1
and 2, consisting of mutations M41L/L210W/T215Y and K70R/K219Q/D67N,
respectively, both confer resistance via an identical mechanism, called primer
unblocking. On the other hand, the multi-NRTI resistance complex with Q151M
as the main mutation mediates a different physical mechanism in which recog-
nition of chemically modified versions of the DNA building blocks is improved
to avoid unintended integration. In essence, to appreciate the evolutionary role
of novel mutations it is important to identify whether they aggregate with one
of these complexes or whether they form novel clusters, possibly reflecting ad-
ditional resistance mechanisms. This analysis was performed focusing on 1355
isolates from patients failing therapy.

4.1 Pairwise Covariation Patterns

Patterns of pairwise interactions among mutations associated with NRTI treat-
ment were identified from the database using Fisher’s exact test. Specifically, for
each pair of mutations co-occurrence frequencies for mutated and corresponding
wild-type residues were contrasted in a 2-way contingency table, from which the
test statistic was computed.

A visual summary of these pairwise comparisons, part of which is shown in
Fig. 1, immediately reveals the classical mutational clusters described above. It
is also apparent that no significant interactions are formed between the Q151M
complex and mutations from the NAM clusters, suggesting that resistance evo-
lution along the former pathway is largely independent from the other complexes
and that different pathways may act simultaneously on a sequence, at least if
they mediate different physical resistance mechanisms.

In contrast, significant interactions take place across the two NAM complexes.
Antagonistic interactions between the core NAM 1 mutations L210W / M41L /
3 We use the syntax axb to denote amino acid substitutions in RT, where a is the most

frequent amino acid in virus from untreated patients and b the mutated residue.
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Fig. 1. Pairwise φ correlation coefficients between mutations (part view), with red in-
dicating maximal observed positive covariation and blue maximal observed negative
covariation. Boxes indicate pairs whose covariation behavior deviates significantly from
the independence assumption, according to Fisher’s exact test and correction for mul-
tiple testing using the Benjamini-Hochberg method at a false discovery rate of 0.01.
The classical mutational complexes introduced in section 4 form distinct clusters, from
left to right: NAM 1, Q151M multi-NRTI, NAM 2.

T215Y and NAM 2 mutations K70R and K219Q might indicate negative effects
of simultaneous evolution along these two pathways, which both contribute to
the primer unblocking mechanism.

4.2 Clustering Mutations

Dendrograms obtained from hierarchical clustering allow for a more detailed
analysis of mutation covariation structure. The similarity between pairs of mu-
tations was assessed using the φ (Matthews) correlation coefficient, as a measure
of association between two binary random variables, with 1 and −1 representing
maximal positive and negative association, respectively. This similarity measure
was transformed into a dissimilarity δ by mapping φ = 1 to δ = 0 and φ = −1
to δ = 1, with linear interpolation in between. Since it is impossible to obtain
adequate dissimilarity estimates for pairs of mutations at a single position from
cross-sectional data, 4 these were treated as missing values in our approach. The
resulting partial dissimilarity matrix was taken as the basis for average linkage
hierarchical agglomerative clustering.5

The dendrogram in Fig. 2 reveals that most novel mutations group within
the NAM 1 cluster (T215Y/M41L/L210W), except for D218E and F214L, which
4 Such mutation pairs never co-occur in a sequence.
5 In average linkage with missing values, the distance between clusters is simply the

average of the defined distances.
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aggregrate to NAM 2. Interestingly, mutations R83K and I50V, which occur more
frequently in naive than in treated patients appear to form a novel outgroup.

To assess the stability of the dendrogram, 100 bootstrapped samples of RT se-
quences were drawn from the original 1355 sequences. Distance calculation and
hierarchical clustering were performed for each of these samples as described
above. Then, for each subtree of the dendrogram in Fig. 2, the fraction of boot-
strap runs was counted in which the set of mutations defined by the subtree
occurred as a subtree, without additional mutations. 6

The four edge weights next to the root of the dendrogram show that the
reported association of mutations D218E and F214L with NAM 2 is indeed
highly stable across resampled data subsets, as is the grouping of other novel
mutations with NAM 1, and the outgroup status of R83K and I50V. Bootstrap
values for the lower dendrogram levels have been omitted for the sake of clarity;
they range from 0.35 to 0.99, reflecting considerable variability of intra-cluster
accumulation order. Finally, the core NAM 1 and NAM 2 mutations, respectively,
are again grouped together with maximal confidence.

4.3 Multidimensional Scaling in Mutation Space

As can be seen in Fig. 1, certain mutations interact positively with mutations
from both NAM pathways – an effect which might be missed in a dendrogram
representation, and which can be visualized, at least to some extent, using mul-
tidimensional scaling (MDS).

The goal in MDS is, given a distance matrix D between entities, to find
an embedding of these entities in R

n (here n = 2), such that the distances D′

induced by the embedding match those provided in the matrix optimally, defined
via minimizing a particular “stress” function. Our embedding is based on the
Sammon stress function [7],

E(D, D′) =
1

∑
i�=j Dij

∑

i�=j

(Dij − D′
ij)

2

Dij
, (1)

which puts emphasis on reproducing small distances accurately. As in clustering,
mutation pairs at a single position are excluded from the computation of the
stress function, to avoid undue distortions.

The optimal Sammon embedding for the mutation distance matrix derived
from pairwise φ values is shown in Fig. 3. Note that due to the non-metricity
of this matrix, which violates the triangle inequality, such an embedding cannot
be expected to preserve all original distances accurately, Still, the MDS plot
supports the main conclusions from section 4.2, such as to the structure of the
classical NAM complexes, the outgroup status of R83K and I50V, and the ex-
clusive propensity of certain mutations, such as K43E/Q or F214L, to a unique

6 Thus, in computing confidence values increasingly closer to the root, topology of
included subtrees is deliberately ignored (otherwise, values would be monotonically
decreasing from leaves to the root).
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Fig. 2. Dendrogram, as obtained from average linkage hierarchical clustering, showing
the clear propensity of novel mutations to cluster within one of the classical NAM
complexes T215Y/M41L/L210W and K219Q/K70R/D67N, or in the case of R83K
and I50V, to a distinct outgroup. Bootstrap values which are not relevant for our
discussion have been removed for the sake of clarity. Distances between mutations at a
single position are treated as missing values in the clustering procedure. Remarkably,
such pairs of mutations can show differential clustering behavior, as is apparent in the
case of K219Q/R and T215F/Y.

pathway. In addition, the plot also suggests a role in both NAM pathways for
several mutations, such as H208Y, D67N, or K20R.

5 Phenotypic Characterization of Novel Mutations Using
SVM-Based Feature Ranking

The analyses described above allowed us to associate novel mutations with treat-
ment failure and to group them into distinct mutational complexes. In this sec-
tion we address the question whether novel mutations contribute directly to
increased resistance or merely exert compensatory functions in removing cat-
alytic deficiencies induced by the main resistance-conferring mutations. We do
so by analyzing their role in classification models for predicting phenotypic drug
resistance.

Resistance of a given HIV strain against a certain drug can be measured in
vitro by comparing the replicative capacity of the mutant strain with that of a
non-resistant reference strain, at increasing drug concentrations [4]. The result
of this comparison is summarized in a scalar resistance factor. On the basis of
650 matched genotype-phenotype pairs for each drug, we have built predictive
models, using decision trees [8], and support vector machine classification and
regression. These models are implemented in a publically available web server
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Fig. 3. Multidimensional scaling plot of novel (shown in black) and classical mutations
(in white; main NAMs indicated by a cross), showing a two-dimensional embedding
which optimally (according to Sammon’s stress function) preserves the distances among
the mutations, as derived from the φ correlation coefficient. Distances between muta-
tions at a single position were treated as missing values.

called geno2pheno [9] (http://www.geno2pheno.org), which has been used over
36000 times since December 2000.

While support vector machines are widely considered as the state-of-the-art
in prediction performance, there is a common attitude that these models are
difficult to interpret and suffer from “the same disadvantage as neural networks,
viz. that they yield black-box models” [10]. In fact, a substantial set of techniques
is available for feature ranking with SVMs (e.g. [11]), by removing features or
destroying their information through permutation, and even for extracting rule
sets from SVMs.

In our case, using the linear kernel k(x, y) = 〈x, y〉 (standard nonlinear kernels
did not significantly improve accuracy), feature ranking is particularly straight-
forward. Due to the bilinearity of the scalar product, the SVM decision function
can be written as a linear model,

f(x) =
∑

i

yiαik(xi, x) + b = 〈
∑

i

yiαixi, x〉 + b, (2)

allowing for direct assessment of the model weights.
Figure 4 shows the result of this SVM-based feature ranking for zidovudine

(ZDV), one of the seven NRTIs. All mutations associated with resistance to ZDV
in the current resistance update provided by the International AIDS Society [1]

http://www.geno2pheno.org
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Fig. 4. Major mutations conferring resistance to zidovudine (ZDV), as obtained from
SVM-based ranking of 5001 mutations. Bar heights indicate z-score-normalized feature
weights (for example, mutation M41L is more than 20 standard deviations above the
mean feature weight). Mutations associated with ZDV resistance by the International
AIDS Society are shown in black; novel mutations identified from frequency compar-
isons in treated and untreated patients are shown in grey.

appear in the top 50 of 5001 features (250 positions, 20 amino acids each, plus
1 indicator for an insertion), with the first six positions exclusively occupied
by classical NAM mutations (shown in black). This observation provides evi-
dence that our models have adequately captured established domain knowledge
as contributed by human experts. Remarkably, when investigating the role of
novel mutations (shown in grey) in the model, we find that many of them are
prominently involved in determining ZDV resistance, ranking even before several
of the classical ZDV mutations.

These findings generalize to the whole NRTI drug class, as is obvious from
table 1, which shows the ranks of novel mutations in the individual drug models.
Table 1 also reveals some striking and unexpected differences among mutations.
For example, various results suggest a close relationship of mutations H208Y
and E203K, which form a tight cluster in the dendrogram, show up as neighbors
in the multidimensional scaling plot, and exhibit similar rank profiles – with the
notable exception of their differential impact on ddC resistance.

This surprising difference and other effects are more readily appreciated in
Fig. 5, which shows the weights associated with novel mutations in the individ-
ual SVM drug models (after drug-wise z-score weight normalization for improved
comparability). Indeed, increased resistance against ZDV, 3TC, and ABC upon
appearance of E203K seems to coincide with resensitization (i.e. increased sus-
ceptibility) towards ddC. A similar, even more extreme effect can be observed
in the case of T39A, for which increased resistance against ZDV and TDF again
contrasts with increased ddC susceptibility. R83K shows dual behavior: increased
d4T resistance and increased ZDV susceptibility. The presence of I50V is asso-
ciated with increased susceptibility against all NRTIs, explaining its decreased
frequency in treated patients.
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Table 1. Ranks of novel mutations in SVM models for seven NRTIs, with rank 1
indicating maximal contribution to resistance, and rank 5001 maximal contribution to
susceptibility. The classical mutation M184V is shown here for comparison, due to its
particularly strong resensitization effect. The clinical (but not virological) relevance of
results concerning ddC is limited by the limited popularity of this drug.

ZDV ddI ddC d4T 3TC ABC TDF

R83K 4972 3722 718 79 4973 539 154

I50V 4910 803 4702 4855 4736 4818 4899

H208Y 8 16 170 9 114 20 65

E203K 17 271 4963 103 8 19 103

K43Q 30 121 72 684 19 32 18

K43E 12 19 641 10 107 49 10

K122E 10 21 37 45 72 72 774

T39A 11 3814 4882 528 169 4017 50

D218E 20 22 103 50 25 13 659

F214L 119 898 4019 735 128 303 4844

M184V 67 2 1 4971 1 1 4994

Related effects have attracted considerable recent interest due to their pos-
sible benefits in reopening lost treatment options [12]. Arguably the most pro-
nounced behavior can be seen in the classical mutation M184V (table 1), known
to confer high-level resistance to 3TC but inducing d4T and TDF resensitization.
SVM-based feature ranking reproduces this effect in a most striking manner: For
ddI, ddC, 3TC, and ABC, M184V turns out to be the top resistance mutation,
with contributions of 11.2,15.4,42.0, and 20.8 standard deviations above the
mean. In contrast, the same mutation appears to be one of the major contrib-
utors of increased susceptibility towards d4T and TDF, 3.5 and 8.2 standard
deviations below the mean, respectively.

6 Discussion

We have presented a case study on mining a multi-center HIV database using su-
pervised and unsupervised methods. Previously undescribed mutations could be
associated with resistance towards the drug class of nucleoside reverse transcrip-
tase inhibitors and grouped into mutational clusters. SVM-based feature ranking
on an independent data set suggests a direct contribution of novel mutations to
phenotypic resistance and an involvement in resensitization effects which might
be exploited in the design of antiretroviral combination therapies.

Mutation Screening. Novel mutations were found by position-wise com-
parisons, leaving inter-residue effects aside. It is conceivable that additional sets
of mutations related to therapy failure, whose effect is too weak to discern in
isolation, could be identified using other methods, such as discriminating item
set miners. In fact, we have recently proposed an approach towards mining dis-
criminating item sets, in which an overall rule weight in a mixture model of rules
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Fig. 5. Weights of novel mutations (after z-score normalization) in SVM models for
seven NRTIs. For example, mutation E203K contributes significantly to ZDV resis-
tance, while increasing susceptibility towards ddC.

is modulated by the genomic background in which a rule matches [13]. Further
work will have to explore the possible benefits of using such strategies in the
present context.

Covariation Versus Evolution. Dendrograms and MDS analyses describe
the association of mutations into mutational complexes, but refrain from ex-
plicit statements on the accumulation order of mutations. Other approaches,
most notably mutagenetic tree models [14], are explicitly tailored towards elu-
cidating HIV evolutionary pathways from cross-sectional data as those used in
our study. However, while novel mutations exhibit distinct clustering behavior,
the actual order of their accumulation seems to be relatively flexible, challenging
the applicability of such evolutionary models in this setting.

SVM-based Versus Correlation-Based Feature Ranking. To date, fea-
ture ranking is performed mostly using simple correlation methods, in which
features are assessed in their performance to discriminate between classes indi-
vidually, e.g. by using mutual information. However, as detailed in [11], feature
ranking with correlation methods suffers from the implicit orthogonality assump-
tions that are made, in that feature weights are computed from information on
a single feature in isolation, without taking into account mutual information
between features. In contrast, statistical learning models such as support vec-
tor machines are inherently multivariate. Thus, their feature ranking is much
less prone to be misguided by inter-feature dependencies than simple correlation
methods. Further analysis of the feature rankings induced by different methods
can provide valuable insights into their particular strenghts and weaknesses and
suggest novel strategies for combining models from different model classes.
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