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INEXPENSIVE CUBESAT ATTITUDE ESTIMATION USING
QUATERNIONS AND UNSCENTED KALMAN FILTERING

Kasper Vinther, Kasper F. Jensen, Jesper A. Larsen, and Rafael Wisniewski

Department of Electronic Systems, Section of Automation and Control
Aalborg University, 9220, Denmark

{kasperv,kfjensen,jal,raf}@es.aau.dk

Abstract:
This paper describes a quaternion implementation of an Unscented Kalman Filter for attitude estimation on CubeSats using
measurements of a sun vector, a magnetic field vector and angular velocity. For faster convergence of the attitude estimate, a
SVD-method solving Wahba’s problem has been proposed, which provides an initial attitude estimate. Using unit quaternions
provides a singularity free attitude parameterization. However, the unity constraint requires a redesign of the Unscented Kalman
Filter. Therefore, a quaternion error state is introduced. Emphasis has been put in making the implementation accessible to
other CubeSat developers via pseudo code and simulations have shown that the extra computational cost of estimating bias in
measurements is worthwhile. The simulations where performed in a simulation environment for the CubeSat AAUSAT3, where
robustness has been an important factor during tuning of the attitude estimators. The results indicate that it is possible to achieve
acceptable CubeSat attitude estimation, even during eclipse, on a limited budget without expensive high precision sensor setups.

Keywords:
Attitude estimation, Bias estimation, Unscented Kalman filtering, Quaternions, CubeSats, Magnetic sensors, Sun sensors,
Gyroscopes, AAUSAT3.

1. INTRODUCTION

There has been an increasing interest in CubeSats since the
standard was introduced in 1999 by California Polytechnic
State University and Stanford University (Puig-Suari et al.
(2001)). According to Chin et al. (2008), the CubeSat com-
munity consisted of more than 90 universities and 40 different
companies and organizations around the world in 2008, and
these numbers have undoubtedly increased in the past two
years. The low cost and small size associated with CubeSats
has made space accessible to universities. Aalborg Univer-
sity is currently developing their third student satellite called
AAUSAT3 (visit http://www.aausat3.space.aau.dk for
more information). This satellite is based on the CubeSat stan-
dard (CalPoly SLO), which entails a size of approximately
10x10x11 cm.

A satellite is often composed of many subsystems including
experiment payloads, which might impose requirements on
attitude stabilization. An Attitude Determination and Control
System (ADCS) is one of these subsystems and estimating
the satellites attitude introduces the possibility of using more
advanced pointing control, compared to simple detumbling
control. Knowing the attitude and possibly controlling it, bene-
fit the experiment payloads as well as improve mission success
rates, by, e.g., providing more stable communication links.

The Unscented Kalman Filter (UKF) approach for satellite at-
titude estimation has been used by e.g. Crassidis and Markley

(2003); Cheon (2005); Pourtakdoust and Ghanbarpour (2007);
Kraft (2003); VanDyke et al. (2004). This approach is charac-
terized by a set of sample (sigma) points, which are used to
approximate a Gaussian probability distribution; whereas, the
well known Extended Kalman Filter (EKF) is distinguished
by the fact that it uses a linearization of the nonlinear model
equations around the current estimate. The computational load
of the UKF is higher than that of the EKF, because all sigma
points have to be propagated, on the other hand, the UKF does
not rely on derivation of Jacobian matrices. Furthermore, the
error of the UKF is expected to be lower than that of the
EKF, since the sigma points provide a way of estimating the
posterior mean and covariance accurately to the second order
for any nonlinearity Haykin (2001).

This paper presents attitude estimation using UKF, for Cube-
Sats with limited sensor accuracy. In this work, AAUSAT3
has been used as a test case for the developed algorithms.
The sensors chosen for AAUSAT3 are low cost off-the-shelf
sensors (below 200 USD). The sensor configuration consists
of a 3-axis magnetometer, 3-axis driftless gyroscope, and pho-
todiodes, acting as sun sensor, on each of the six sides of the
satellite. If the performance requirements for the ADCS are
strict, it might be necessary to include a star camera, earth sen-
sors and/or fine sun sensors; however, fitting such sensors into
the size and budget constraints of a CubeSat can be difficult.

The quaternion provides a singularity free attitude represen-
tation, which is convenient and as an example, Bak (1999);



Cheon (2005); Crassidis and Markley (2003); Kraft (2003);
Lefferts et al. (1982) use quaternions as attitude parameters
and they are also used in this paper. However, introducing the
unit quaternion, representing pure rotations, requires an exten-
sion of the classical UKF. The authors are especially interested
in making the quaternion UKF implementation accessible to
other CubeSat builders and has, thus, provided the implemen-
tation for AAUSAT3 as a pseudo code. Utilizing the SVD-
method to solve Wahba’s problem makes it possible to provide
the quaternion UKF implementation with an initial attitude
estimate, which has shown to reduce the convergence time for
the UKF, especially in cases where the sensor measurements
are biased.

The structure of this paper is as follows. First, the satellite
equations of motion are presented together with a description
of reference coordinate systems and the quaternion parameter-
ization. Then, an introduction to Wahba’s problem, the SVD-
method and the UKF is provided. Then, a description of the
quaternion UKF implementation is provided, followed by a
specification of the simulation environment and the test cases.
Finally, the simulation results are presented with a discussion
of the performance, robustness and computational load of the
implementations.

2. SATELLITE EQUATIONS OF MOTION

Three reference frames are introduced in order to describe
rotation of rigid bodies and to define vectors in �3. Reference
frame is used as a descriptive term for a right handed three-
dimensional Cartesian coordinate system, described by three
mutually perpendicular unit vectors. Multiple reference frames
carefully placed ease calculations.

The motion of a satellite (rigid body) is best described in an
inertial reference frame (Newtonian reference frame). There-
fore, this frame is placed in the center of the Earth with the x-
axis going through the point where the vernal equinox and the
equatorial plane crosses and the z-axis through the geographic
north pole. This approximately creates a non-accelerating ref-
erence frame without fictitious forces (Serway (2004)). The
y-axis is the cross product of the x- and z-axis, thus creating
the right handed Cartesian coordinate system, which is called
Earth centered inertial reference frame.

Another reference frame called satellite body reference frame
is used to define orientation of ADCS hardware and attitude
measurements. The origin of the frame is located in a corner
of the satellite to ease measurement of component placement
relative to the frame. The x-, y- and z-axes are chosen to be
parallel to the satellite frame structure.

The last reference frame is called the controller reference
frame, and it is located in the center of mass of the satellite
with the x-axis defined as the minor axis of inertia and the
z-axis defined as the major axis of inertia. The y-axis is the
intermediate axis of inertia and also the cross product between
the two other axes. This is a body fixed frame, and it is used
for calculations involving the satellites dynamics, as all off-
diagonal entries in the inertia matrix are eliminated, which is

computationally convenient. The axes are also known as the
principal axes (Wie (1998)).

After having defined reference frames for describing position
and orientation of objects, it is obvious to discuss rotation of
such reference frames, thus making it possible to express the
orientation of the objects relative to different viewpoints. This
could, e.g., be the orientation of the controller reference frame,
which is a satellite body fixed frame, relative to the Earth
centered inertial reference frame. It is important that such a
rotation preserves distance and natural orientation of�3 and if
A is a transformation matrix, then this transformation must be
orthogonal and comply with the following constraints (Wertz
(1994)):

ATA =1
det(A) =1. (1)

The space spanned by all the transformation matrices satis-
fying the stated constraints are denoted SO(3) also called the
special orthogonal group. The matrix A has nine parameters,
but only three are independent (i.e. six constraints, thus, three
degrees of freedom). However, no three-parameter set can be
both global and nonsingular. Even though rotation matrices
have a more intuitive representation, quaternions are the pre-
ferred attitude representation because of the smaller amount of
parameters. Quaternions also have no trigonometric functions
in the kinematics and provide a convenient product rule for
successive rotations, which makes them computational faster.

The quaternion q is a hyper complex number composed of a
scalar part q4 and a vector part q1:3, with components spanning
�3:

q = iq1 + jq2 + kq3 + q4 (2)

i2 = j2 = k2 = ijk = −1 (3)
ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j. (4)

For any unit quaternion, the operation

w = q∗ ⊗ ν ⊗ q (5)

may be interpreted as a frame rotation relative to a fixed space
of points or vectors ν =

[
vT 0

]T
, or as taking the vector v and

expressing it in another frame (Kuipers (2002)). The operator
⊗ denotes a quaternion multiplication, which is defined in e.g.
Kuipers (2002). The notation in Eq. (6) is used throughout
this paper, where the quaternion s

iq represents the satellite
attitude (rotation from the Earth centered inertial reference
frame to the satellite body reference frame). This quaternion
is the product of the rotation from the Earth centered inertial
reference frame to the controller reference frame ( c

iq) with the
inverse rotation from the satellite body reference frame to the
controller reference frame ( c

sq):
s
iq = c

iq ⊗
c
sq
−1. (6)

The differential equations of the satellite dynamics relates the
time derivative of the angular velocity and the torques applied
to the satellite, as expressed in Eq. (7) (derivation can be found
in e.g. Wertz (1994); Wie (1998))

Ic
satω̇(t) = − S(cω(t))Isat

cω(t) +c Ndist(t) +c Nctrl(t), (7)
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where cω(t) is the angular velocity of the controller reference
frame with respect to the Earth centered inertial reference
frame and the skew symmetric matrix S(cω(t)) is defined in Eq.
(8). The torque cNctrl(t) is the applied control torque from e.g.
magnetorquers and cNdist(t) is a disturbance torque originating
from primarily gravity, solar radiation, atmospheric drag and
residual magnetic fields onboard the satellite. In this paper, the
disturbance torque is only modeled in the simulation environ-
ment and is not part of the model used for attitude estimation.
However, the gravity gradient torque is often included in the
attitude estimation model on larger satellites, but this is not
necessary for CubeSats, which are small and symmetric satel-
lites.

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 , for a ∈ �3 (8)

The kinematic equations of motion can be expressed as a
set of first order differential equations specifying the time
evolution of the attitude parameters. Choosing the quaternion
parameterization for the satellite kinematic analysis gives the
expression in Eq. (9) (derivation can be found in e.g. Wertz
(1994); Wie (1998)).

c
iq̇(t) =

1
2

Ω(cω(t)) c
iq(t) (9)

The matrix Ω(cω(t)) is defined as

Ω(a) =

[
S(a) a
−aT 0

]
, for a ∈ �3. (10)

3. WAHBA’S PROBLEM AND THE SVD-METHOD

The attitude of a satellite can be determined by unit vector
observations, coming from e.g. sun sensors or magnetic field
sensors. If two or more vector observations are available in
two different coordinate systems, then it is possible to find a
special orthogonal matrix A, representing the rotation between
the two coordinate systems, by solving what is known as
Wahba’s problem, see Wahba (1965). Wahba’s problem is a
least square optimization problem, where a cost function J

(
A
)

is minimized:

J
(
A
)

=

m∑
i=1

ai||bi − Ari||
2. (11)

Eq. (11) defines the cost function to be minimized, where b and
r are vector observations in two different coordinate systems.
The non-negative weight a can be chosen to be the inverse
variance σ−2 of the measurement noise (Markley and Mortari
(2000)). Eq. (11) can also be written in a more convenient form
as shown in Markley and Mortari (2000); Shuster (2006):

J
(
A
)

=

m∑
i=1

ai − trace
(
A BT

)
, (12)

where B =
∑m

i=1 aibirT
i . This reduces the problem to a question

of maximizing trace
(
A BT

)
.

There are many ways of solving this problem. This paper
focuses on the SVD-method, which is faster than the q-method
for two vector observations and considered more robust than
other faster methods, such as FOAM and ESOQ (Markley and
Mortari (2000)).

The matrix B has the singular value decomposition:

B = U Σ VT = Udiag [Σ11 Σ22 Σ33] VT, (13)

where diag refers to a square matrix with zeros outside the
main diagonal. The matrices U and V are orthogonal and the
singular values obey Σ11 ≥ Σ22 ≥ Σ33 ≥ 0 (Markley and
Mortari (2000)). Then

trace
(
A BT

)
= trace

(
UT A V diag [Σ11 Σ22 Σ33]

)
. (14)

Furthermore, according to Markley and Mortari (2000), the
maximized trace is obtained by

UT Aopt V = diag
[
1 1 det

(
U
)

det
(
V
)]
, (15)

which is consistent with the constraint det
(
A
)

= 1. This gives
the optimal rotation matrix Aopt defined as

Aopt = U diag
[
1 1 det

(
U
)

det
(
V
)]

VT. (16)

It is possible to examine how good the estimate Aopt is, by
calculating the covariance matrix P (of the rotation angle error
vector). According to Markley and Mortari (2000), P can be
calculated as

P = U diag
[
(s2 + s3)−1 (s3 + s1)−1 (s1 + s2)−1

]
UT, (17)

with the three definitions s1 ≡ Σ11, s2 ≡ Σ22 and s3 ≡

det
(
U
)

det
(
V
)
Σ33. P becomes infinite if the attitude is unob-

servable. If the satellite only has two sensors (e.g. sun and
magnetic field sensor), then the SVD-method fails when the
satellite is in eclipse and when the two observations are par-
allel. This makes the SVD-method unsuitable for continuous
attitude estimation. However, it can be used as a sanity-check
for filters like the UKF.

4. UNSCENTED KALMAN FILTER

The UKF is based on a sigma point sampling method called
Unscented TransForm (UTF). Sigma points are a structured set
of sample points selected in such a way, that the sigma points
gives an adequate coverage of the input and output probability
distribution. Grewal and Andrews (2008) describes different
methods of calculating the sigma points, and the scaled sym-
metric sigma point method, providing extra adjustable scaling
parameters, is used in this work. The sample size of the Sym-
metric UTF is 2L + 1, where L is the number of states in the
filter.

The UKF procedure is described in e.g. Haykin (2001); Grewal
and Andrews (2008); Simon (2006) and is summarized in the
following.
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1) Use the error covariance matrix Pk−1|k−1 to calculate the

sigma points
(
χk−1|k−1

)
i
:(

χk−1|k−1

)
0

=xk−1|k−1 (18)(
χk−1|k−1

)
i
=xk−1|k−1 +

(√
(L + λ) Pk−1|k−1

)
i
, i = 1, ..., L (19)(

χk−1|k−1

)
i
=xk−1|k−1 −

(√
(L + λ) Pk−1|k−1

)
i
, i = L + 1, ..., 2L.

(20)

xk−1|k−1 is the state vector at time k − 1 and λ = α2(L + κ) − L
is a scaling parameter. The constant α normally has a small
positive value between 10−4 ≤ α ≤ 1 and it determines the
spread of the sigma points, while the constant κ is normally set
to 3−L (Haykin (2001)). However, for κ < 0 the resulting error
covariance matrix, under the square root, cannot be guaranteed
to be positive definite and κ is therefore often set to 0 (Grewal
and Andrews (2008)). The property of P k−1|k−1 being positive

definite must be satisfied in order to solve
√

(L + λ) Pk−1|k−1

using Cholesky factorization (Simon (2006)).

2) Propagate all sigma points with the nonlinear system model
and the input vector uk−1:(

χk|k−1

)
i
= f

((
χk−1|k−1

)
i
,uk−1

)
, i = 0, ..., 2L (21)

3) Calculate the a priori state estimate xk|k−1 and the a priori
error covariance matrix Pk|k−1:

xk|k−1 =

2L∑
i=0

W (m)
i

(
χk|k−1

)
i

(22)

Pk|k−1 =

2L∑
i=0

W (c)
i

((
χk|k−1

)
i
− xk|k−1

) ((
χk|k−1

)
i
− xk|k−1

)T
+ Q

k
.

(23)

The matrix Q
k

is the process noise covariance. The weights

W (m)
i and W (c)

i , used to calculated the a priori state estimate
and the a priori error covariance matrix, are defined in Eq. (24),
(25) and (26).

W (m)
0 =

λ

L + λ
(24)

W (c)
0 =

λ

L + λ
+

(
1 − α2 + β

)
(25)

W (m)
i = W (c)

i =
1

2 (L + λ)
, i = 1, ..., 2L (26)

The scaling parameter β incorporates prior knowledge of the
distribution of the state vector xk. According to Haykin (2001),
the optimal value of β for a Gaussian distribution is 2.

4) Propagate the sigma points
(
χk|k−1

)
i

through the sensor
model in order to obtain the transformed sigma points

(
Zk|k−1

)
i

(predicted measurements):(
Zk|k−1

)
i = h

((
χk|k−1

)
i

)
, i = 0, ..., 2L. (27)

The transformed measurement vector zk|k−1 is then calculated
as

zk|k−1 =

2L∑
i=0

W (m)
i

(
Zk|k−1

)
i . (28)

5) Calculate the a posteriori state estimate xk|k using the
measurement vector zk, containing measurements obtained at
time k:

xk|k = xk|k−1 + Kk
(
zk − zk|k−1

)
. (29)

The Kalman gain Kk is calculated as

Kk = Pxkzk
P−1

zkzk
, (30)

where the measurement covariance matrix Pzkzk
and the state-

measurement cross-covariance matrix Pxkzk
are calculated as

in Eq. (31) and (32) respectively, where the matrix Rk is the
measurement noise covariance matrix.

Pzkzk
=

2L∑
i=0

W (c)
i

((
Zk|k−1

)
i − zk|k−1

)
((

Zk|k−1
)
i − zk|k−1

)T
+ Rk (31)

Pxkzk
=

2L∑
i=0

W (c)
i

((
χk|k−1

)
i
− xk|k−1

)
((

Zk|k−1
)
i − zk|k−1

)T
(32)

6) Calculate the a posteriori error covariance Pk|k:

Pk|k = Pk|k−1 −KkPzkzk
KT

k . (33)

The a posteriori error covariance is used in the next filter
iteration to calculate the sigma points.

Points 1) to 3) are the predict steps, where the states are
propagated based on the system equations and points 4) to 6)
are the update steps, where measurement are used to correct
the prediction.

5. ATTITUDE ESTIMATION FOR AAUSAT3

Four attitude estimators have been designed and tested in
a Matlab Simulink simulation environment made for the
AAUSAT3 CubeSat. The first attitude estimator is a deter-
ministic single point SVD-method implementation solving
Wahba’s problem, which was addressed in Section 3. The
second attitude estimator is a quaternion UKF implementation
without bias estimation having the state vector

x =
[

c
iq

T cωT
]T

(34)

and the third and fourth are UKF implementations that also
estimate the bias in a 3-axis magnetometer (bmag) and a 3-
axis gyroscope (bgyro) and a similar implementation that does
not include the quaternion c

sq, which reduces the amount of
computations, thus taking advantage of the fact that one unit
CubeSats are close to symmetric. The third and fourth UKF
implementation have the state vector

x =
[

c
iq

T cωT cbT
mag

cbT
gyro

]T
(35)

The quaternion has the advantage that it is singularity free, but
there is a unity constraint on the four parameters. This means
that the unit quaternion does not belong to a vector space, but
belongs to a sphere in �4, where it is not possible to calculate
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the mean of a set of unit quaternions by a weighted sum,
since it is not closed for addition and scalar multiplication.
The resulting quaternion can not be guaranteed to be a unit
quaternion.

One way of solving this problem is to introduce an error
quaternion δq defined by Eq. (36) and (37) as in e.g. Bak
(1999); Cheon (2005); Kraft (2003); Lefferts et al. (1982);
VanDyke et al. (2004).

δq̄k|k = qk|k ⊗ q−1
k|k−1 (36)

δqk|k =
[
δq1 δq2 δq3

]T (37)

The error quaternion δqk|k is the update to the predicted quater-
nion qk|k−1, giving the estimated quaternion qk|k. By using a
multiplicative update step, with the quaternion error state, it
is possible to maintain the unity constraint, as in Eq. (38) and
(39).

δqk|k = Kk
(
zk − zk|k−1

)
(38)

qk|k =

[
δqT

k|k

√
1 − δqT

k|k · δqk|k

]T
⊗ qk|k−1 (39)

The three-element error quaternion is expanded to a four-
element quaternion in Eq. (39) as in e.g. Bak (1999); VanDyke
et al. (2004).

The observations given as input to the attitude estimators are
measurements given in the satellite body reference frame,
which are a sun vector svsun,k, a magnetic field vector svmag,k

and angular velocity sωk and predicted measurements in the
Earth centered inertial frame, which are a sun vector ivsun,k|k−1
and a magnetic field vector ivmag,k|k−1. The UKF implementa-
tion also incorporates an eclipse indication Eecl,k. This boolean
variable is calculated by an ephemeris model and an orbit
propagator. Table 1 presents the implemented UKF in pseudo
code, where rotation of vectors v with quaternions are written
as A(q)v.

The SVD-method is utilized in the initialization of the UKF,
where an initial quaternion estimate s

iq0 is calculated. This
ensures faster convergence of the UKF, but it should be noted
that this is only possible when two or more non-parallel vector
observations are available. The singular value decomposition
algorithm is denoted svd in Table 1 and numerical implemen-
tations can easily be found in the literature and on the Internet,
e.g. in the GNU scientific library.

It is only necessary to calculate the weights once and this is
done in the initialization. These weights are determined by
the scaling parameters α, β and κ, which was set to

√
3, 2

and 0, respectively, which gives weights with a total sum of
1

(∑2L
i=0 W (m)

i = 1,
∑2L

i=0 W (c)
i = 1

)
. The scaling parameters are

tuning parameters and the values chosen are based on filter
performance results and the guidelines in Section 4.

Calculating sigma points involves finding the matrix square
root and an efficient way of calculating this is done by use
of a Cholesky decomposition, as described in e.g. Cheon

(2005); Crassidis and Markley (2003); LaViola (2003). In the
implementation a lower triangular Cholesky factorization is
used and this is denoted ch in Table 1. The parameter L = 6
is the number of error states (three quaternion parameters
and three angular velocities). This gives a total of 13 scaled
symmetric error sigma points distributed around zero, where
the first one is zero, as presented in Table 1. These error sigma
points are then expanded with quaternion multiplication and
angular velocity addition, using the previous attitude estimate
xk−1|k−1.

In the predict step, the state is propagated using the non-linear
satellite equations of motion defined in Eq. (7) and (9). This
can be done by numerically integrating the continuous time
functions over a period of Ts using a fourth order Runge
Kutta implementation as in e.g. LaViola (2003). Since using
a Runge Kutta method (denoted RK4 in step 1.4 in Table
1) involves addition in each sub-step, a normalization of the
quaternion is required. If the time step Ts is large and the
angular velocity is high, it might be necessary to use more sub-
steps within the Runge Kutta implementation and/or normalize
after each sub-step rather than only after the last sub-step. Ten
sub-steps was used with normalization after each sub-step in
the implementation. The predict step has to be repeated for
all the sigma points. The a priori full state estimate is then
calculated as a weighted sum of all the propagated sigma
points, with quaternion normalization, as defined in step 1.5.
This approximation of the mean quaternion is also performed
in e.g. Cheon (2005).

A normalization of the sun and the magnetic field vectors are
performed, since the difference in length of these vectors is
very large, leading to numerical problems in matrix computa-
tions. Normalizing of vector information is suggested, since it
is only the direction of the vectors and not the magnitude that
is important for attitude estimation. Sun vector measurements
can only be considered valid when the satellite is not in eclipse.
The sun vector measurement and prediction is therefore set
equal to each other during eclipse, which is equivalent to stat-
ing that there is no discrepancy between the two, and thus no
update is performed on the state in the update step. The same
is the case if there is no new measurements available, which
happens when one sensor is sampled slower than each time
step Ts. The state should only be updated by the particular
measurement if it has changed since last filter iteration. The
normalization of vectors, eclipse check and new measurement
check is performed in steps 2.1 - 2.6, where the measurements
and predicted measurements are also rotated to the controller
reference frame. The predicted measurements are gathered
with a weighted sum in step 2.5 and this result is used in step
2.10.

The UKF implementation with bias estimation is very similar
to the pseudo code in Table 1. The only difference is that the
state vector is expanded by six states (see Eq. (35)) and the
bias is approximated as being constant during propagation.
Furthermore, simulations have shown that the magnetometer
bias should only be updated in the update step when both sun
and magnetic field vector measurements are available. This
means that the UKF implementation should be started outside
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Table 1. Pseudo code for quaternion UKF implementation without bias estimation.

Init.: 0.1 Solve Wahba (SVD): B = σ−2
sun

svsun,k
ivT

sun,k|k−1 + σ−2
mag

svmag,k
ivT

mag,k|k−1

svd
(
B
)

=
[
U,S,V

]
, s

iAopt = U diag
[
1 1 det

(
U
)

det
(
V
)]

VT

0.2 Calculate s
iq0: s

iAopt to s
iq0 conversion

0.3 Initialize state: xk|k =
[
( s

iq0 ⊗
c
sq)T (A( c

sq)sω0)T
]T

0.4 Calculate weights: W(m)
0 = λ

L+λ , W(c)
0 = λ

L+λ +
(
1 − α2 + β

)
, W(m)

i = W(c)
i = 1

2(L+λ) , i = 1, ..., 2L

0.5 Save: svsun,k , svmag,k , sωk , sNctrl,k wait Ts seconds and go to 1.1

Predict: 1.1 Error sigma points: δχ
k−1|k−1

=

[
06x1 −

(
ch

(
(L + λ) Pk−1|k−1

))T (
ch

(
(L + λ) Pk−1|k−1

))T
]

1.2 Full sigma points:
(
χk−1|k−1

)
i
=



(δχk−1|k−1

)T

1−3,i

√
1 −

(
δχ

k−1|k−1

)T

1−3,i

(
δχ

k−1|k−1

)
1−3,i


T

(·)1−3,i = row 1-3, col. i ⊗ c
iqk−1|k−1

)T
(

cωk−1|k−1 +

(
δχ

k−1|k−1

)
4−6,i

)TT

, i = 1, ..., 2L + 1

1.3 Rotate control torque: cNctrl,k−1 = A( c
sq)sNctrl,k−1

1.4 Numerical propagation:
(
χk|k−1

)
i
= RK4

((
χk−1|k−1

)
i
,cNctrl,k−1,T s, steps

)
, i = 1, ..., 2L + 1

1.5 A priori state estimate: xk|k−1 =

 ∑2L
i=0 W(m)

i

(
χk|k−1

)
1−4,i+1∣∣∣∣∣∣∣∣∑2L

i=0 W(m)
i

(
χk|k−1

)
1−4,i+1

∣∣∣∣∣∣∣∣
T (∑2L

i=0 W(m)
i

(
χk|k−1

)
5−7,i+1

)T

T

1.6 Full to error state:
(
δχk|k−1

)
i
=

[((
χk|k−1

)
1−4,i
⊗ c

iq
−1
k|k−1

)T

1−3,i

((
χk|k−1

)
5−7,i
−cωk|k−1

)T
]T

, i = 1, ..., 2L + 1

1.7 Mean error state: δxk|k−1 =
∑2L

i=0 W(m)
i

(
δχk|k−1

)
i+1

1.8 A priori covariance: Pk|k−1 =
∑2L

i=0 W(c)
i

((
δχk|k−1

)
i+1
− δxk|k−1

) ((
δχk|k−1

)
i+1
− δxk|k−1

)T
+ Q

Update: 2.1 Save: svsun,k , svmag,k , sωk , sNctrl,k

2.2 Eclipse check: If in eclipse go to 2.6, else go to 2.3

2.3 New measurement?: If new vector measurement go to 2.4, else go to 2.6

2.4 Normalize and rotate: cvsun,k = A
( c

sq
) svsun,k
||svsun,k ||

2.5 Estimate measurement:
(
cvsun,k|k−1

)
i
= A

((
χk|k−1

)
1−4,i

) ivsun,k|k−1
||ivsun,k|k−1 ||

, i = 1, ..., 2L + 1

cvsun,k|k−1 =
∑2L

i=0 W(m)
i

(
cvsun,k|k−1

)
i+1

go to 2.7

2.6 Hardcode vector: cvsun,k =c vsun,k|k−1 = [0 0 0]T

2.7 Repeat step 2.3 - 2.6: For magnetic field vectors (cvmag,k , cvmag,k|k−1) and angular velocities (cωk , cωk|k−1)

2.8 Calculate covariances: Pxkzk
and Pzkzk

according to Eq. (32) and (31)

2.9 Calculate Kalman gain: Kk = Pxkzk
P−1

zkzk

2.10 Calculate error state: δxk|k = Kk

(
zk − zk|k−1

)
2.11 Expand quaternion: c

iqk|k =

[
δqT

k|k

√
1 − δqT

k|k · δqk|k

]T
⊗ c

iqk|k−1

2.12 Calculate full state: xk|k =
[

c
iq

T
k|k (cωk|k−1 + δωk|k)T

]T

2.13 A posteori covariance: Pk|k = Pk|k−1 −KkPzkzk
KT

k

2.14 Rotate and output: Output =

[(
c
iqk|k ⊗

c
sq−1

)T (
A( c

sq−1)cωk|k
)T

]T

2.15 Repeat: Go to 1.1 and iterate filter every time step Ts

eclipse, the first time it is run, and the bias should be saved
as a starting guess if the filter goes through on/off cycles.
In theory, it is possible to estimate bias in the magnetometer
during eclipse if the satellite is in motion, since the changing
direction of the magnetic field measurement will make the
constant bias term detectable. However, having less vector
measurements to update the estimate with, requires a different
tuning of the UKF, where the designer trusts the model more
than the measurement, which again, according to simulations,
gives poorer overall performance, since the model is subject to
disturbance torques and parameter uncertainty.

6. SIMULATION ENVIRONMENT

The simulation environment made for AAUSAT3 has been
implemented in Matlab as a Simulink library. A “truth model”
simulates the position of the Earth, the Sun, the Moon and
the satellite. The position of the satellite is simulated with a
Two Line Element (TLE) and a Simplified General Pertur-
bations satellite orbit model 4 (SGP4). The TLE used in the
simulations is for the AAUSAT-II satellite, which is in a polar
orbit with an inclination of approximately 98 degrees and an
orbit height of approximately 630 km. This low Earth orbit

6



is considered typical for CubeSats. The “truth model” also
simulates disturbance torques from atmospheric drag, solar
radiation, Earth gravity and magnetic residuals. The satellite
equations of motion, presented in Section 2, provides the
simulated attitude and angular velocity of the satellite and
an International Geomagnetic Reference model generation 10
(IGRF10), implemented with order 13, simulates the Earth’s
magnetic field.

The simulation environment also provides what is considered
satellite onboard software. This software consists of another
IGRF10 magnetic field model, implemented with order 8, that,
together with a SGP4 orbit propagator, provide the predicted
magnetic field vector in the Earth centered inertial reference
frame. It also provides a sun vector and eclipse indication with
ephemeris models and the SGP4. Using an 8th order IGRF10
is also done in Bak (1999) and gives a small discrepancy of
up to approximately ±100 nT between the “truth model” and
the onboard software. The onboard software does not estimate
any of the disturbance torques; however, the torque from a
permanent magnet is simulated and given as control input
torque to the UKF. This permanent magnet has a magnetic
moment of 0.0030 Am2 and will be part of the ADCS for
AAUSAT3.

The sensor setup chosen for AAUSAT3 was simulated by
taking the output from the “truth model” and adding Gaussian
noise. The sun vector, the magnetic field vector and the an-
gular velocity was added with Gaussian noises with standard
deviations of 3.33 degrees, 3 degrees and 0.2 degrees/s respec-
tively. The size of these standard deviations are pessimistically
choosen based on datasheets, since no real measurements have
yet been obtained from the choosen hardware. A standard
deviation of 3.33 degree corresponds to having approximately
99% of the measurements within ±10 degree. Consideration to
power, size and cost of sensors was a key issue when choosing
sensors, which is why the performance of the sensors are not in
the high end. The chosen gyroscope for AAUSAT3 measures
the angular velocity directly using the Coriolis effect and there-
fore has no simulated drift term. Furthermore, temperatures are
measured either in or at each sensor to be able to compensate
for any temperature drift.

The model noise covariance matrix Q, measurement noise
covariance matrix R and initial error covariance matrix P0 was
set to the following based on sensor noise and iterative testing
(diag refers to a diagonal matrix):

Q = diag [1 1 1 10 10 10 1 1 1 0.01 0.01 0.01] 10−6

R = diag [3.4 3.4 3.4 2.7 2.7 2.7 0.012 0.012 0.012] 10−3

P0 = diag [1 1 1 1 1 1 0.1 0.1 0.1 1 1 1] 10−3.

The last 6 diagonal elements in Q and P0 are only necessary in
the UKF implementation with bias estimation.

Attitude estimation is often performed after the satellite has
been detumbled and the initial angular velocities in the tests
were therefore set to (0.02,0.02,0.02) rad/s, which is within
a realistic bound of what can be expected. The sampling
frequency was set to 1 Hz.

A number of simulations were performed on the implemen-
tations and these are listed in Table 2. Realistic sensor biases
were applied in some of the simulations. These biases were
randomly chosen and different from the ones used during tun-
ing of the filter. The mass property and thus the inertia was
changed in the second last simulation so that the center of mass
was located approximately 20 mm from the geometric center
of the satellite, which was just within the CubeSat requirement
(center of mass moved from (-0.9,-1.1,-12.0) mm to (-0.7,-
0.8,20.0) mm relative to the geometric center). The quaternion
c
sq, that represents the rotation from the satellite body reference
frame to the controller reference frame, is removed from the
implementation in the last simulation.

A final implementation of the UKF is based on these simula-
tions and followed up with a Monte Carlo simulation. 1000
simulations have been run, while the following was varied
randomly with uniform distribution:

• The time used in the onboard software was varied be-
tween ±5 seconds giving a realistic satellite position er-
ror.

• A random initial attitude was choosen and the initial
angular velocity was varied between ±(0.02,0.02,0.02)
rad/s.

• Bias in the magnetometer measurement was varied be-
tween ±10000 nT (possible bias after on ground calibra-
tion).

• Bias in the gyroscope was varied between ±0.4 rad/s
(possible bias after on ground calibration).

• All elements in the inertia matrix were varied up to 10%
and the center of mass was located within a sphere with
a radius of 5 mm from the calculated value of (-0.9,-
1.1,-12.0) mm from the geometric center. The variations
represents the uncertainty associated with simple calcu-
lations of the inertia and center of mass of the satellite.
The mass of the satellite was constant in the simulations,
since it is easy to measure it precisely.

7. RESULTS

Fig. 1 shows the results of a simulation of a stand-alone
implementation of the SVD-method for approximately one
orbit. The SVD-method failed during eclipse (from 2100 to
4090 s), which was expected, because the sun vector is not
measured, thus making the attitude unobservable. The sum of
elements in the covariance matrix was also simulated and this
graph has been limited to 0.3, but it was infinite during eclipse.

Fig. 2 shows the results of a simulation of the implementation
of the quaternion UKF with (Graph 2 and 4) and without
(Graph 1 and 3) bias estimation for approximately one orbit.
There was no measurement bias in the simulations shown on
Graph 1 and 2 and a small bias, specified in Section 6, was
applied in the simulations shown on Graph 3 and 4.

Fig. 3 shows the results of a simulation of the implementation
of the quaternion UKF with bias estimation for approximately
one orbit. Graph 1 is a situation where the inertia in the
UKF had a small deviation compared to the one used in
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Fig. 1. Graph 1: Difference between the estimated attitude from the SVD-method and the attitude from the “truth model”. Graph
2: Sum of elements in covariance matrix calculated according to Eq. (17).

the “truth model”, and Graph 2 was a situation where all
rotations between the controller reference frame and satellite
body reference frame, represented by the quaternion c

sq, were
removed from the UKF implementation.

The largest angular deviation has been identified for all simu-
lations and classified into time regions. The first region from
0 to 1000 s is defined as the convergence phase. The second
region is from 1001 s to 2100 (until eclipse), the third region is
from 2101 to 4095, which is inside eclipse and 5 seconds after
and the last region is after eclipse from 4096 to 6000 s. Table
2 presents these angular deviations.

Average computation times was recorded with the tic-toc
commands in Matlab for the four different implementations
and the results are presented in Table 2.

Finally, Fig. 3 shows the results of the Monte Carlo simulation
of the quaternion UKF with bias estimation and only one
Runge Kutta sub-step, which is the implementation proposed
for AAUSAT3.

8. DISCUSSION

The stand-alone implementation of the SVD-method does pro-
vide an attitude estimate that stays within approximately 40
degrees during the simulated orbit. However, this performance
is far from the performance of the quaternion UKF implemen-
tation and it does not work during eclipse. The error covariance
matrix P can be used to evaluate the performance of the SVD-
method, where a large value of P indicates a poor estimate

of the attitude. Graph 2 in Fig. 1 shows a very large P dur-
ing eclipse and also relatively large values when the satellite
passes the poles, which is where the vector observations are
expected to be close to parallel. More precisely, a large P will
not occur over the poles, but just before and just after the poles,
where the magnetic field lines are approximately tangent to the
polar orbit and approximately parallel/anti-parallel to the sun
vector. A large P value is e.g. observed at 665 seconds, where
the angle between the magnetic field vector and the sun vector,
both given in the Earth centered inertial reference frame, was
22.53 degrees. This is the smallest observed angle between
these vectors during the simulation. Calculating P thus gives a
measure of the confidence in the attitude estimate. Simulations
have additionally shown that the quaternion UKF implemen-
tation with bias estimation has trouble converging if it is not
supplied with a fairly accurate initial quaternion from e.g. the
SVD-method. This is due to the chosen parameter tuning of the
UKF, which is not too aggressive for better performance after
the filter has converged and found a good sensor bias estimate.
The tuning could be varied during simulation; however, it can
be difficult to know when the filter has converged properly and
providing the UKF implementation with an initial quaternion
from the SVD-method gives a more robust implementation.
Implementing the SVD-method also introduces the possibility
of making sanity checks on the UKF output. Furthermore,
additional increase in performance could possibly be obtained,
by using Monte Carlo simulation to tune the filter parameters,
instead of manual tuning as done in this paper.
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Fig. 2. Difference between the estimated attitude and the attitude from the “truth model”. Graph 1: UKF without bias estimation
and no bias on measurements. Graph 2: UKF with bias estimation and no bias on measurements. Graph 3: UKF without
bias estimation and with bias on measurements. Graph 4: UKF with bias estimation and with bias on measurements.
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Fig. 3. Difference between the estimated attitude and the attitude from the “truth model”. Graph 1: UKF with bias estimation,
with bias on measurements and with a small inertia difference. Graph 2: UKF with bias estimation, without c

sq and with
bias on measurements.

Table 2. Simulation results for one orbit. Column 1-5: Simulated case. Column 6-9: Largest angular
difference between the estimated attitude and the attitude from the “truth model” (Euler axis and angle
representation). Err. 1 is between 0-1000 s, Err. 2 is between 1001-2100 s, Err. 3 is between 2101-
4095 s and Err. 4 is between 4096-6000 s. Column 10: Average computation times per iteration for the

implemented attitude estimators in Matlab on a single core Pentium 4 (2.8 GHz, 1 GB RAM).

Implementation Ref. Mag. Bias Gyro. Bias. Inertia Err. 1 Err. 2 Err. 3 Err. 4 Time
[Fig.,Graph] [nT] [deg/s] [deg] [deg] [deg] [deg] [ms]

Stand-alone SVD-method (1,1) (5,1,-3)·103 N/A N/A 40.72 27.16 N/A* 33.78 0.22

UKF w.o. bias est. (2,1) (0,0,0) (0,0,0) Correct 4.10 3.03 7.15 2.74 61.67

UKF w. bias est. (2,2) (0,0,0) (0,0,0) Correct 4.55 4.56 9.58 3.28 125.02

UKF w.o. bias est. (2,3) (5,1,-3)·103 (0.2,0.2,0.2) Correct 15.69 14.31 105.82† 23.19 -

UKF w. bias est. (2,4) (5,1,-3)·103 (0.2,0.2,0.2) Correct 14.37 4.23 11.33 4.97 -

UKF w. bias est. (3,1) (5,1,-3)·103 (0.2,0.2,0.2) Incorrect 13.97 4.18 10.16 4.68 -

UKF w. bias est. (No c
sq) (3,2) (5,1,-3)·103 (0.2,0.2,0.2) Correct 14.37 4.25 11.28 5.00 123.84

*The SVD-method does not work during eclipse.

†The UKF without bias estimation works very poorly during eclipse, if there is bias in the measurements.
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Fig. 4. Difference between the estimated attitude and the attitude from the “truth model” in the Monte Carlo simulation. The
black line shows the sample mean error, the grey area indicates the sample standard deviation and the dashed black line
shows the maximum errors over the 1000 simulations.

As Graph 3 and 4 in Fig. 2 indicate, bias in the sensor
measurements greatly reduces the performance of the UKF
unless the bias is estimated along with the attitude. However,
it should be noted that expanding the state vector from 7 to 13
almost doubles the computation time of the filter (see Table 2).

As seen in Graph 1 in Fig. 3, small deviations between the
estimated and actual inertia do not affect the performance of
the UKF significantly. Larger deviations will affect the perfor-
mance of the UKF; however, the CubeSat standard prescribes
that the center of mass must not be further away than 2 cm
from the geometric center for one unit CubeSats. It has been
experienced that the maximum corresponding deviation in the
inertia do not affect the performance of the UKF, and hence
inertia estimation is unnecessary for one unit CubeSats.

The settings of the simulated UKF are chosen to rely mostly on
the obtained measurements as the torques from disturbances
have not been included in the satellite equations of motion in
the onboard software. Furthermore, it is not expected that the
control torque generated by e.g. permanent magnets and mag-
netorquers is precisely known, which introduces additional
uncertainties. This means that the filter property of the UKF
is toned down to improve robustness especially during eclipse
at the expense of performance outside eclipse.

The main disadvantage of the UKF is the computation time.
Taking advantage of the fact that one unit CubeSats are close
to symmetric, it is possible to refrain from the rotation between
the satellite body reference frame and the controller reference
frame, as indicated in Graph 2 in Fig. 3. However, this do
not lower the computation time significantly (see Table 2),
as approximately 95% of the computation time is used to
compute the prediction step 1.4 (see Table 1). Hence, reducing
the number of Runge Kutta sub-steps may be the most effective
way to reduce the computational time. Simulations have shown
almost identical performance, with only one Runge Kutta sub-
step. The computation time using this setup is approximately
1/9 of the 125.02 ms stated in Table 2. The reason for the

almost equivalent performance is expected to be due to the low
angular velocity after detumbling.

The final implementation for AAUSAT3 therefore uses only
one Runge Kutta sub-step and sensor bias estimation. This im-
plementation has been run through a Monte Carlo simulation
and the mean attitude error and sample standard deviation is
shown in Fig. 4. It takes approximately 1000 seconds before
the mean error has converged and the UKF has found a good
estimate of the sensor bias. The mean error increases, when the
sun vector measurement disappears in eclipse and goes back
to approximately 2 degrees when the satellite comes out of
eclipse. A slightly larger error is encountered again when the
vector measurements are close to parallel. Lastly, the worst
case error stays bounded during all 1000 simulations and it is
believed that even better attitude estimation could be obtained,
if the UKF filter is tuned using the Monte Carlo simulation
instead of the simple manual tuning performed in this paper.
A similar Monte Carlo simulation, where the inertia and cen-
ter of mass are the same both in the truth model and in the
UKF, gives similar results as those shown in Fig. 4, which
again indicates that it is not necessary to estimate the inertia
and center of mass on CubeSats. Furthermore, mass balancing
of the CubeSat to place the center of mass in the geometric
center will give smaller disturbance torques and better attitude
estimation performance.

The implementations proposed in this paper are targeted for
CubeSats; however, the results are extendable to larger satel-
lites. Doing so might require the incorporation of some of the
disturbance models, such as calculation of the gravity gradient
torque, in the onboard satellite equations of motion. This can
also be done on CubeSats, but might not be appropriate with
the limited computational power offered on CubeSats.

9. CONCLUSION

The focus of this paper has been to present a robust attitude
estimator for low budget CubeSats. To summarize, it has been
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proven important to estimate bias in the sensors, while iner-
tia estimation is unnecessary for small symmetrically shaped
satellites, since the diagonal elements in the inertia matrix are
almost equal. Monte Carlo simulations of the implemented
quaternion UKF with bias estimation have additionally shown,
that the attitude estimate is improved with more non parallel
vector measurements and that reasonable attitude estimates
can be obtained even during eclipse, with the low cost off-the-
shelf sensor setup chosen for AAUSAT3.
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