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Micellar lipid composition profoundly affects LXR-dependent cholesterol
transport across CaCo2 cells
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Intraluminal phospholipids affect micellar solubilization and absorption of cholesterol. We here
study cholesterol transport from taurocholate–phospholipid–cholesterol micelles to CaCo2 cells,
and associated effects on ABC-A1 mediated cholesterol efflux. Micellar incorporation of egg-yolk-
phosphatidylcholine markedly increased apical retention of the sterol with decreased expression
of ABC-A1, an effect that is prevented by synthetic liver X receptor (LXR) or retinoid X receptor
(RXR) agonists. On the other hand, incorporation of lyso-phosphatidylcholine (LysoPC) increased
ABC-A1–HDL-dependent basolateral cholesterol efflux, an effect that is abated when LXR is silenced.
Thus, the modulation of cholesterol metabolism via intraluminal phospholipids is related to the
activity of the oxysterol nuclear receptor LXR.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction sorbed, humans absorb only 30–65% of ingested cholesterol. Re-
In humans on a Western diet, daily dietary cholesterol intake is
300–500 mg. Approximately twice this amount of cholesterol
reaches the duodenum through biliary secretion [1]. Intestinal cho-
lesterol absorption increases serum cholesterol levels, as well as
hepatic uptake and biliary secretion of the sterol. Cardiovascular
disease, non-alcoholic steatohepatitis and cholesterol gallstones
are potential consequences of excessive intestinal cholesterol
absorption. Whereas most dietary fats are almost completely ab-
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cent research has greatly enhanced insight in processes involved
in regulating intestinal cholesterol uptake: Niemann-Pick C1-like-
1 (NPC1L1) appears to function as the major protein facilitating up-
take of cholesterol [2] and the half-transporters ABC-G5 and ABC-
G8 mediate partial secretion of cholesterol within the enterocyte
back to the intestinal lumen, thus decreasing net absorption [3].
At the basolateral side, intracellular cholesterol is transferred in
esterified form to the core of chylomicrons. In addition, recent
studies in the apolipoprotein-A1�/� mouse model [4] and in mice
specifically and selectively lacking ABC-A1 in the intestine [5] have
yielded compelling evidence that significant amounts of unesteri-
fied cholesterol may be delivered through an apolipoprotein-A1
dependent pathway to the circulation [6]: ABC-A1 is located at
the basolateral membrane of the enterocyte and other polarized
cell types [7–10] and may deliver unesterified cholesterol to apoli-
poprotein-A1 containing particles in the circulation. ABC-G1 is an-
other member of the ABC-transporter family and its role in reverse
cholesterol transport has been mainly investigated in macrophages
[11,12]. In the intestine, ABC-G1 is expressed at the basolateral
lsevier B.V. All rights reserved.
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membrane of the enterocyte, its expression levels are highest in
cells of the upper villi, and it is induced by excess dietary choles-
terol [13]. Although at present the exact role of ABC-G1 in the
intestine is unknown, it has been shown in vitro that its function
is similar to ABC-A1; ABC-G1 mainly interacts with mature circu-
lating high density lipoprotein (HDL) particles, to which it delivers
cholesterol [14].

The transcription factor liver X receptor (LXR) senses choles-
terol overload and restricts its accumulation by upregulating the
transcription of genes involved in cellular elimination (ABC-A1
and ABC-G1), hepatic delivery (lipoprotein lipase, cholesteryl ester
transfer protein), and intestinal or biliary excretion (ABC-G5 and
ABC-G8) of cholesterol [15]. Although less well appreciated, intes-
tinal cholesterol solubilization in mixed bile salt–phospholipid mi-
celles also influences cholesterol absorption profoundly. Micellar
cholesterol solubility largely depends on phospholipid contents,
phospholipid acyl chain composition and phospholipid class
[16,17]. Effects of phospholipid contents are illustrated in the
mdr-2 ‘‘knockout” mouse with absent biliary phospholipids, due
to deficient mdr-2 protein that normally functions as a floppase
for phospholipid over the hepatocytic canalicular membrane [18].
These mice display markedly decreased intestinal cholesterol
absorption [19]. The principal phospholipid in the gastrointestinal
tract is bile-derived phosphatidylcholine (PC), which exceeds diet-
derived PC by as much as 5:1 [20]. Most of this PC is digested by
pancreatic phospholipase-A2, and the resulting LysoPC is effi-
ciently absorbed. Of note, conversion into LysoPC enhances choles-
terol absorption markedly [21–23]. PC in human bile contains
mainly 16:0 acyl chains at the sn-1 position and mainly unsatu-
rated (18:2 > 18:1 > 20:4) acyl chains at the sn-2 position [24]. In
presence of bile salts, PC with saturated acyl chains (e.g. dipalmi-
toyl phosphatidylcholine) exhibits much lower cholesterol micelli-
zation capacity (with preferential formation of cholesterol-
phospholipid vesicles) [17]. Also, phospholipase-A2 induced
hydrolysis is much lower under these circumstances [25], with de-
creased intestinal cholesterol absorption as a result [20,26]. Simi-
larly, sphingomyelin (SM) – a major phospholipid in the outer
membrane hemileaflet present in considerable quantities in Wes-
tern diets – has a strong affinity for cholesterol and is incompletely
digested in the gastrointestinal tract [27]. Also, sphingomyelin has
been shown to decrease intestinal cholesterol absorption [20,26].
Recently, Field and colleagues showed that in intestinal cells, the
influx of apical membrane cholesterol enhances gene and protein
expression of ABC-A1, resulting in increased efflux of cellular cho-
lesterol to apoAI and HDL production [28]. We hypothesize that
phospholipids in the intestinal lumen may profoundly affect micel-
lar cholesterol solubilization thereby affecting cholesterol uptake
in the enterocyte and availability of ligands for the nuclear recep-
tor LXR, with significant effects on intestinal cholesterol trafficking.
We study in the current work effects of micelles of various compo-
sitions on cholesterol absorption and expression of various rele-
vant genes in CaCo2 cells.

2. Materials and methods

2.1. Preparation of lipid solutions

Lipid mixtures containing variable proportions of bile salts,
phospholipids and cholesterol (stock solutions in methanol for bile
salts, in chloroform for phospholipids and cholesterol) were vor-
tex-mixed and dried at 45 �C under a mild stream of nitrogen,
and subsequently lyophilized during 24 h, before being dissolved
in aqueous solutions. Tubes were sealed with Teflon-lined screw
caps under a blanket of nitrogen to prevent lipid oxidation and vor-
tex-mixed for 5 min followed by incubation at 37 �C in the dark. All
solutions were warmed up to 45 �C for 10 min and subjected to
sonication (three pulses during 2 s, at 40 Hz) before use. The final
mol percentages of cholesterol, phospholipid and bile salts did
not differ more than 1% from the intended mol percentages.

2.2. Lipid analysis

Phospholipid concentrations in model systems were assayed by
determining inorganic phosphate according to Rouser. Cholesterol
concentrations were determined with an enzymatic assay, and bile
salts with the 3a-hydroxysteroid dehydrogenase method [29]. In
some experiments, phospholipids were extracted [30], separated
by thin-layer chromatography (chloroform–methanol–acetic
acid–water 50:25:8:2, vol/vol/vol/vol), and quantified by determi-
nation of phosphorus contents.

2.3. Cholesterol efflux experiments

CaCo2 cells were grown into polycarbonate micropore mem-
branes (3.0 lm pore size, 24 mm diameter) inserted into trans-
wells (Costar, Cambridge MA, USA). Two weeks after confluency,
cells were incubated overnight in presence of model biles (tauro-
cholate (TC) 5 mM, phosphatidylcholine or lyso-phosphatidylcho-
line (LysoPC) 0.2 mM and chol 0.1 mM according to previous
publications) [21] plus 0.5 lCi/well of [3H] cholesterol. Model biles
were added to the upper chamber, while the lower chamber re-
ceived fetal calf serum (FCS)-free Dulbecco’s minimum essential
medium (DMEM)/PBS in presence or absence of 35 lg/mL HDL or
20 lg/mL of Apolipoprotein-A1 (ApoA1). After overnight incuba-
tion, an aliquot of upper chamber media was collected, while all
lower chamber media was collected after insert removal. Media
from both chambers were centrifuged at 14000 rpm for 5 min.
Remaining upper chamber media was discarded and unincorpo-
rated labelled cholesterol was removed by extensive washing
twice with PBS containing 0.2% bovine serum albumin, and once
with HBSS. Thereafter, polycarbonate membranes were cut from
the inserts and placed in scintillation vials. The quantity of [3H]
cholesterol in upper media, lower media and polycarbonate mem-
branes was determined by liquid scintillation counting.

2.4. Adenoviral constructs

Short hairpin human LXRa adenovirus (shLXRa) was generated
based on a validated sequence (available upon request) from a set
of four Upgrade duplex Dharmacon using the BLOCK-iT U6 RNA en-
try vector kit (Invitrogen). ShLXRa oligos were synthesized with
complementary ends to be subcloned into the pENTR/U6 shuttle
vector. Then, the pENTR/U6 shLXRa plasmid was recombined with
the destination vector pAd/BLOCK-iT-DEST to generate an adeno-
vector containing shLXRa under the control of the U6 promoter.
The oligos to generate the shLacZ vector were purchased from Invit-
rogen. ShLXRa and shLacZ adenovectors were linearised with Pac I
restriction enzyme and the digested products, after purification with
Qiaex II gel extraction kit (Qiagen Inc., Chatsworth, CA), were used to
transfect 293A cells (Invitrogen) with Lipofectamine 2000 (Invitro-
gen) to generate the corresponding adenoviruses. The viruses were
propagated into 293A cells. Adenoviral titer was determined by
RTqPCR with specific primers [31]. Crude viral lysate stocks were
stored at �80 �C until use. ShLXRa adenovirus was validated both
on LXRa mRNA and protein levels as well as on ABC-A1 mRNA levels
after incubation with a synthethic LXR ligand (Fig. S1A–C).

2.5. Statistical analysis

Values are expressed as means ± SEM of 3–6 separate experi-
ments. Differences between groups were tested for statistical sig-
nificance by Mann Witney-U tests or analysis of variance
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(ANOVA) with the aid of NCSS software (Kaysville, UT) as appropri-
ate. When ANOVA detected a significant difference, results were
further compared for contrasts using Fisher’s least significant dif-
ference test as post-hoc test. Statistical significance was defined
as two-tailed probability of less than 0.05.

Details on the chemicals used and methods for cell culture incu-
bation, Western blot analysis, real time quantitative PCR with pri-
mer list are available as supplementary on line materials.

3. Results

3.1. Cholesterol absorption experiments

According to absorption experiments in transwell systems,
incorporation of PC or SM into apical TC–cholesterol micelles
strongly increased retention of the radioactive cholesterol tracer
in the apical compartment (90% of total: Fig. 1A). Incorporation
Fig. 1. Effects of micellar phospholipids on apical retention (A), cellular uptake (B)
and basolateral efflux (C) of 3H-cholesterol. Sphingomyelin or phosphatidylcholine
inhibit cellular uptake of the tracer, which is less the case for lyso-phosphatidyl-
choline. Lyso-phosphatidylcholine enhances basolateral efflux of H3 cholesterol
only in presence of HDL as basolateral acceptor. *Significantly different from TC,
TC + cholesterol and TC + cholesterol + LysoPC micelles in both HDL and no HDL
conditions; #Significantly different from no HDL condition. Black bar with HDL and
white bar without HDL added to the basolateral compartment.
of LysoPC led to less apical retention compared to PC or SM (62%
vs 90% of total: Fig. 1A), with reciprocal changes in the cellular
compartment (Fig. 1B). Of note, incorporation of LysoPC into apical
micelles also increased basolateral H3-cholesterol efflux in pres-
ence of HDL, but not in absence of this acceptor (Fig. 1C). Micellar
SM or PC incorporation did not change basolateral cholesterol ef-
flux. Also in presence of ApoA1 as basolateral acceptor, LysoPC con-
taining micelles increased basolateral cholesterol efflux, while no
effect was evident for micelles containing SM or PC (Fig. S2A). In
a time-course experiment, we showed that induction of basolateral
cholesterol efflux by LysoPC containing micelles is maximal after
24 h (Fig. S2B).

3.2. Effects of incubating CaCo2 cells with various micelles on ABC
transporters

As shown in Fig. 2A, incubation of CaCo2 cells with TC simple
micelles (5 mM final conc.) did not alter ABC-A1 mRNA expression,
while incubation with PC alone (1 mM final conc.) resulted in slight
but significant decrease. In contrast, incubation with TC–PC mi-
celles (5 mM and 1 mM final bile salt and phospholipid conc. resp.)
induced a fivefold decrease of ABC-A1 mRNA. Incorporation of SM
in the bile salt micelles at the same concentration tended to reduce
ABC-A1 mRNA even further. When PC content in TC micelles
(5 mM final conc.) was varied (PC 0.5, 1, 2, 3, 4 mM final conc.),
progressive and dose-dependent decreases of ABC-A1 mRNA levels
were observed (results not shown). Thin layer chromatography of
supernatant after overnight incubation of CaCo2 cells with TC–PC
or TC–SM micelles (final bile salt conc. 5 mM, final phospholipid
conc. 1 mM) revealed that only minimal amounts (approximately
2%) of EYPC had been converted into LysoPC, while SM remained
entirely unmodified (data not shown). Incorporation of cholesterol
(1 mM final conc.) in the micelles exerted opposite effects com-
pared to phospholipid incorporation, with now twofold increased
ABC-A1 mRNA expression (Fig. 2B). Additional incorporation of
PC or (even more pronounced) SM (1 mM final conc.) into the
TC–cholesterol micelles decreased ABC-A1 mRNA expression
again. When we incubated CaCo2 cells with TC–LysoPC–choles-
terol micelles (TC 5 mM + LysoPC 1 mM + Cholesterol 1 mM),
ABC-A1 mRNA expression increased markedly to about seven
times control values. Western blots after incubation with various
model biles largely mimicked mRNA data (Fig. 2C).

As shown in Fig. 2D, incubation with TC simple micelles (5 mM
final conc.) induced a slight and with PC a more pronounced de-
crease of ABC-G1 mRNA expression. Incorporation of PC or (more
pronounced) SM (at 1 mM final conc.) in the TC micelles further
decreased ABC-G1 mRNA expression. When PC content in TC mi-
celles (5 mM final conc.) was varied (PC 0.5, 1, 2, 3, 4 mM final
conc.), decreases of ABC-G1 mRNA levels did not depend on
amount of the phospholipid (results not shown). Additional incor-
poration of cholesterol did not lead to marked changes of ABC-G1
mRNA expression compared to corresponding conditions without
cholesterol (Figs. 2E versus 2D). With LysoPC within TC–choles-
terol micelles (TC 5 mM + LysoPC 1 mM + cholesterol 1 mM), there
was no change in ABC-G1 expression compared to control condi-
tion, while a significant increase was observed when compared
to PC- or SM-containing micelles (Fig. 2E).

We next sought to evaluate whether the increased expression of
ABC-A1 after TC + Chol + LysoPC was determined at transcriptional
levels, and if the transcriptional response was direct or it implied
the synthesis of additional transcription factors or proteins. To this
aim, we incubated CaCo2 cells with model biles in presence of the
gene transcription inhibitor actinomycin D (final conc. 5 lg/mL)
and protein synthesis inhibitor cycloheximide (final conc.
500 lM). In presence of actinomycin D, no difference in ABC-A1
mRNA levels were observed between control incubation (i.e. no



Fig. 2. ABC-A1 mRNA expression after overnight incubation of Caco2 cells with various model biles without (A) or with (B) cholesterol. Significantly different from *control
and #TC and PC; §significantly different from all other conditions. (C) ABC-A1 protein level as determined by Western blot after overnight incubation of Caco2 cells with
various model biles with or without cholesterol. A representative experiment is shown (N = 3). Condition 1: control; Condition 2: TC+PC; Condition 3: TC+Chol; Condition 4:
TC+Chol+LysoPC. ABC-G1 mRNA expression after overnight incubation of Caco2 cells with various model biles without (D) or with (E) cholesterol. *Significantly different from
control; #significantly different from TC.
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lipid micelles) versus TC + Chol simple micelles, nor micelles com-
posed of PC or LysoPC (Fig. 3A). On the contrary, in presence of
cycloheximide, TC + Chol simple micelles doubled ABC-A1 expres-
sion compared to control incubation; also, the addition of PC to
TC + Chol micelles inhibited ABC-A1 expression, while the addition
of LysoPC increased ABC-A1 transcripts threefold (Fig. 3A).

Preincubation during 6 h with the synthetic LXR agonist
T0901317 (final conc. 1 lM) induced approximately 30-fold in-
crease of ABC-A1 mRNA expression (Fig. 3B). Subsequent overnight
incubation with TC–PC micelles (TC 5 mM + PC 1 mM conc.) in
presence of the LXR agonist revealed unchanged expression of
ABC-A1 transporter. Interestingly, even in presence of LXR agonist,
incubation with TC–Chol–LysoPC micelles (TC 5 mM + LysoPC
1 mM + cholesterol 1 mM) was still able to induce a twofold in-
crease in ABC-A1 mRNA levels, thus underlining a putative additive
effect of LysoPC incubation and synthetic agonists. Preincubation
during 6 h with the natural RXR ligand 9-cis retinoic acid (final
conc. 1 lM) induced approximately eightfold increase of ABC-A1
(Fig. 3B) mRNA levels. While subsequent overnight incubation
with TC–PC model biles (5 mM and 1 mM final conc. resp.) in pres-
ence of the RXR ligand slightly reduced ABC-A1 expression, incuba-
tion with TC–Chol–LysoPC micelles (TC 5 mM + LysoPC
1 mM + cholesterol 1 mM) resulted in no difference compared to
DMSO.

Lastly, to prove that the LXR transcriptional pathway is directly
involved in the effects of micellar phospholipids on ABC-A1 expres-
sion, we incubated cells with model biles in presence of shLXRa.
LXRa knockdown decreased by 50% the ABC-A1 induction by TC–
Chol–LysoPC micelles (TC 5 mM + LysoPC 1 mM + cholesterol
1 mM) compared to control incubation with AdshLacZ (Fig. 4A).
We also evaluated the effect of incubation with lipid micelles in
presence of AdshLXRa or AdshLacZ on LXRa and LXRb gene expres-
sion levels. TC–Chol–LysoPC micelles doubled LXRa expression
levels, the effect being completely abolished in presence of Ads-
hLXRa (Fig. 4B). Also, LXRa expression levels after TC–Chol were
halved when cells were infected with of AdshLXRa compared to
AdshLacZ. In contrast to LXRa, expression levels of LXRb were
unmodified neither by incubation with different micelles, nor
infection with AdshLXRa (Fig. 4C) and might account for the resid-
ual ABC-A1 induction via TC–Chol–LysoPC micellar incubation.



Fig. 3. (A) ABC-A1 mRNA expression after overnight incubation of CaCo2 cells with
various model biles (TC 5 mM, PC/LysoPC 1 mM, cholesterol 1 mM) in presence of
gene transcription inhibitor actinomycin D (final conc. 5 lg/mL), and after 12 h co-
incubation with protein synthesis inhibitor cycloheximide (final conc. 500 lM);
black bars: cycloheximide; white bars: actinomycin D. (B) ABC-A1 mRNA expres-
sion after overnight incubation of CaCo2 cells with various model biles with 6 h
preincubation with synthetic LXR agonist T0901317, or natural retinoid X receptor
ligand 9-cis retinoic acid (final conc. 1 lM). *Significantly different from vehicle
(bars 1, 4 and 7); #significantly different from vehicle (bar 1). Fig. 4. ABC-A1 (A), LXRa (B), and LXRb (C) mRNA expression after overnight

incubation of CaCo2 cells with various model biles and after cell infection with
AdshLacZ or AdshLXRa. *Significantly different from shLacZ.
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We also evaluated potential effects of incubation with TC mi-
celles (5 mM final conc.), with or without phospholipid (PC or Ly-
soPC, 1 mM final conc.) with or without cholesterol (1 mM final
conc.) on CaCo2 cell mRNA expression of SRB1, NPC1L1P, ABC-G5
and ABC-G8. There were no significant changes of SRB1 or NPC1L1
mRNA (results not shown). When considering ABC-G5 or ABC-G8,
only very low mRNA levels were found in CaCo2 cells, with or
without various micellar incubations and whether or not LXR ago-
nist had been added, as previously reported by others [14] (results
not shown).

4. Discussion

Class, content and acyl chain composition of phospholipids in
the intestinal lumen may affect cholesterol absorption, with
important implications for dietary prevention of hypercholesterol-
emia. In presence of bile salts, PC with unsaturated acyl chains
exhibits high, while saturated phospholipids (e.g. dipalmitoyl PC,
SM) low cholesterol micellizing capacity [17]. Of note, conversion
of PC into LysoPC enhances cholesterol absorption markedly
[22,23]: by its more hydrophilic nature, LysoPC is contained less
tightly in bile salt micelles, which results in less tight packing of
sterols in the micelles, thus allowing enhanced transfer of choles-
terol from the micellar phase through the unstirred water layer
to the enterocyte [21]. In our current experiments with CaCo2 cells,
we found only minimal LysoPC formation after overnight incuba-
tion with PC–bile salt micelles, indicating minimal or absent phos-
pholipase-2 activity. Therefore, we performed experiments not
only with PC- and SM-containing bile salt micelles, but also with
LysoPC–bile salt micelles. To prevent cytotoxicity, cholesterol
was incorporated within these micelles as well [32,33]. In line with
various in vivo and in vitro data [21–23], we found that incorpora-
tion of PC or SM into TC–cholesterol micelles that were added to
the apical side of CaCo2 cells markedly increased apical retention
of radioactive tracer cholesterol, whereas incorporation of LysoPC
enhanced cellular uptake of the tracer cholesterol.

In complementary experiments, we found that overnight incu-
bation with TC–PC micelles significantly and dose-dependently de-
creased ABC-A1 expression in CaCo2 cells both at mRNA and
protein level. In contrast, incorporation of cholesterol or
LysoPC + cholesterol strongly enhanced ABC-A1 expression.
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The different effects of various micellar phospholipids upon
cholesterol trafficking and ABC-A1 gene expression are likely to
be mediated by modulating availability of cholesterol for apical up-
take by the enterocyte and subsequent modifications of the intra-
cellular oxysterol pool. Also, in intestinal cells, the influx of apical
membrane cholesterol enhances gene and protein expression of
ABC-A1, resulting in increased efflux of cellular cholesterol to apo-
AI and HDL production [28]. Since CaCo2 cells are able to synthe-
size and secrete apolipoprotein-A1 [34], one may speculate that
cellular cholesterol may efflux to apolipoprotein-A1 containing
PC–TC or SM–TC micelles in the apical compartment. When LysoPC
is present in lipid micelles, we found enhanced HDL/ApoA1-depen-
dent cholesterol efflux at the basolateral side. These findings point
to the relevance of the recently discovered HDL-mediated pathway
of intestinal cholesterol uptake [4–6]. In our study we observe an
increase in intracellular cholesterol levels when cells are incubated
with both TC–cholesterol–LysoPC and with TC–cholesterol mi-
celles. Nevertheless, while TC–cholesterol–LysoPC micelles in-
crease LXR activity, ABC-A1 expression and HDL-ApoA1
basolateral cholesterol efflux, TC–cholesterol micelles do not acti-
vate LXR. We think that apart from the enhanced uptake of the ste-
rol, the effect of LysoPC containing micelles are likely due to
increased activation of LXR by oxysterols rather than increased
substrate (free cholesterol) availability. Measurements of intracel-
lular concentration of oxysterols are needed in the future to prove
this hypothesis.

Oxysterols are the natural ligands of LXR. This nuclear receptor
is highly expressed in the intestine and is thought to act as a sterol
sensor: in case of excess cellular cholesterol influx, it activates
genes that transcribe proteins eliminating or limiting accumula-
tion of cellular cholesterol [35]. Recognized gene targets of LXR in-
clude various ABC membrane transporters such as ABC-A1, ABC-
G1, ABC-G5 and ABC-G8 [3,35]. In line with previous data [14],
we found in the current study high levels of both LXRa and LXRb,
while very low mRNA levels for ABC-G5 or ABC-G8 were found in
CaCo2 cells with or without various micellar incubations, with or
without LXR–RXR stimulation. We found in the CaCo2 cell model
that preincubation with pharmacologic amounts of LXR agonist
or RXR ligand markedly increased ABC-A1 and ABC-G1 expression,
in line with previous studies [14]. Effects of micellar lipids were
blunted in presence of actinomycin D, a general inhibitor of gene
transcription, thus proving that regulation of ABC-A1 by micellar
lipids involves transcriptional events. To determine whether the
modulation of ABC-A1 expression by micellar phospholipids repre-
sents a direct transcriptional effect or whether it involves the syn-
thesis of different transcription factors or proteins, we evaluated
the effects of micellar phospholipids in presence of cycloheximide.
Even in presence of this protein synthesis inhibitor, micellar PC
inhibited, while LysoPC enhanced ABC-A1 expression. This finding
would suggest that the modulation of ABC-A1 expression by micel-
lar phospholipids represents a direct transcriptional effect.

To prove that such direct transcriptional effect is sustained by
LXR activation, we employed both gain and loss of function ap-
proaches. Gain of function experiments with the synthetic LXR
agonist T0901713 showed that LXR activation prevents micellar-
PC-induced inhibition of ABC-A1 expression. Interestingly, the in-
crease of ABC-A1 expression upon LXR stimulation was even fur-
ther enhanced by micellar LysoPC. Since the transcriptional
activity of LXR is dependent upon its dimerization with the reti-
noid X receptor (RXR), we evaluated the effects of micellar lipids
in presence of the RXR natural ligand 9-cis retinoic acid. Similarly
to LXR activation, 9-cis retinoic acid stimulation prevented micel-
lar-PC-induced ABC-A1 down-regulation, while no effects were
evident for micellar LysoPC enhancement of ABC-A1 gene expres-
sion. The recovery by LXR and RXR agonists of the inhibitory effect
of micellar-PC on ABC-A1 expression demonstrates the involve-
ment of these nuclear receptors in the process. Lastly, the role of
LXR for LysoPC-dependent induction of ABC-A1 expression was
documented employing a loss of function approach. Silencing
LXR activity by the employment of an adenovirus strongly dimin-
ishes ABC-A1 gene induction by micellar LysoPC, thus demonstrat-
ing the importance of LXR in the process.

In conclusion, the present study indicates that micellar
phospholipid content and class markedly affect cholesterol absorp-
tion, HDL-dependent efflux and the expression of involved genes in
the CaCo2 cell model. Employing gain and loss of function ap-
proaches, plus experiments with transcription and protein synthe-
sis inhibitors, we suggest a model where the effects of intraluminal
micellar phospholipids on cholesterol metabolism in CaCo2 cells
are directly related to the presence and activation of oxysterol nu-
clear receptor LXRa. These findings may be relevant for dietary
modification of intestinal cholesterol absorption.
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