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ABSTRACT
We investigate the benefits of evaluating Mel-frequency cep-
stral coefficients (MFCCs) over several time scales in the
context of automatic musical instrument identification for
signals that are monophonic but derived from real musical
settings. We define several sets of features derived from
MFCCs computed using multiple time resolutions, and com-
pare their performance against other features that are com-
puted using a single time resolution, such as MFCCs, and
derivatives of MFCCs. We find that in each task — pair-
wise discrimination, and one vs. all classification — the
features involving multiscale decompositions perform sig-
nificantly better than features computed using a single time-
resolution.

1. INTRODUCTION

The cepstrum, and Mel-frequency cepstral coefficients
(MFCCs), provide very successful features in tasks of
speaker verification [1, 2], and speech recognition [3], by
the fact that the human voice can be modeled extremely
well over short time scales by filtering a wide-band peri-
odic source (glottal impulses) by a small-order linear time-
invariant all-pole system (resonances in the throat, mouth,
and nose). In practice, MFCCs are computed using a sin-
gle time resolution, typically 30 ms spaced every 10 ms
for speech. However, the human voice is a relatively well-
behaved signal compared with other manners of sound pro-
duction, for instance, plucked strings and percussion in mu-
sic. Nonetheless, MFCCs and similar features have shown
moderate success for musical signals in tasks such as finger-
printing, e.g., [4], and instrument identification, e.g., [5], al-
though their wider application to polyphonic musical signals
appears limited [6, 7]. A general problem in using MFCCs
for tasks of identification, however, is that signals can con-
tain mixtures and a variety of phenomena that occur over
many time-scales. Computing the cepstrum of musical sig-
nals using a single time-resolution is probably suboptimal
in the sense that it cannot distinguish between these differ-
ent phenomena. One approach to incorporating time-domain
information into discriminating features is the use of deriva-
tives of the MFCCs [5]. This still uses a single time-domain
resolution, however, even though one can integrate the fea-
tures over time-scales longer than the analysis window.

In [8] we propose a novel approach to incorporating time-
domain information into MFCC-like features by first decom-
posing a signal by a greedy iterative descent method of sparse

approximation using a multiresolution time-frequency dic-
tionary of Gabor atoms [9]; then finding the distribution of
energy in the signal as a function of atom scale and modula-
tion frequency; and then reducing redundancy of the feature
space by approximately decorrelating its dimensions using a
discrete Cosine transform (DCT). We applied these features
to simple tasks of instrument discrimination and classifica-
tion in a database [10] consisting of monophonic recordings
of real instruments that are extracted from real performance
contexts, i.e., the violin and cello samples have double and
triple stops; there are multiple notes in the piano and gui-
tar samples; there are extended techniques in the trumpet;
and the recordings are in real reverberant spaces. For this
database and these specific tasks, we found that the features
produced by a much more simple approach — DCTs of com-
bined MFCCs evaluated over multiple scales — are more ef-
fective for these tasks even though the promise of sparse ap-
proximation over a multiresolution dictionary is source sep-
aration with respect to the stationarity of phenomena. In
other words, we predicted that the more complex approach
with sparse approximation could bridge the problems as-
sociated with computing MFCCs for signals having a vari-
ety of time-scale phenomena. In this article, we investigate
more thoroughly the benefits of the simpler approach, and
compare their performance against other proposed features
that attempt to combine time-domain information, e.g., delta
MFCCs, in the context of musical instrument identification.

2. MEL-FREQUENCY CEPSTRAL COEFFICIENTS

We now review the calculation of MFCCs over short time
scales before discussing how we incorporate information
over multiple scales. Given a real discrete sequence x[n] de-
fined for 0 ≤ n ≤ N − 1, and its discrete Fourier transform
(DFT), x̂[k] = DFT{x[n]}, and assuming |x̂[k]| to be nonzero
everywhere, the real cepstrum of x[n] is [3]

cx[l]
∆
=DFT−1{log |x̂[k]|}= 1√

N

N−1∑
k=0

log |x̂[k]|e j2πkl/N (1)

for l = 0,1, . . .N/2+1. Considering that x[n] is an audio sig-
nal, we would like to have a compact and perceptually-based
description of its spectral characteristics. We can do so by re-
placing the magnitude DFT in (1) by the energy observed in
frequency bands that are exponentially-spaced according to
perceived pitch. Such a relationship between frequency and
pitch is given by Mel-frequency scaling, which maps Mel fre-



quency φ ≥ 0 to Hz f : f (φ) = 700(eφ/1127− 1). Thus, we
may construct a filterbank of L filters with center frequen-
cies linearly spaced in Mels, and substitute the energy of its
outputs into (1) to find a perceptually-relevant spectral de-
scription of x[n].

Many variations exist for the filterbanks used [2], but here
we use L = 48 overlapping bands with triangular magnitude
responses weighted such that each has equal area, and to-
gether the span a bandwidth of [0,9614] Hz. (This repre-
sents an increased bandwidth compared with our work in [8],
which used 40 overlapping bands spanning a bandwidth of
[133,6854] Hz.) Each filter here (l = 1,2, . . . ,48) is given by

ĥl [k]
∆
=


0, 0≤ kFs/N < fc(l−1)
al

kFs/N− fc(l−1)
fc(l)− fc(l−1) , fc(l−1)≤ kFs/N < fc(l)

al
kFs/N− fc(l+1)
fc(l)− fc(l+1) , fc(l)≤ kFs/N < fc(l +1)

0, fc(l +1)≤ kFs/N ≤ Fs

(2)

where Fs is the Nyquist sampling rate, fc(0) = 0, fc(49) =
9614 Hz, the band-dependent magnitude factors are given by

al
∆
=

{
0.015, 1≤ l ≤ 14

2
fc(l+1)− fc(l−1) , 15≤ l ≤ 48. (3)

and the center frequency of the lth band is given by

fc(l)
∆
=

{
66.66l, l = 1,2, . . . ,14
1073.4(1.0711703)(l−14), l = 15,16, . . . ,48.

(4)
The MFCCs of x[n] are defined as the discrete cosine trans-
form of the energies of the L filterbank outputs, i.e.,

ccx[m]
∆
=βL(m)

L∑
l=1

log

(
N−1∑
k=0

∣∣x̂[k]ĥl [k]
∣∣)cos

[
mπ

L

(
l− 1

2

)]
(5)

for 0≤ m < L, where the normalization factor is defined

βL(m)
∆
=

{√
1/L, m = 0√
2/L, m > 0.

(6)

Typically in speech processing [3], only the first M = 13 co-
efficients are kept excepting the term at m = 0 since it is re-
lated only to the signal energy. For music signals, it is com-
mon to use more coefficients, e.g., M = 20 [4, 7].

For non-stationary signals MFCCs are evaluated over
short time-scales using overlapping sliding windows. Time-
localized, or short time, MFCCs are given by

ccx[m, p] ∆
=βL(m)

L∑
l=1

(
P−1∑
k=0

log
∣∣x̂[k, p]ĥl [k]

∣∣)

× cos
[

mπ

L

(
l− 1

2

)]
(7)

for 0≤m < L, and where the length-P DFT of x[n] localized
over the time region [p, p+ s) is defined

x̂[k, p] ∆
=

1√
P

P−1∑
n=0

x[n+ p]w[n]e− j2πkn/P,0≤ k ≤ P−1. (8)

(a) Eb Clarinet: magnitudes of mean multiresolution MFCCs
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(b) Eb Clarinet: magnitudes of OverCs
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(c) Trumpet: magnitudes of mean multiresolution MFCCs
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(d) Trumpet: magnitudes of OverCs
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Figure 1: Magnitudes of mean multiresolution MFCCs,
ccx[m,S(s)] in (12), and of OverCs, ζx[m, t] in (13), for two
instruments playing a chromatic scale from C5 to B5.

for time shifts 0 ≤ p < N− s, and a real window w[n] with
support s≤ P. In speech and music processing, typical win-
dow lengths are 10 – 100 ms, with hop sizes of half their
duration. Zeropadding can be applied, i.e., P > s, to interpo-
late the frequency domain samples. Finally, we compute an
instantaneous derivative of MFCCs features, or ∆MFCCs, by

∆x[m, p] = ccx[m, p]− ccx[m, p−1] (9)

and its second derivative, or ∆∆MFCCs, by

∆∆x[m, p] = ∆x[m, p]−∆x[m, p−1]. (10)

These features describe how the MFCCs change between
subsequent frames of data, and can be likened to frame-rate
spectral flux.

3. INCORPORATING SCALE INFORMATION

While the definition of time-localized MFCCs in (7) involves
a single time-scale over which the signal is observed, we
proposed in [8] to compute multiscale MFCCs-like features
over several time-scales using a method of sparse approx-
imation with a multiscale Gabor dictionary, or compiling



S(s) index s (samples/ms) ∆p (samples/ms) ∆ f (Hz)
1 128/2.9 64/1.5 43.1
2 256/5.8 128/2.9 43.1
3 512/11.6 256/5.8 43.1
4 1024/23.2 512/11.6 43.1
5 2048/46.4 1024/23.2 21.5
6 4096/92.9 2048/46.4 10.8
7 8192/185.8 4096/92.9 5.4
8 16384/371.5 8192/185.8 2.7

Table 1: Multi-scale MFCC parameters for signals with a
sampling rate of Fs = 44.1 kHz: scale (window size) s,
time resolution (window hop) ∆p, and DFT frequency resolu-
tion ∆ f (zero-padding added to interpolate frequency-domain
samples — which is how we have small scale atoms with a
frequency resolution 43.1 Hz).

MFCCs computed with different frame sizes. Since in [8]
we focus on the former approach, here we look more closely
at the latter. We create the set of time-localized MFCCs,
{ccx[m, p,S(s)],S(s) ∈ S}, where S(s) just maps the scale s
to an index in the set S, using the time and frequency resolu-
tions in Table 1. Now define the set

CS(s),ε
∆
={ccx[m, p,S(s)] : ccx[0, p,S(s)]> ε ≥ 0} (11)

which is the collection of length-L short-time MFCCs us-
ing the window scale s localized at times when the signal
has energy greater than ε ≥ 0 (to avoid problems when there
is no signal). For each scale index S(s), we compute the
mean MFCCs over the set CS(s),ε to give mean multiresolu-
tion MFCCs

ccx[m,S(s)] ∆
=

1∣∣CS(s),ε
∣∣∑

p

ccx[m, p,S(s)]. (12)

Note that each scale index S(s) expresses the short-time
MFCCs over x[n] averaged over the entire signal using a scale
s; and each cepstral index expresses how a particular mean
MFCC changes as a function of the analysis scale used. Fig-
ure 1(a, c) show examples of this feature for two signals cre-
ated by musical instruments playing an ascending and chro-
matic scale from C5 to B5 over a duration of 32 seconds
(Clarinet), and 97 seconds (Trumpet).

Since there is redundancy across scales, we uncouple the
values in each MFCCs coefficient by performing a discrete
Cosine transform in the scale direction. This creates features
we call OverCs [8]:

ζx[m, t] ∆
=β|S|(t)

∑
σ∈S

ccx[m,σ ]cos
[

tπ
|S|

(
σ − 1

2

)]
(13)

defined for 0 ≤ t < |S|. Figure 1(b, d) show the OverCs for
the same musical signals.

4. SIMULATIONS

These new features — mean multiresolution MFCCs and
OverCs — are of course in a higher-dimensional space than
are mean MFCCs, and so we select four subsets of 20 coef-
ficients each to use in our classification experiments. In ad-
dition, we construct three other 20-dimensional features that

do not use time-scale information at all, but two of which in-
clude delta features. For all features, we set ε = 0.1 so as to
avoid frames that have very little signal energy, i.e., we only
use features from signal frames that have zeroth cepstral co-
efficients greater than ε . The detailed set of features we test
in tasks of identification are the following:
1. Mean MFCCs (MFCCs): from ccx[m,S(s)] in (12), the

first 20 coefficients (m = 1,2, . . . ,20) for s = 46.4 ms
with hop of 23.2 ms;

2. Mean MFCCs with mean ∆MFCCs (MFCCs∆): from
ccx[m,S(s)] in (12), the first 10 coefficients for s = 46.4
ms with hop of 23.2 ms; and the mean ∆MFCCs in (9) of
the first 10 coefficients at same scale and hop;

3. Mean MFCCs with mean ∆MFCCs and mean ∆∆MFCCs
(MFCCs∆∆): from ccx[m,S(s)] in (12), the first 8 coeffi-
cients for s = 46.4ms with hop of 23.2 ms; and the mean
∆MFCCs in (9) of the first 6 coefficients at same scale
and hop; and the mean ∆∆MFCCs in (10) of the first 6
coefficients at same scale and hop;

4. Mean multiscale MFCCs (MSMFCCs): from
ccx[m,S(s)] in (12), the first 10 coefficients for s = 46.4
ms with hop of 23.2 ms; and the first 5 coefficients for
a scale of s = 2.9 ms with hop of 1.5 ms; and the first
5 coefficients for a scale of s = 371.5 ms with hop of
185.8 ms;

5. OverCs (OverCs1): from ζx[m, t] in (13), using parame-
ters in Table 1, the first 20 coefficients with t = 0;

6. OverCs (OverCs2): from ζx[m, t] in (13), using parame-
ters in Table 1, the first 14 coefficients with t = 0; the first
6 coefficients with t = 1;

7. OverCs (OverCs3): from ζx[m, t] in (13), using param-
eters in Table 1, the first 12 coefficients with t = 0; the
first 5 coefficients with t = 1; the first 3 coefficients with
t = 2;

Our logic in choosing the subsets of MSMFCCs features is
that the first 10 coefficients of the middle row of Fig. 1(a,c)
describe the mean power spectral shape over an average win-
dow size, while the first 5 coefficients from each of the largest
and smallest window sizes provides additional information
on how the mean power spectrum changes with these ex-
tremely different time-scales. When we take the DCT of
the MSMFCCs in the scale direction, thus producing the
OverCs in Fig. 1(b,d), the coefficients from the 0th DCT fre-
quency represent a feature closest to the mean MFCCs (fea-
ture 1) [8]. By combining with these coefficients at higher
scale frequencies, we aim to provide information on how the
mean cepstral coefficients vary with time-scale.

Our music signal database, which has been used in other
work, e.g., [8,10], consists of 2,755 five-second monophonic
signals excerpted from real musical recordings with no over-
lap between segments. These are recordings of real music
played in real environments, some of which are from com-
mercial CDs, and are not isolated single notes. Furthermore,
many of the segments include extended performance tech-
niques, and non-traditional styles. Each of the seven instru-
ment classes — Cl: clarinet, Co: cello, Gt: guitar, Ob: oboe,
Pn: piano, Tr: trumpet, Vl: violin — contains signals from
five different sources, i.e., different performer, instrument,
composition, recording, etc.

To identify an unknown instrument we use support vector
machines (SVM) with a radial basis function [8, 10, 11]. We
find the best parameters using a grid search method [8, 12].



−15

−10

−5

0

5

10

CoGt

GtVl

CoVl

ClOb
ClTr

ObTr

ClVl
GtOb

ObVl

CoOb

GtTr
ClCo

ClGt

TrVl

CoTr

GtPn

CoPn

PnVl

ClPn

ObPn

PnTr

Pe
rfo

rm
an

ce
 D

iff
er

en
ce

 (%
)

 

 

MFCCs!
MFCCs!!
MSMFCCs
OverCsI1
OverCsI2
OverCsI3

Figure 2: Mean correct instrument discrimination rates for features of all pairs relative to that of the mean MFCCs at a single
scale.

To perform instrument identification we train each SVM us-
ing five-fold cross validation of data randomly selected from
four different sources for each instrument class. We then
identify the testing data selected randomly from the remain-
ing sources of each instrument class. We never include fea-
tures from the same source in both the training (and grid
search) and testing data so as to avoid biasing the classifier
performance.

Figure 2 shows for each instrument pair the mean gains
made in discrimination for the different features with respect
to mean MFCCs. We compute these means using indepen-
dent 100 trials with 49 realizations randomly selected from
each instrument class. We see that large gains are made
when using scale information (MSMFCCs and OverCs) for
ClVl, ClGt, GtPn, and ClPn. The only pairs that suffered
from including scale information are GtVl and CoVl. The
top portion of Table 2 shows the overall discrimination rates
for each of the features. Here we see that OverCs2 and
OverCs3 perform the best, with an ANOVA analysis show-
ing that the results from the two features have a p-value of
0.03, i.e., they are likely from different distributions. The
likelihood is p < 10−4 that the classification results using ei-
ther OverCs2 or OverCs3 are from the same distributions of
the classification results using the other features. We find
that the MSMFCCs and MFCCs∆ features do not perform
significantly better (p≈ 0.38) than the features OverCs2 and
OverCs3.

The mean confusion tables of our instrument classifica-
tion simulations are shown in Table 4. We compute these
means using independent 100 trials with 49 realizations ran-
domly selected from each instrument class. The numbers in
bold show the highest scores. The OverCs features have five
of the highest scores, with MSMFCCs only performing best
for classification of Gt, and MFCCs∆ only performing best
for Tr classification. Actually, with p ≈ 0.68, it appears the
results from using MFCCs∆ and MFCCs∆∆ come from the
same distribution in classifying Tr. For five of the seven in-
struments (Cl, Gt, Ob, Pn, and Vl), the best performing fea-
ture involving scale (MSMFCCs and OverCs) performs sig-
nificantly better (p < 0.007) than the best performing fea-
ture that does not involve scale. For Co, the performance
of OverCs2 is not significantly better than MFCCs and
MFCCs∆∆ (p < 0.5). For Tr, the performance of MFCCs∆

and MFCCs∆∆ are significantly better than any of the multi-

Discrimination (1) (2) (3) (4) (5) (6) (7)
Mean 94.38 95.21 94.93 95.27 94.96 95.53 95.66

Stan. dev. 4.7 4.23 4.53 4.93 4.46 4.48 4.25
Classification (1) (2) (3) (4) (5) (6) (7)

Mean 79.85 80.78 81.04 84.0 81.88 84.69 82.72
Stan. dev. 5.56 5.06 5.38 5.09 6.29 4.61 5.27

Table 2: Correct instrument discrimination and classification
rates for each feature: (1) Mean MFCCs. (2) MFCCs∆. (3)
MFCCs∆∆. (4) MSMFCCs. (5) OverCs1. (6) OverCs2. (7)
OverCs3.

scale features (p < 10−8). For all features, Co is often mis-
classified as Vl; but Gt is misclassified as Cl less often when
using features incorporating scale. Finally, the lower portion
of Table 2 shows the mean classification rates over all instru-
ments. Here we see OverCs2 performs significantly better
than all other features (p < 0.014).

5. CONCLUSION

In this paper, we have explored more thoroughly the effec-
tiveness of combining MFCCs features computed over vari-
ous time scales in the context of musical instrument identi-
fication, thus building upon our previous work [8]. We find
that in most of the cases we tested the multiscale MFCCs fea-
tures perform significantly better than features that do not in-
corporate information from multiple time-scales, e.g., mean
MFCCs computed over a single time scale with delta fea-
tures. This provides further evidence pointing to the effect
that we can improve to a large extent the performance of mu-
sical instrument classifiers that use MFCC-like features by
incorporating features computed over multiple time-scales,
and not just by incorporating how features change over time.

Our current work involves using a feature selection strat-
egy for finding the best subset of the multiscale features
MSMFCCs and OverCs that provide the best performance
in instrument identification tasks, and the effectiveness of
these features in classifying instruments in polyphonic sig-
nals. We are also looking at the implications of our work for
other tasks in music signal processing that use short-term but
mono-resolution features.
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Ob 5.20 0.10 0.00 88.43 0.00 6.27 0.00
Pn 6.24 1.10 12.94 0.00 77.84 1.88 0.00
Tr 9.98 0.00 0.00 8.10 1.59 76.84 3.49
Vl 11.73 6.14 0.24 0.02 0.04 1.20 80.61

MFCCs∆ Cl Co Gt Ob Pn Tr Vl
Cl 71.51 0.84 6.02 9.47 0.92 7.98 3.27
Co 3.29 80.22 2.45 0.16 0.04 0.00 13.84
Gt 12.61 1.12 78.69 0.00 7.55 0.00 0.02
Ob 10.10 0.35 0.00 84.63 0.00 4.92 0.00
Pn 8.80 0.16 10.31 0.00 79.71 1.02 0.00
Tr 5.55 0.00 0.00 4.88 0.61 86.22 2.73
Vl 6.35 8.18 0.20 0.04 0.04 0.76 84.43

MFCCs∆∆ Cl Co Gt Ob Pn Tr Vl
Cl 71.86 0.45 5.57 8.31 1.00 9.31 3.51
Co 2.88 81.39 2.41 0.14 0.06 0.00 13.12
Gt 15.10 1.18 77.51 0.00 6.14 0.00 0.06
Ob 9.82 0.41 0.00 84.90 0.00 4.84 0.04
Pn 8.24 0.35 9.00 0.00 81.10 1.16 0.14
Tr 5.39 0.02 0.00 5.57 0.41 85.94 2.67
Vl 5.94 8.22 0.20 0.20 0.04 0.78 84.61

MSMFCCs Cl Co Gt Ob Pn Tr Vl
Cl 80.98 1.04 1.24 7.41 0.24 8.16 0.92
Co 2.18 80.47 1.22 0.12 0.27 0.02 15.71
Gt 3.18 1.18 89.76 0.00 3.16 0.00 2.71
Ob 7.06 0.18 0.00 88.82 0.00 3.94 0.00
Pn 1.18 0.86 11.94 0.00 85.29 0.73 0.00
Tr 14.88 0.00 0.00 6.45 1.02 74.55 3.10
Vl 2.24 8.67 0.65 0.02 0.04 0.22 88.14

OverCs1 Cl Co Gt Ob Pn Tr Vl
Cl 79.12 0.90 5.00 3.22 2.16 6.18 3.41
Co 2.88 79.80 2.98 0.16 0.06 0.00 14.12
Gt 11.37 1.29 80.18 0.00 5.49 0.00 1.67
Ob 5.39 0.08 0.00 89.53 0.00 5.00 0.00
Pn 9.18 0.39 10.86 0.00 78.92 0.65 0.00
Tr 7.80 0.16 0.00 6.18 1.22 81.76 2.88
Vl 7.73 6.94 0.88 0.22 0.06 0.33 83.84

OverCs2 Cl Co Gt Ob Pn Tr Vl
Cl 83.78 1.35 1.90 3.94 0.22 8.20 0.61
Co 2.24 81.92 1.67 0.39 0.02 0.00 13.76
Gt 3.41 0.86 88.92 0.00 4.57 0.00 2.24
Ob 3.53 0.31 0.00 90.12 0.06 5.94 0.04
Pn 1.61 1.08 9.92 0.00 86.63 0.73 0.02
Tr 12.59 0.02 0.00 7.47 1.61 75.92 2.39
Vl 2.86 10.37 0.51 0.00 0.00 0.76 85.51

OverCs3 Cl Co Gt Ob Pn Tr Vl
Cl 83.53 0.65 2.04 4.43 0.24 8.53 0.57
Co 1.82 77.59 1.76 0.14 0.00 0.02 18.67
Gt 6.80 1.82 83.22 0.00 3.65 0.00 4.51
Ob 6.69 0.47 0.04 83.12 0.04 9.59 0.04
Pn 1.90 0.41 11.80 0.02 84.37 1.51 0.00
Tr 11.00 0.22 0.00 7.14 1.06 77.10 3.47
Vl 2.71 6.31 0.39 0.00 0.00 0.49 90.10

Table 3: Mean confusion tables from 100 independent trials
for one-vs.-all instrument classification. Left-hand column is
instrument class presented; top rows are instrument class se-
lected by classifier.


