
Algorithm for creation of digital twin from UAV

Leonardo Pelonero1, Fabio Vitello1

INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78 - 95125 - Catania

The most recent innovations in the field of 3D modeling and virtual reality have led to the
development of new tools and technologies to manage and interpret this particularly complex
data. Notably, in the field of topographic and environmental surveys, the use of tools for the
generation and visualization of 3D models is becoming increasingly popular. The aim is to
maintain the same quality guaranteed by traditional and established measurement
techniques, but with shorter timeframes. This significantly reduces the cost of a traditional
site survey and lightens the workload of field specialists.

Agisoft Metashape, in combination with UAV (Unmanned Aerial Vehicle) systems, emerges
as a suitable solution for this case study. Metashape is an advanced and versatile
photogrammetry software for creating 3D objects, or "Digital Twins", which can be used in
Geographic Information System (GIS) applications. The application allows, starting from raw
aerial images (both in controlled and uncontrolled conditions), to process: spherical
panoramas, orthophotos, 3D point clouds, digital surface models, and digital elevation
models (DEM). One of the positive aspects of using Metashape is that most of the processes
are fully automated.

A Digital Twin is a virtual representation of a real object or system, which can be used to
monitor, analyze, and predict its real counterpart's behavior. These models, created with
Metashape, represent a significant step forward in the field of data analysis in various areas
of use: environmental monitoring, urban planning, land management, construction, and
infrastructure. They allow us to reflect the planimetry, its current condition, and its future
behavior; providing new insights in various fields, from maintenance to the detection and
management of possible anomalies caused by floods and weather events.

Image Preprocessing

In order to use Metashape, it is necessary to conduct a surveying mission using a UAV
drone. It is essential to capture a series of overlapping images of the area of interest,
ensuring that there is sufficient overlap (usually 70-80%) between the images to facilitate
their future alignment. Depending on the number of images collected and the quality of the
camera used during the surveying, this will impact the data processing times and the quality
of the final result.

In order to automate the process and avoid the use of the GUI interaction, Metashape
provides a set of APIs that allow interaction with the software. Thus, a series of Python
scripts have been implemented to process the entire workflow of Metashape, ranging from
the import of raw images to the exportation and saving of all the results obtained.

The instruction to run the script on Linux environments in headless mode from the command
line is as follows:

./metashape.sh -r <main.py> <image_folder> [output_folder]

If the script is run on a system without a graphical interface, it may be necessary to use the
additional argument ‘-platform offscreen’:

./metashape.sh -r <main.py> <image_folder> [output_folder] -platform offscreen

The first step of the project manages the input parameters specified at the invocation script.
In particular, it is necessary to specify the folder where the photos are located to be
processed and the destination directory to save the obtained results.

manage input parameters

try:

if len(sys.argv) < 2:

print("Usage: general_workflow.py <image_folder> [output_folder]")

raise Exception("Invalid script arguments")

image_folder = sys.argv[1]

check image_folder exist

if not os.path.isdir(image_folder):

raise FileNotFoundError(f"{image_folder} path does not exist")

only image_folder

if len(sys.argv) == 2:

Save on /storage

username = getpass.getuser()

output_folder_name = os.path.basename(image_folder) + '_' +

datetime.datetime.now().strftime("%d%m_%H%M")

output_folder = os.path.join('/storage/Metashape_Hammon/Modelli', output_folder_name)

os.makedirs(output_folder, exist_ok=True)

image e output

if len(sys.argv) == 3:

output_folder = sys.argv[2]

if output_folder do not exist, create it

if not os.path.exists(output_folder):

os.makedirs(output_folder)

if len(sys.argv) >= 4:

raise Exception("Too much input arguments")

except Exception as e:

print(f"Error: {str(e)}")

The script, so implemented, handles exceptions for non-existent specified paths, and saves
the results in a folder with the name of the project, also specifying the date and time when
the process is started.

To have feedback on the progress timing and to keep track of which different process is
underway, the ProgressPrinter class provides a series of functions that, when invoked
periodically during the execution of long or intensive operations, show an estimate of the
remaining time. Constant control of the process's progress and adjustments is made
possible by this.

class ProgressPrinter:

def __init__(self, name):

self.name = name # process name

def __call__(self, percent):

print("{} progress: {:.2f}%".format(self.name, percent), end="\r", flush=True)

The procedure, from the alignment of the photographic material to the generation of the 3D
model, is included in four main phases that are explained below. These steps handle most of
the data processing needs, with most operations being executed automatically based on the
user's parameters.

Photo Alignment

To ensure proper processing, the script only filters the type of photos in the format of our
interest, avoiding any possible extra data generated by the photo acquisition phase.

The presence of poor quality, grainy or blurred photos can negatively affect the results of
camera alignment as well as the processing of the final texture. For this reason, all photos
are filtered based on their image quality. Images with a quality lower than 0.5 are excluded
from the process. The image quality value is calculated based on the sharpness level of the
image.

def find_files(folder, types):

return [entry.path for entry in os.scandir(folder) if (entry.is_file() and

os.path.splitext(entry.name)[1].lower() in types)]

check presence of image in image_folder

photos = find_files(image_folder, [".jpg", ".jpeg", ".tif", ".tiff"])

doc = Metashape.Document()

doc.save(output_folder + '/project.psx')

chunk = doc.addChunk()

chunk.addPhotos(photos)

doc.save()

estimate image quality

for camera in chunk.cameras:

chunk.analyzePhotos(camera)

if float(camera.photo.meta['Image/Quality']) < 0.5:

camera.enabled = False

doc.save()

print(str(len(chunk.cameras)) + " images loaded")

Once the project is created and the photos are imported in Metashape, they will need to be
aligned. In this phase, the position of the camera and the orientation of each photo are
determined, and the model is built with a sparse points cloud. The position and orientation of
the camera are calibrated by internal and external orientation parameters, which are based
on the focal length of the camera, coordinates and position of the main point of the frame,
and lens distortion coefficients.

progress_printer = ProgressPrinter("matchPhotos")

chunk.matchPhotos(downscale = 1,

keypoint_limit = 40000,

tiepoint_limit = 10000,

generic_preselection = True,

reference_preselection = True,

progress=progress_printer) # Progress callback

doc.save()

chunk.alignCameras()

doc.save()

We can mention some of the settings parameters for image alignment:

● downscale: set the accuracy level. The lower the level, the more precise the estimate
(0 - Highest, 1 - High, 2 - Medium, 4 - Low, 8 - Lowest) the more time-consuming it is.

● generic preselection: favors the alignment process when the set of photos is very
high;

● reference preselection: it adapts better in the case where only a few reference points
are detected, for example, during surveys of wooded areas or cultivated fields;

● keypoint limit: upper limit of feature points on every image;
● tie point limit: upper limit of matching points for every image. It is recommended to

set the value as 10,000. A limit that is too high or low could compromise areas in the
generation of the point cloud.

As a result, a sparse point cloud and a set of camera positions are generated. The sparse
point cloud represents the alignment results of the photos and will not be used directly. On
the contrary, the set of camera positions is necessary for subsequent processing of the 3D
model in Metashape.

Dense cloud points

Metashape gives the possibility to create and view the model in the form of a dense point
cloud. It is generated using: the initial sparse point cloud, accurate camera alignments and
point interpolation. This process fills the spaces between the sparse points, resulting in a
high-resolution, detailed, and complete 3D representation of the captured scene.

The dense cloud can be produced by specifying the source data: depth maps or tiled model.
By specifying this, it will then be possible to specify the quality of the point cloud; higher
settings always imply a longer processing time (1 - Ultra high, 2 - High, 4 - Medium, 8 - Low,
16 - Lowest). In this case, the depth maps are calculated on each image. Enabling reuse
depth in the chunk allows it to be utilized in the creation of the point cloud.

progress_printer = ProgressPrinter("buildDeptMaps")

chunk.buildDepthMaps(

downscale = 2,

filter_mode = Metashape.MildFiltering,

reuse_depth = True,

progress = progress_printer)

doc.save()

progress_printer = ProgressPrinter("buildPointCloud")

chunk.buildPointCloud(

point_colors = True,

point_confidence = True,

keep_depth = True,

progress = progress_printer)

doc.save()

For the creation of the point cloud, the most important parameters are point_colors,
point_confidence, and keep_depth. The point_colors parameter includes the points color
information. It can be set to False to reduce the process time. The point_confidence
parameter filters the dense cloud point, which can help remove any remaining outliers. The
keep_depth parameter maintains the depth maps, useful for subsequent calculation of DEM.

Build 3D Model (mesh)

This phase involves the creation of a 3D model. The depth maps created prior to this step
are designated as source data, which guarantees higher quality results compared to models
with sparse cloud source data. If the area of interest to be processed is very large, it is
possible to subtask the creation of the 3D model into blocks, specifying the size of the blocks
in meters and the reference coordinate system (blocks_size, blocks_crs).

With enabled interpolation mode, the software generates a geometric model without empty
holes based on refined level interpolations. The problem is that this process risks generating
large additional geometric areas. By disabling the interpolation, it leads to accurate
reconstruction results since only areas corresponding to point cloud points are
reconstructed.

The specified surface type (HeightField) is optimized for modeling on planar surfaces such
as terrains or basereliefs. This parameter is excellent for processing aerial photographs as it
requires less memory and allows the processing of larger data sets. This setting can be
changed to Arbitrary as needed to allow the processing of closed objects like buildings, at
the cost of higher memory consumption.

progress_printer = ProgressPrinter("buildModel")

chunk.buildModel(source_data = Metashape.DepthMapsData,

surface_type = Metashape.HeightField,

face_count = Metashape.HighFaceCount,

interpolation = Metashape.DisabledInterpolation,

split_in_blocks = True,

vertex_color = True,

progress = progress_printer)

doc.save()

progress_printer = ProgressPrinter("buildUV")

chunk.buildUV(page_count = 2,

texture_size = 4096,

progress = progress_printer)

progress_printer = ProgressPrinter("buildTexture")

chunk.buildTexture(blending_mode = Metashape.MosaicBlending,

texture_size = 4096,

fill_holes = True,

ghosting_filter = True,

progress = progress_printer)

doc.save()

Once the 3D model is created, it will be possible to cover it by applying the texture. In the
texture building process, it is possible to specify the size of the pixel structure.

Building DEM and Orthomosaic

In conclusion, the reconstructed geometry can be structured and used for the generation of
the Orthomosaic model and the Digital Elevation Model (DEM).

DEM represents a set of measurements that record the elevation of the earth’s surface and
also contain information about the spatial relationships between these measurements. In
Metashape, the DEM can be rasterized from the point cloud, depth maps, or the 3D model.
The most accurate results are obtained by setting the dense point cloud as source data.

It is possible to generate both the Digital Terrain Model (DTM), which represents the earth’s
surface without objects on top like buildings or plants, and the Digital Surface Model (DSM),
which is the surface with all elements on top.

progress_printer = ProgressPrinter("buildDem")

chunk.buildDem(source_data = Metashape.PointCloudData,

interpolation = Metashape.EnabledInterpolation,

progress = progress_printer)

doc.save()

progress_printer = ProgressPrinter("buildOrthomosaic")

chunk.buildOrthomosaic(surface_data = Metashape.ElevationData, progress = progress_printer)

doc.save()

In aerial photographic survey data processing, exporting high quality orthomosaic models is
a common task. The process consists of combining the images (orthophotos) projected onto
the surface based on the preferred x, y, or z axis.

Saving and exporting the results

The different processing stages for the reconstruction of a 3D model require a lot of time.
The Metashape software allows you to save the current project in the *.psx format, which
saves the references with the results of each carried out process.

Each step in the implemented code indeed corresponds to a project save. The export of the
individual results obtained in their formats is also shown below.

export results

chunk.exportReport(output_folder + '/report.pdf')

if chunk.model:

print("--Exporting Model")

chunk.exportModel(output_folder + '/model.obj')

if chunk.point_cloud:

print("--Exporting Point Cloud")

chunk.exportPointCloud(output_folder + '/point_cloud.las', source_data =

Metashape.PointCloudData)

if chunk.elevation:

print("--Exporting DEM")

chunk.exportRaster(output_folder + '/dem.tif', source_data = Metashape.ElevationData)

if chunk.orthomosaic:

print("--Exporting Orthomosaic")

chunk.exportRaster(output_folder + '/orthomosaic.tif', source_data = Metashape.OrthomosaicData,

split_in_blocks=True)

Credits and References

The demo image processing and 3D model creation were performed with the software
Agisoft Metashape Professional (https://www.agisoft.com).

The photos used for the project were sourced from Agisoft Metashape sample data and
available Wingtra dataset (https://wingtra.com).

Regarding the script mentioned, the source code can be found in the respective repository
(https://github.com/VisIVOLab/UAV-digital-twin).

Please note that all images and materials used are for research and study purposes only,
and all rights are reserved to their respective owners.

