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Abstract: Photo-identification is a widely used non-invasive technique in biological studies for
understanding if a specimen has been seen multiple times only relying on specific unique visual
characteristics. This information is essential to infer knowledge about the spatial distribution,
site fidelity, abundance or habitat use of a species. Today there is a large demand for algorithms that
can help domain experts in the analysis of large image datasets. For this reason, it is straightforward
that the problem of identify and crop the relevant portion of an image is not negligible in any
photo-identification pipeline. This paper approaches the problem of automatically cropping cetaceans
images with a hybrid technique based on domain analysis and deep learning. Domain knowledge
is applied for proposing relevant regions with the aim of highlighting the dorsal fins, then a binary
classification of fin vs. no-fin is performed by a convolutional neural network. Results obtained
on real images demonstrate the feasibility of the proposed approach in the automated process of
large datasets of Risso’s dolphins photos, enabling its use on more complex large scale studies.
Moreover, the results of this study suggest to extend this methodology to biological investigations of
different species.

Keywords: photo-identification; cetaceans; Risso; computer vision; deep learning; CNN

1. Introduction

Nowadays the study of cetaceans is of vital importance as an attempt to understand how
marine ecosystems are alterating over current years and what are the main effects of these changes.
Species monitoring is performed through the collection and the evaluation of meaningful bio-ecological
parameters aimed to estimate, for example, their spatial distribution, site fidelity, abundance and
migration as well as habitat use [1–13]. The estimation of these parameters can be greatly facilitated
through the use of a non-invasive technique based on automated algorithms and a large data
availability: the automatic photo-identification of specimens (photo-ID). Photo-ID is based on the
general hypothesis that each individual is unique within its population, showing several specific
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physical characteristics useful for its identification. Photo-ID is especially encouraged because of its
non-invasiveness and its high efficiency. However, given the widespread diffusion of mobile devices
and digital cameras able to capture an extremely high number of high quality images, the photo-ID of
large amounts of data must be performed with the aid of automated or semi-automated approaches.

In literature, in the specific case of Risso’s dolphins [14,15], the algorithm SPIR has been
presented [16–19] to perform the photo-ID of this species in a fully automated way. The main
drawbacks even of state of the art methodologies, not only related to cetaceans but also to the study
of other species, are the dependency on the manual intervention of an expert operator [20–22] as
well as the unavailability of large datasets to be processed [23–25]. Moreover, even in the case
of [16], where the photo-ID can be automatically performed using SPIR, a great concern regards the
problem of fin cropping, considering the fact that pictures are captured generally from boats in real life
settings. To that regard, Ref. [26] addresses the problem of enhancing the assistance in the processing of
massive amounts of biological iconic data. The authors assert that: "the main bottleneck in processing
data from photographic capture-recapture surveys is in object detection for cropping or delineating
an area of interest so that matching algorithms can identify the individual". This concept can be
easily extended to other species large scale studies. The work described in this paper addresses the
problem of automatically cropping a dorsal fin starting from a full frame image using deep learning
models. In recent years, deep learning models have become a powerful standard resource in the
resolution of classification and regression problems throughout many applications [27–31], and are
well suited to model the building blocks of a photo-ID automated pipeline. Their strength is the
capability of automatically learn complex patterns in multi-dimensional signals (e.g., in images) if
trained with a sufficiently high number of samples. Particular attention is being payed to the selection
of specific Convolutional Neural Network (CNN) architectures (e.g., U-NET [32] for biomedical
image segmentation) or focusing the study on the effect of using specific activation layers as in [33],
but, as the authors claim, one of the main difficulty of handling complex CNN architectures is the huge
number of resources needed to perform the computations. Examples of applications to the marine
biology area can be found in [34–40]. In more details, in [34] a deep learning approach is employed to
discriminate if an image pixel is part of the trailing edge of a fin by predicting its expected belonging
probability to the fin, whilst [38] addresses cetaceans identification in images proposing the use of
a Mask R-CNN to solve the problem of automatically detecting a region of interest that represents a fin
in marine mammals images. However, the authors highlight the difficulties in obtaining good quality
images labeled by domain experts, justifying their choice of applying transfer learning starting from
a pre-trained complex model. In addition, it is worth highlighting that in full frame images taken from
survey boats, even if captured by professionals, the interesting image portion that depicts a cetacean
is relatively small and can be also searched introducing domain knowledge in a preliminary image
pre-processing step as an alternative to a Mask R-CNN approach.

For this reason, in this paper a combination of an image pre-processing algorithm coupled with
a Convolutional Neural Network classifier is presented, with the aim of approaching the automated
crop of dorsal fins from a different point of view. This approach is an alternative to the Mask R-CNN
based one, sharing its underlying idea. In fact, the generation of the proposals regions (i.e., the areas
where it is likely to find the interesting object) here is demanded to an image pre-processing step,
whilst the classification of fin vs. no-fin is performed by a CNN.

The paper is organized as follows: Section 2 gives an insight about the study areas, the dataset
and the proposed methodology; the description of the experiments and their outcomes is reported in
Section 3; Section 4 concludes the paper.
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2. Materials and Methods

2.1. Study Areas and Dataset

The Gulf of Taranto situated in the Northern Ionian Sea (Central-eastern Mediterranean Sea)
extends from Santa Maria di Leuca to Punta Alice covering an area of approximately 14,000 km2

(see Figure 1). A complex morphology characterizes the basin. A narrow continental shelf cut by
several channels identifies the western sector while descending terraces delineate the eastern one,
both declining towards the Taranto Valley, a NW-SE submarine canyon system with no clear
bathymetric connection to a major river system [41–44]. This singular morphology involves a complex
distribution of water masses with a mixing of surface and dense bottom waters [45] and the occurrence
of upwelling currents with high seasonal variability [46–49].

Figure 1. Map of the Gulf of Taranto (Northern Ionian Sea, Central-Eastern Mediterranean Sea) with
indication of the survey area investigated from 2013 to 2018.

The second study area took place off Pico Island, one of the nine islands belonging to the
Archipelago of the Azores (Portugal) (see Figure 2). The islands are separated by deep waters (ca.
2000 m) with scattered seamounts [50], stretching-out over 480 km, overlapping the Mid-Atlantic
Ridge. The Gulf Stream, the North Atlantic and Azores currents (and their branches) are responsible
for the complex pattern of ocean circulation that characterizes the Azores, and result in the high
salinity, high temperature and low nutrient regime waters [51]. Due to the upwelling of nutrient-rich
deep water currents, the runoff from land and the complex and dynamic oceanic circulation patterns,
the area constitutes a food-rich oasis in the oligotrophic central North Atlantic. It concerns a coastal
marine habitat where coastal, pelagic and deep-water ecosystems can be found in close vicinity of
each other, resulting in a species-rich and highly diverse marine ecosystem [52]. Due to the absence of
a continental shelf and the steep marine walls, over 25 cetacean species, including Risso’s dolphins
can be often found close to shore [53,54].

The data collection used in this work contains full frame images acquired by our research in the
study areas described before. More specifically, the dataset is composed of:

1. ∼10,000 pictures taken in the Gulf of Taranto (Jonian Sea) between 2013 and 2018
2. ∼14,000 pictures taken near Azores islands (Atlantic Ocean) in 2018

Pictures collected at item number 1 have been taken on board a 40 f t catamaran during
standardized the surveys. In fact, random equally spaced transects have been daily generated,
covering about 35 nautical miles in 5 h (with a speed of about 7 knots) only in favorable weather
conditions [55] (see Figure 1). All the images have been taken by marine mammals observers on the
boat with a Nikon D3300 camera with Nikon AF-P Nikkor 70–300 mm, f 4.5− 6.3G ED lens. The photos
have a spatial resolution of 6000× 4000 pixels and their memory occupation is about 90 GB.

Pictures collected at item number 2 have been obtained off Pico island, covering approximately
540 km2 during 2018. Risso’s dolphins were first located from a land based look out (38.4078 N and
28.1880 W) using 25× 80 binoculars (Steiner observer) [56] and encountered during ocean based
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surveys, using a 5.8 m long zodiac, equipped with a 50 HP outboard engine. Examples of the images
are shown in Figure 3.

Figure 2. Map of the Azores study area with indication of the survey area investigated.

Figure 3. Images taken from the dataset. (a,b) Images have been captured in the Gulf of Taranto,
(c,d) in the Azores islands.

2.2. Methodology

Before carrying on photo-ID investigations, the crop of the interesting image portions that depict
a dorsal fin must be done [26]. Figure 4 shows the block diagram of the proposed two-stage solution
where it is immediate to see that a full frame image needs to be pre-processed and cropped in order to
be subsequently used in an effective way. The two steps involved are the following:

• image pre-processing using 3D polyhedron-based color segmentation;
• classification based on CNN.

Figure 4. High level block diagram of the proposed approach. A full frame input image is first
pre-processed in order to extract regions of interest that may contain a dorsal fin. Then, the classification
of fin vs. no-fin is performed using a Convolutional Neural Network (CNN) specifically designed to
this end. The CNN block refers to the same Convolutional Neural Network that is used to classify each
cropped image.

3D Polyhedron-Based Color Segmentation

The hypothesis behind this approach is straightforward and was inspired by the specific domain
of the problem: assuming that images are generally composed by two main elements, sea and cetaceans,
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dorsal fins can be located by considering only pixels which assume a specific set of a priori fixed
colors. The proposed method is based on the identification of κ different models consisting of color
clusters in the CIE L*a*b* color space, each one representing a specific shooting condition. Each model
mi, i = 1, . . . , κ is a key-value pair mi = (σi, Pi), where the key σi is a descriptor of the sea and the
corresponding value Pi is a descriptor of the dorsal fins. In more details, each sea descriptor σi =

{(Llow
i , Lup

i ), (alow
i , aup

i ), (blow
i , bup

i )} defines a lower bound and an upper bound for each channel of the
Lab color space with the aim of filter the pixels belonging to the sea. Pi = {(Lj, aj, bj) | j = 1, . . . , Ni} is
a set of Lab color triplets that define a 3D polyhedron in the Lab color space and can be used to mask
image regions belonging to dorsal fins.

Whenever a full frame image I needs to be segmented to identify the candidate fins the following
steps are performed, as qualitatively shown in Figure 5:

1. Sea color estimation to identify the best model among the κ with a major voting approach, i.e.,
the model mi that masks the highest number of sea pixels:

arg
κ

max
i=1

∑
j,k
1

{
Ijk ∈ sea(σi)

}
(1)

where 1 denotes the indicator function, Ijk denotes the pixel of image I at position j, k and sea(σi)

is the set of Lab color triplets where the three channel values simultaneously lie within the
intervals defined in σi;

2. Dorsal fins region proposal: a binary mask is computed by filtering the image I with the
corresponding 3D polyhedron Pi. Each of the resulting connected components—e.g., according
to 8-connectivity—likely contains a dorsal fin.

Further processing steps are also considered with the aim of improving the results of
the segmentation:

• median filtering (for salt and pepper noise reduction), holes fill and selection of connected regions
based on their area;

• aspect ratio (width/height) dimension analysis to discard regions with high aspect ratio, due to
their low probability of representing a dorsal fin useful for photo-ID purposes;

• size refinement of single regions based on their centroids and extreme points in order to include
only relevant portions of the fins.

At the end of the procedure, a certain number of proposed regions is available for the initial image
I and each of them needs to be classified as fin or no-fin by the deep learning model.

The key hypothesis of the method is that, given the limited domain of the problem, colors are
treated as carrying precise semantic information. However, it is possible to show that color semantics
is not uniquely determined among pictures: depending on the amount and the type of light
characterizing the scene (based, in turn, on weather conditions, time of the shot and presence of other
elements) same colors can represent sea in some pictures and fins in other pictures. Overcoming this
limitation, hereafter referred as color semantic ambiguity, is crucial for the development of an efficient
segmentation method based on colors. Here, multiple models are considered to properly handle
ambiguous cases.
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Figure 5. Example of segmentation: (a) original image, (b) binary mask obtained. White areas are
candidate to be fins. (c) Qualitative visualization of a model mi in terms of sea color and fin polyhedron.
The blue arrows refer to the masked background, the red ones highlight the polyhedron responsible for
masking the candidate fins.

Color Models Update

For each sea color set (σi)
κ
i=1, a semi-automated iterative procedure has been established for the

creation of the corresponding polyhedra (Pi)
κ
i=1 as well as their subsequent update. The steps are

detailed in Algorithm 1.

Algorithm 1: Color models update
Result: Associate a dorsal fin color set Pi to each cluster defined by σi

Input: Sea color sets defining clusters (σi)
κ
i=1, clusters of images (Ci)

κ
i=1, a loss function

`(P̃, P(I)) measuring the segmentation error incurred in masking I with P̃, a threshold δ
representing the minimum accepted improvement of the segmentation error to update a fin
color set, a threshold ε representing the target segmentation error

Output: Final color clusters models M = (σi, Pi)
κ
i=1

M← ∅ : color clusters initialization
for i = 1 : κ do

Pi ← ∅ : dorsal fin color set initialization
repeat

S←manually selected picture from the cluster Ci
S f ← sea_ f ilter(S, σi) : filtering of pixels representing the sea
P̃←manually selected dorsal fins color set from S f
F ← Pi ∪ P̃ : temporary filter creation/extension
if loss variation: ∑I∈Ci

`(Pi, P(I))−∑I∈Ci
`(F, P(I)) > δ then

Pi ← F : create/update the filter
end

until overall loss: ∑I∈Ci
`(Pi, P(I)) ≤ ε

(if this condition is never reached then modify the sea color set σi in order to exclude images
causing a large overall loss. Compute the new clusters (Ci)

κ
i=1 and repeat the procedure for all the

updated clusters;
end
M← M ∪ (σi, Pi)

Convolutional Neural Network

A binary classification problem is defined in order to fulfill the need for filtering the segmentation
phase results. The images obtained are labeled as fin if they actually contain a dorsal fin,
no fin otherwise.

The classifier proposed is a Convolutional Neural Network built from scratch (Figure 6),
whose structure is inspired by the one implemented in [57] for a binary classification task applied to
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another domain. The input size of the images is 224× 224× 3. The architecture is composed of three
blocks of convolutional layers which preserve the input size and extract local features through 3× 3
filters coupled with the ReLU activation function. Information from such features are then merged in
later stages of processing in order to detect higher-order features and ultimately to yield information
about the image as whole. Each block halves the output size by applying a max pooling downsampling
with the aim of learning invariant representations with respect to rotations and translations [58].
The last three blocks are fully connected layers aimed at using extracted features to obtain a final
binary prediction through a Softmax activation function.

Figure 6. CNN architecture and processing stages of a single image. The yellow-orange blocks represent
the convolution and pooling layers, while the purple blocks represent the final classification layers.
C is used for Convolutional Layers, ReLU for Rectified Linear Units, MP for Max Pooling, FC for Fully
Connected Layers and SM for SoftMax.

The CNN architecture has been designed with the criterion of maximizing the clearness of its
structure and minimizing the number of parameters, whilst keeping high efficiency in the classification
task. The proposed classifier consists of ∼1.7 millions parameters, requiring ∼6.4 MB for the net to be
stored and ∼7 MB to store all the intermediate processing steps needed to classify an unknown input
(forward pass). These measurements are significantly low if compared to state-of-the-art architectures
available as off-the-shelf models, for instance GoogleNet, AlexNet, VGGNet or ResNet.

Moreover, it is worth noting that use of 3 × 3 filters causes the receptive field of the third
convolutional layer to be of size 7 × 7 with respect to the input layer, which is considered to be
a reasonable dimension for the extraction of meaningful features. Using several 3× 3 filters instead of
a single 7× 7 filter makes this result possible with fewer parameters. Supposing that all the volumes
have C channels, then the single 7× 7 convolutional layer would contain C × (7× 7× C) = 49C2

parameters, while the three 3×3 convolutional layers would only contain 3× (C× (3× 3×C)) = 27C2

parameters, thus reducing by half the number of parameters involved.

3. Experiments and Results

With reference to Figure 4, the first experiment conducted is devoted to the image pre-processing
step evaluation. κ = 5 different models, whose name reflect the appearance of the sea (Azure,
Blue-Gray, Dark Blue, Light Blue-Green and Gray) have been defined using Algorithm 1 using a small
subset of images sampled from the dataset with the aim to avoid bias.

Table 1 shows the details of the five sea color sets (σi)
κ
i=1 that have been identified in the

experiment. It is immediate to notice the variability of the data that reflects the need of defining
multiple sea models. As pointed out before, these thresholds are highly dependent on the experimental
setup used to capture the images as well as on the weather conditions during the acquisition campaigns.
It is worth noting at this point that the choice of (σi)

κ
i=1 is a way of ensuring the convergence of

the algorithm 1 with respect to the dataset considered and to the supervised evaluation procedure
described in the section Color models update. The fin color sets (Pi)

κ
i=1 obtained are reported in Table 2

in terms of median values and median absolute distances of L, a and b coordinates. The corresponding
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boxplot, shown for each model in Figure 7, show a slight but clear difference in the appearance of the
fin for the five models, with different ranges for the three components, especially the b one, that is
largest in the case of mi = 4. Moreover, the statistics highlight the presence of outliers for a and b
components in all the models except for mi = 2, that correspond to large polyhedra in the Lab space,
as shown in Figure 8.

Figure 7. Boxplot of L, a and b values used to define the 3D polyhedra for each model.

Figure 8. 3D plot of the five polyhedra in the Lab color space defined in this work. Different sea colors
are used to represent each polyhedron.
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Table 1. Sea color sets specification.

Model Name L a b

m1 Azure [25, 60] [−14, 20] [−60,−40]
m2 Blue-Gray [40, 65] [−8, 2] [−18, 3]
m3 Dark Blue [1, 30] [−4, 8] [−28,−18]
m4 Light Blue-Green [50, 71] [−31, 7] [−40,−9]
m5 Gray [10, 65] [−3, 0] [−3, 0]

The difference in the shapes of the polyhedra suggests how the color semantic ambiguity affects
the solution.

Figure 9 reports a qualitative comparison of the proposed approach with respect to the well
known Otsu’s based segmentation of background and foreground, where it is straightforward to notice
that the the 3D polyhedron based segmentation clearly outperforms the Otsu’s based one. A more
detailed comparison of the two methods is given. The Otsu’s based approach works as follows: given
an image I and two thresholds tL, tb maximizing inter-class variance on the histograms of the channels
L and b, the segmented image is computed filtering out the pixels of I at position (j, k)

{Ijk = (Ljk, ajk, bjk) | Ljk < tL , bjk > tb} (2)

Figure 9. Qualitative comparison of the proposed segmentation approach with the Otsu based
segmentation.

Otsu’s segmentation was successfully applied to segment the dorsal fin from the sea in [17].
However, the results of applying this technique on a small subset of the dataset shown that more than
50% of images have been discarded, thus making unfeasible the automatic crop. This is due to the fact
that the two binary thresholds on L and b channels are not enough to fulfill the requirement of clearly
identify the region of interest that depicts a dorsal fin. Figure 10 shows examples of unusable images
obtained with Otsu’s algorithm.

To overcome this issue, the proposed 3D polyhedron-based color segmentation is based on the
creation of κ fine-tuned models. The Otsu’s based method, instead, has neither models nor parameters
to tune and its effectiveness is limited by a more restrictive hypothesis related to color semantics: for
any image I the histograms of L and b channels are assumed to show a bimodal distribution that can
be exploited to effectively segment the sea and the fin. For this reason, the methodology proposed
in this paper can achieve good generalization being able to overcome the color semantic ambiguity,
whilst Otsu’s segmentation can be effectively used only for a specific subset of the images.
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Figure 10. Examples of cropped images returned by the Otsu’s algorithm on the Taranto dataset (on
the left) and the Azores one (on the right).

Table 2. Fin color sets specification.

Model Name N Points Median L Mad L Median a Mad a Median b Mad b

m1 Azure 16,765 25.608 15.436 2.112 2.0381 −9.5608 3.3382
m2 Blue-Gray 8761 36.219 13.191 3.0862 2.0364 −0.27897 5.9787
m3 Dark Blue 5366 26.179 12.152 1.8735 1.2887 −7.6542 3.2112

m4 Light Blue-Green 19,149 35.168 13.606 1.976 1.976 −3.963 7.5908
m5 Gray 3917 32.423 13.21 1.8309 1.7932 −1.6679 1.418

Experiment number 2 is focused on the CNN training and validation that has been performed
using the first part of the dataset, i.e., pictures taken in the Gulf of Taranto (Jonian Sea) between 2013 and
2018. Starting from the images, a total number of 15,228 crops have been identified, sub-divided in 4033
fin and 11195 no-fin, as shown in Figure 11. Data have been manually labeled and full frame images
showing more than one fin have been used to produce multiple cropped fins.

Figure 11. CNN training data along with examples of input images belonging to the two categories fin
and no-fin.

A total of 80% of the data has been used as training set, whilst the remaining 20% as validation
set. Data in the training set have been augmented following these rules: (a) randomly rotating



Electronics 2020, 9, 758 11 of 16

an image of an angle α in the range [−20,+20] degrees; (b) randomly translating the input image
of p pixels in the range [−60,+60] pixels; (c) randomly applying an horizontal flip, with the aim of
increasing the number of samples as well as virtually balance the two classes. The CNN has been
trained using the Stochastic Gradient Descent with Momentum method, with minibatch dimension
of 20, number of epochs 30 and initial learning rate of 0.0003. Moreover, the model has been trained
five times to implement a k-fold cross validation strategy. The CNN training took about 3 h and
20 min for a single network on workstation equipped with a Intel Core i5-6400T CPU operating at
2.20 GHz, 8 GB RAM and Nvidia GeForce 930M with 2 GB memory as graphics card, confirming the
capability of the proposed model to be trained without the need of using extremely powerful hardware.
The quantitative results of this experiment are reported in Table 3 as the mean value of the three metrics
achieved by the five CNNs. The metrics are evaluated per fins.

Table 3. CNN results for experiment number 2 in terms of Accuracy, Sensitivity and Specificity.
The metrics are evaluated on the Taranto dataset, averaging the scores obtained by the 5 CNNs (trained
for the k-fold cross validation strategy) on the 20% portion of the dataset left for the validation.

Accuracy Sensitivity Specificity

99.36% 99.26% 99.42%

The last experiment has been designed to further validate the performance of the CNN classifier
using a total number of 20,888 crops processed starting from the pictures taken near Azores islands
(Atlantic Ocean) during 2018. The aim of this experiment is to understand the generalization
capabilities of the CNN developed in this work. For this reason, we have computed the Perception
based Image Quality Evaluator (PIQE) index [59] on the validation dataset in order to give an overview
of the variability of the images with an objective score reference. Figure 12 shows the boxplot of
the PIQE scores computed on the validation dataset. The scores vary in the range 11.6928–89.5572,
with a median value of 42.3608. The box (first and third quartile) ranges from 35.5100 to 50.2020.
According to the quality scale associated to the PIQE, the images have a median fair quality and
range from excellent to bad. The quantitative scores of the CNN in terms of Accuracy, Sensitivity
and Specificity are reported in Table 4, where the score decrease is clear, if compared to the previous
experiment, but even acceptable as it demonstrates the generalization capability of the CNN. A remark
should be given on how we decided if an input crop was actually a fin or a no-fin image. In fact,
we trained 5 different CNNs for cross validation purposes, and we queried them with the following
strategy: the prediction is considered robust if four CNNs out of five give the same output. This
approach guarantees more robustness in the evaluation of the metrics. The decrease is expected
since the test set contains lots of images with completely new shooting conditions (due to different
experimental setup, geographical area) with respect to the dataset used to train and validate the
classifier.

Figure 12. Perception based Image Quality Evaluator (PIQE) score boxplot (lower is better) computed
on the Azores validation dataset. The quality of the cropped images that are used to validate the CNN
proposed in this work range from 11.6928 (excellent) to 89.5572 (bad). The median value is shown in
red 42.3608 (fair).
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Table 4. CNN results for experiment number 3 in terms of Accuracy, Sensitivity and Specificity.
The metrics are evaluated on the Azores dataset (never shown during the training). The predictions
have been robustly computed considering that an unknown image is classified as fin or no-fin only if
4 CNNs out of 5 give the same output.

Accuracy Sensitivity Specificity

92% 85% 95%

4. Conclusions and Future Works

In this paper, an approach for the automated image crop of cetaceans dorsal fins in huge datasets
has been presented. The methodology is defined as a deep hybrid model because it is inspired by
region proposal networks but with the main characteristic of clearly splitting the region proposal
task (pre-processing) from the classification task demanded to a CNN. The main advantages of this
approach are the flexibility in introducing domain knowledge in the processing pipeline (i.e., the
definition of the color clusters for a specific dataset) coupled with a lightweight deep learning
model trainable and deployable on general purpose workstations. In fact, scaling the problem to
a binary classification task enables a drastic reduction of the trained model parameters, enabling its
widespread applicability and adaptability to multiple operative settings, even without expensive and
high-performance hardware. Experiments on a high number of images acquired in a real context
demonstrate the high capabilities of the proposed approach towards the automated photo-identification
of individuals on a large scale. The algorithms presented and discussed are part of a more complex and
ambitious photo-identification process that involves scientists with different backgrounds and expertise.
Finally, a positive consequence of the approach described in this paper is the effective automation of the
CNN training, because the cropped images are automatically extracted from a dataset independently
from the number of images involved. This is a not negligible feature that must be taken into account
for effectively enabling large scale studies. The future direction of this research will regard the test of
the deep hybrid approach to other dataset acquired by different operators (even professionals or not)
in different operating conditions, with the aim of understanding if and when a new training of the
CNN will be needed.
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