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∗-Subvarieties of the Variety Generated by
(

M2(K), t
)

Francesca Benanti, Onofrio M. Di Vincenzo and Vincenzo Nardozza

Abstract. Let K be a field of characteristic zero, and ∗ = t the transpose involution for the matrix

algebra M2(K). Let U be a proper subvariety of the variety of algebras with involution generated by
(

M2(K), ∗
)

. We define two sequences of algebras with involution Rp , Sq, where p, q ∈ N. Then we

show that T∗(U) and T∗(Rp ⊕ Sq) are ∗-asymptotically equivalent for suitable p, q.

1 Introduction

Let K be a field of characteristic zero and let A be an associative K-algebra with

involution ∗ of first kind, i.e., such that (αr)∗ = αr∗ for all α ∈ K, r ∈ A. If

X = {x1, x2, . . . } is a countable set of unknowns, we denote by K〈X, ∗〉 = K〈x1, x
∗
1 ,

x2, x
∗
2 , . . . 〉 the free associative algebra with involution generated by X over K. Recall

that an element f (x1, x
∗
1 , . . . , xm, x

∗
m) of K〈X, ∗〉 is a ∗-polynomial identity for A if

f (a1, a
∗
1 , . . . , am, a

∗
m) = 0 for all substitutions a1, . . . , am ∈ A. Moreover T∗(A), the

set of all ∗-polynomial identities of A, is a T∗-ideal of K〈X, ∗〉, i.e., an ideal invariant

under all endomorphisms of K〈X, ∗〉 commuting with ∗, and K〈X, ∗〉/T∗(A) is the

relatively free ∗-algebra of countable rank in the ∗-variety V(A, ∗) generated by A.

In case A = Mk(K), k ≥ 2, is the algebra of k× k matrices over K two involutions

play a very important role in the study of ∗-polynomial identities: the transpose in-

volution, denoted ∗ = t , and the canonical symplectic involution, denoted ∗ = s

and defined only in case k = 2l is even. In fact, it is well known (see [9, Theo-

rem 3.1.62]) that, if K is an infinite field and ∗ is an involution in Mk(K), then either

T∗
(

Mk(K), ∗
)
= T∗

(
Mk(K), t

)
or T∗

(
Mk(K), ∗

)
= T∗

(
Mk(K), s

)
.

A complete study of T∗
(

M2(K), t
)

and of T∗
(

M2(K), s
)

, in characteristic zero,

has been made by Drensky and Giambruno in [3] and by Procesi in [8] respectively.

The purpose of this paper is to determine a description of the ∗-subvarieties of the

∗-variety V
(

M2(K), t
)

or, equivalently, of the T∗-ideals properly containing

T∗
(

M2(K)
)

by using the method due to Drensky [2] in the case of ordinary T-ideals

containing T
(

M2(K)
)

.

First, we shall introduce the notion of ∗-asymptotic equivalence for T∗-ideals of

K〈X, ∗〉. Then we shall construct two sequences of ∗-algebras, (Rp) and (Sq), with

T∗(Rp)∩T∗(Sq) ⊃ T∗
(

M2(K)
)

and establish that if U is any T∗-ideal of K〈X, ∗〉 such
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that U ⊃ T∗
(

M2(K)
)

, then U and T∗(Rp) ∩ T∗(Sq) are ∗-asymptotically equivalent

for suitable integers p, q.

2 Preliminaries

Throughout the paper we shall denote by K a field of characteristic zero. It is useful to

regard the free associative algebra with involution K〈X, ∗〉 as generated by symmetric

and skew-symmetric variables, i.e., if we set yi = xi + x∗i and zi = xi − x∗i , for i =

1, 2, . . . , then K〈X, ∗〉 = K〈Y,Z〉 = K〈y1, z1, y2, z2, . . . 〉. Moreover, any K-algebra

A with involution ∗ is a direct sum A = A+⊕A−, where A+
= {a ∈ A | a∗ = a} and

A− = {a ∈ A | a∗ = −a} are the spaces of symmetric and skew-symmetric elements

of A respectively. Therefore f (y1, . . . , yr, z1, . . . , zs) ∈ K〈Y,Z〉 is a ∗-polynomial

identity for A if f (a1, . . . , ar, b1, . . . , bs) = 0 for all ai ∈ A+, b j ∈ A−, i = 1, . . . , r,

j = 1, . . . , s.
Let us denote by Fm(∗) = K〈y1, . . . , ym, z1, . . . , zm〉 the free associative alge-

bra with involution generated by the symmetric variables y1, . . . , ym and the

skew symmetric variables z1, . . . , zm. Let U = Span
K
{y1, . . . , ym} and V =

Span
K
{z1, . . . , zm}. The group GL(U ) × GL(V ) ∼= GLm×GLm acts on the left

on the vector space U ⊕ V and we can extend this action diagonally to get an ac-

tion on Fm(∗). For every T∗-ideal T∗(A), Fm(∗) ∩ T∗(A) is invariant under the above

action of GLm×GLm. Hence we can view Fm(A, ∗) = Fm(∗)/
(

Fm(∗) ∩ T∗(A)
)

as a GLm×GLm-module. Its homogeneous component of degree n, F(n)
m (A, ∗), is a

GLm×GLm-submodule of Fm(A, ∗).

Now we describe briefly the representation theory of GLm×GLm acting on

F(n)
m (∗). The isomorphism classes of the irreducible modules are described by pairs

of partitions (λ, µ), where λ and µ are partitions of r, n − r respectively in not

more than m parts, for all r = 0, 1, . . . , n. We write Wλ,µ for a representative of

the corresponding isomorphism class of GLm×GLm-modules. More precisely, let

(K〈y1, . . . , ym〉)
(r) be the homogeneous component of degree r of K〈y1, . . . , ym〉.

Let Wλ be an irreducible GL(U )-submodule of (K〈y1, . . . , ym〉)
(r) corresponding to

λ. It is well known that there exists an isomorphic copy of Wλ in (K〈y1, . . . , ym〉)
(r),

generated by the following product of standard polynomials

wλ(y1, . . . , yp) :=

λ1∏

j=1

sp j
(y1, . . . , yp j

),

where p j is the height of the j-th column of the Young diagram Dλ associated to

λ, p := p1 and the sp j
are the standard polynomials of degree p j . Similarly we may

define a GL(V )-submodule Wµ of (K〈z1, . . . , zm〉)
(n−r) with a generator wµ. Now the

irreducible GLm×GLm-module Wλ,µ is isomorphic to the tensor product Wλ⊗KWµ.

A generator of an Wλ,µ is wλ(y1, . . . , yp)wµ(z1, . . . , zq), where q is the height of the

first column of Dµ. Any isomorphic copy of Wλ,µ in F(n)
m (∗) is generated by a non-

zero element

wλ,µ := wλ(y1, . . . , yp)wµ(z1, . . . , zq)
∑

σ∈Sn

ασσ (α ∈ K)



44 F. Benanti, O. M. Di Vincenzo and V. Nardozza

where the symmetric group Sn acts by place permutation of the variables (right action

of Sn) (see for instance [3, p. 720],). The polynomial wλ,µ is the so-called highest

weight vector (h.w.v.) of the module.

We refer to [4] for a complete treatment of the representation theory of GLm×
GLm acting on Fm(∗).

As in [3] we bring the notion of Y -proper ∗-polynomial up. First, we define

(higher) commutators by

[v1, v2] = v1v2 − v2v1

[v1, . . . , vn−1, vn] =
[

[v1, . . . , vn−1], vn

]
, (n > 2).

We say that a ∗-polynomial f (y1, . . . , ym, z1, . . . , zm) ∈ K〈Y,Z〉 is Y -proper if the

y’s occur in commutators only.

By the Poincaré-Birkhoff-Witt theorem Fm(∗) has a basis

{ys1

1 · · · y
sm
m zt1

1 · · · z
tm
m ur1

1 · · · u
rn
n | sh, ti , r j ≥ 0},

where u1, u2, . . . are higher commutators.

We denote by Bm(∗) the vector subspace of Fm(∗) spanned by all products

{zr1

1 . . . z
rm
m us1

1 . . . u
sn
n | ri , s j ≥ 0}.

Hence the Y -proper ∗-polynomials are the elements of Bm(∗). B(n)
m (∗) denotes its

homogeneous component of degree n.

An alternative definition of Y -proper polynomials is the following: f is Y -proper

if all formal partial derivatives ∂ f /∂yi , defined by ∂y j/∂yi := δi, j (Kronecker delta),

are zero for all i = 1, . . . ,m.

By Lemma 2.1. in [3], we have that all ∗-polynomial identities of an algebra A

with involution ∗ follow from the Y -proper ones. This means that the set T∗(A) ∩
Bm(∗) generates the whole T∗(A)∩ Fm(∗) as a T∗-ideal. Let us denote by Bm(A, ∗) :=

Bm(∗)/
(

T∗(A) ∩ Bm(∗)
)

.

The relation between the Y -proper and all the ∗-polynomial identities of a PI-

algebra A with involution ∗ are stated by the following:

Theorem 2.1 ([3, Theorem 2.3 (iv), (v)]) The following GLm×GLm-module iso-

morphism holds:

Fm(A, ∗) ∼= K[y1, . . . , ym]⊗ Bm(A, ∗)

where the algebra K[y1, . . . , ym] is under the canonical GL(U )-action and the trivial

GL(V )-action. In particular, if

Fm(A, ∗) ∼=
∑

aλ,µWλ ⊗Wµ

Bm(A, ∗) ∼=
∑

bν,µWν ⊗Wµ

then aλ,µ =
∑

bν,µ where for fixed λ = (λ1, . . . , λm) and µ the summation runs over

all partitions ν = (ν1, . . . , νm) such that

λ1 ≥ ν1 ≥ · · · ≥ λm ≥ νm.
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As in [6] for T-ideals we give the following

Definition 2.2 Let B(n)(∗) be the space of all Y -proper polynomials of degree n

in K〈Y,Z〉. The T∗-ideals of K〈Y,Z〉, U1 and U2, are ∗-asymptotically equivalent if

there exists ν0 ∈ N such that for all n ≥ ν0

U1 ∩ B(n)(∗) = U2 ∩ B(n)(∗)

and we write

U1 ≈∗ U2.

In this paper we shall investigate the case (A, ∗) =
(

M2(K), ∗
)

, where ∗ is the

transpose involution. We shall give an asymptotic description of the T∗-ideals prop-

erly containing T∗
(

M2(K), ∗
)

.

3 Partial Linearization and the Koshlukov’s Criterion

Definition 3.1 Let f = f (x1, . . . , xn) be a multi-homogeneous polynomial. By the

symbol

f (x1|x2| . . . |xi−1|xi , u|xi+1| . . . |xn−1|xn)

we denote the homogeneous component of the polynomial

f (x1, x2, . . . , xi−1, xi + u, xi+1, . . . , xn−1, xn)

of degree 1 with respect to the variable u, and we shall refer to it as to the partial

linearization of f with respect to xi . Analogously,

f (x1|x2| . . . |xi−1|xi , u1, u2, . . . , uk|xi+1| . . . |xn−1|xn)

is the homogeneous component of first degree with respect to each of the variables

u j of

f (x1, x2, . . . , xi−1, xi + u1 + u2 + · · · + uk, xi+1, . . . , xn−1, xn),

and finally

f (x1| . . . |xi , u1, u2| . . . |x j , v1, v2| . . . |xn)

will denote the homogeneous component of first degree with respect to u1, u2, v1, v2

of the polynomial

f (x1, . . . , xi + u1 + u2, . . . , x j + v1 + v2, . . . , xn).
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Examples 3.2 Let f = f (x1, x2, x3, x4) = x2x2
1x2x3x4x2. Then

f (x1|x2, u|x3|x4) = ux2
1x2x3x4x2 + x2x2

1ux3x4x2 + x2x2
1x2x3x4u

f (x1|x2, u, v|x3|x4) = ux2
1vx3x4x2 + ux2

1x2x3x4v + vx2
1ux3x4x2

+ x2x2
1ux3x4v + vx2

1x2x3x4u + x2x2
1vx3x4u.

Very often we shall consider a given polynomial f = f (x1, . . . , xi−1, xi ,
xi+1, . . . , xn) and write f (x1| . . . |xi−1|xi , g1, g2, . . . |xi+1| . . . |xn), where g1, g2, . . .
are polynomials, to mean the polynomial obtained from the partial linearization

f (x1| . . . |xi−1|xi , u1, u2, . . . |xi+1| . . . |xn) by substituting g1 to the linear variable u1,

g2 to the linear variable u2 and so on.

The following criterion due to Koshlukov [7] is an effective tool to establish if a

given polynomial f of multidegree λ = (λ1, . . . , λm) is a h.w.v. for a GLm-module

W ∼
=Wλ:

Proposition 3.3 (Koshlukov’s Criterion, [7, Lemma 1.3.1]) A multi-homogeneous

polynomial f = f (x1, . . . , xm) of degree λ = (λ1, . . . , λm) is the h.w.v. for a GLm-

module W ∼
=Wλ if and only if f 6= 0 and

f (x1| . . . |xi , x j | . . . |xm) = 0 ∀i = 1, . . . ,m, j < i.

4 The Algebras
(

M2(K), ∗
)

, Rp, Sq

Let A = M2(K). We recall that just two kinds of involution do define different T∗-

ideals: the transpose and the symplectic involution. The transpose involution acts on

M2(K) by

(
α11 α12

α21 α22

)∗

=

(
α11 α21

α12 α22

)

.

In this case, we know the following decomposition:

Theorem 4.1 ([3, Theorem 3.4, (i)])

Bm

(
M2(K), ∗

)
∼
=

⊕

Wλ,µ
∼
=

⊕

Wλ ⊗Wµ

where the summation is over all partitions λ = (λ1, λ2), µ = (µ1) and λ2 6= 0 when

λ1 6= 0 and µ1 = 0.

We define two sequences of finite dimensional algebras with involution which will

be essential to our description of the T∗-ideals properly containing T∗
(

M2(K)
)

.

Let k ≥ 1 and Ck = K[t]/(tk) be the polynomial algebra modulo the ideal gener-

ated by tk.
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We define the following algebras with involution

Rp = Cpe + tCpa + tCpb + Cpc

Sq = Cqe + Cqa + tCqb + tCqc

where e, a, b and c are the matrices

e :=

(
1 0

0 1

)

, a :=

(
1 0

0 −1

)

, b :=

(
0 1

1 0

)

, c :=

(
0 1

−1 0

)

.

Since the algebras M2(Cp) and M2(Cq) have the same ∗-polynomial identities as

M2(K), and Rp and Sq are subalgebras of M2(Cp) and M2(Cq), respectively, we obtain

that the GLm×GLm-modules Bm(Rp, ∗) and Bm(Sq, ∗) are homomorphic images of

Bm

(
M2(K), ∗

)
. By Theorem 4.1, the latter GLm×GLm-module decomposes into

irreducible submodules associated to pairs of partitions of kind
(

(λ1, λ2), (k)
)

. So

Bm(Rp, ∗) and Bm(Sq, ∗) do the same. Now we are going to check which among these

modules occur in these decompositions, actually. By Theorem 4.1, it will suffice to

work in B2(∗) and consider Y -proper polynomials in which just one z occurs, i.e.,

Y -proper polynomials in y1, y2, z1. The following lemma will prove itself useful in

direct computations:

Lemma 4.2 Let a, b, c be the matrices defined at the beginning of this section.

(1) The following relations hold:

a2
= b2

= −c2
= e

ab = c = −ba ac = b = −ca cb = a = −bc.

(2) The previous relations yield

[a, b] = 2c [a, c] = 2b [c, b] = 2a.

(3) For higher commutators, the following relations hold

[c, a, . . . , a
︸ ︷︷ ︸

p

] = 2pcap [b, a, . . . , a
︸ ︷︷ ︸

p

] = 2pbap.

Proof The statements (1) and (2) are straightforward. A simple induction on p ≥ 1

yields (3). If p = 1, then [b, a] = 2ba = −2c and [c, a] = 2ca = −2b. Assume

p ≥ 1 and consider

[c, a, . . . , a
︸ ︷︷ ︸

p+1

] =
[

[c, a, . . . , a
︸ ︷︷ ︸

p

], a
]
= [2pcap, a] = 2p[c, a]ap

since ap and a commute. Similar arguments prove the other equality.
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Now we are going to compute the h.w.v. of the irreducible components of

Bm

(
M2(K), ∗

)
.

Lemma 4.3 Let W be the irreducible component of B2

(
M2(K), ∗

)
associated to the

pair
(

(λ1, λ2), (k)
)

. Then

w = [z, y1, . . . , y1
︸ ︷︷ ︸

λ1−λ2

][y2, y1]λ2 zk−1, if k > 0,

w =
[

[y2, y1], y1, . . . , y1
︸ ︷︷ ︸

λ1−λ2

]
[y2, y1]λ2−1, if k = 0

is its highest weight vector.

Proof The polynomials w are not zero, the symmetric variables y1, y2 occur in com-

mutators only (hence they are Y -proper) and replacing in w one y2 by y1 the poly-

nomials w(y1|y2, y1|z) vanish identically (Koshlukov’s criterion). The only thing to

check is that they are not polynomial identities for
(

M2(K), ∗
)

. A straightforward

calculation (using Lemma 4.2) shows that w(a, b, c) 6= 0.

Some of the polynomials listed in Lemma 4.3 may be a ∗-PI for the algebras Rp, Sq,

and now we shall see which ones. The proofs of the next two lemmas are very similar.

We give the proof of the last one only.

Lemma 4.4 Let k = 0 and, from Lemma 4.3, consider the highest weight vector w

for the irreducible component of B2

(
M2(K), ∗

)
associated to the pair

(
(λ1, λ2), (0)

)
.

Then

1. w is a ∗-polynomial identity for Rp if and only if λ1 + λ2 ≥ p;

2. w is a ∗-polynomial identity for Sq if and only if λ2 ≥ q.

Similarly, in the general case:

Lemma 4.5 Let k > 0 and, from Lemma 4.3, consider the highest weight vector w

for the irreducible component of B2

(
M2(K), ∗

)
associated to the pair

(
(λ1, λ2), (k)

)
.

Then

1. w is a ∗-polynomial identity for Rp if and only if λ1 + λ2 ≥ p;

2. w is a ∗-polynomial identity for Sq if and only if λ2 + k ≥ q.

Proof The symmetric part of Rp is spanned over Cp by the elements e, ta, tb, and

the skew-symmetric part by c. Since in the polynomial w the variables y1, y2 occur

in commutators only, we may assume that the generic substitution for w is of kind

ϕ : yi 7−→ αita + βitb, z 7−→ c.
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Let n := λ1 + λ2. Then

w
(
ϕ(y1), ϕ(y2), ϕ(z)

)
= tnw(α1a + β1b, α2a + β2b, c).

Hence if n ≥ p thenϕ(w) = 0 and w ∈ T∗(Rp). Conversely if n < p the substitution

w(ta, tb, c) = tnw(a, b, c) is not zero.

So w is a ∗-PI for the algebra Rp if and only if λ1 + λ2 ≥ p. Similar arguments

hold for the algebra Sq.

5 Consequences of a Highest Weight Vector

If f ∈ K〈Y,Z〉we denote by ( f )T∗ the T∗-ideal of K〈Y,Z〉 generated by f . Recall that

a ∗-polynomial g is a consequence of f if g ∈ ( f )T∗ .

Definition 5.1 Let W,W̄ be irreducible components of B2

(
M2(K), ∗

)
, and w, w̄

their corresponding highest weight vectors. If w̄ is a consequence of w, then we say

that W̄ is a higher consequence of W , and that the polynomial w̄ is a higher conse-

quence of w for W̄ .

Since B2

(
M2(K), ∗

)
decomposes into irreducible components with multiplicities

1 by Theorem 4.1, we shall identify the components W(λ1,λ2),(k)
∼
= W(λ1,λ2) ⊗W(k)

with the corresponding diagrams (λ1, λ2)⊗ (k).

We are interested in the consequences of degree n + 1 of the highest weight vector

of degree n for a fixed irreducible submodule
p
p + q ⊗ k of B2

(
M2(K), ∗

)
.

We shall prove that, for any diagram (a, b) ⊗ (c) which can be obtained from

(p + q, p)⊗ (k) by one the following operations

1. glue a new box to one row

2. delete a box from a row and glue a new box to each other row,

the highest weight vector of the corresponding irreducible component of

B2

(
M2(K), ∗

)
is a higher consequence of the highest weight vector of (p +q, p)⊗(k).

As in Lemma 4.3, the highest weight vector w of (p + q, p)⊗ (k) is of type

w = [z, y1, . . . , y1
︸ ︷︷ ︸

q

][y2, y1]pzk−1, if k > 0,

w =
[

[y2, y1], y1, . . . , y1
︸ ︷︷ ︸

q

]
[y2, y1]p−1, if k = 0.

We may rephrase Proposition 3.3 to get an effective tool in order to verify that

a given polynomial is the h.w.v. for the irreducible submodule W (λ1,λ2),(k) of

B2

(
M2(K), ∗

)
.

Remark 5.2 Let f = f (y1, y2, z1) be a polynomial in F2

(
M2(K), ∗

)
of multidegree

(λ1, λ2, k). Then f is the h.w.v. for the irreducible submodule (λ1, λ2)⊗ (k) if:
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(1) ∂ f /∂yi = 0 for i = 1, 2. This is to check that f is Y -proper.

(2) f (y1|y2, y1|z1) = 0. This is Koshlukov’s criterion.

(3) f /∈ T∗
(

M2(K)
)

.

Since the formal derivative ∂ f /∂yi equals the partial linearization of yi by 1 in f , if

we write

f
yi 7→u

:= f (. . . |yi , u| . . . )

we have to check

f
y1 7→1

= f
y2 7→1

= f
y2 7→y1

= 0, f (a1, a2, b1) 6= 0

for a1, a2 ∈ A+, b1 ∈ A−.

We start dealing with the simplest case.

Lemma 5.3 The polynomial

w̄ = wz

is a higher consequence of w for (p + q, p)⊗ (k + 1).

Proof The polynomial w̄ is a consequence of w, is Y -proper, has the right multi-

degree and satisfies the Koshlukov’s criterion as in Remark 5.2. Finally it is not a

∗-polynomial identity for M2(K) since w̄(a, b, c) = w(a, b, c)c and w(a, b, c) 6= 0 be-

cause w is the highest weight vector for the irreducible component of B2

(
M2(K), ∗

)

associated to (p + q, p)⊗ (k).

The remaining cases are investigated in the following five lemmas. These lemmas

can be proved by straightforward calculations as for Lemma 5.3. We shall omit the

proofs of Lemmas 5.5 and 5.8 because they are through and through similar to those

investigated.

More precisely, we shall prove that any polynomial w̄ (listed in the following lem-

mas) is a consequence of w. Each w̄ is a linear combination of suitable partial lin-

earizations of w. We remark that it is essential that in the partial linearizations we

replace (skew-)symmetric elements by elements of the free algebra which are of the

same type. This ensures that w̄ is in the T∗-ideal generated by w. Next, we follow

the steps listed in Remark 5.2 and prove that w̄ is the highest weight vector for the

corresponding irreducible submodule of B2

(
M2(K), ∗

)
.

In the following we shall adopt the standard notation of the so-called Jordan prod-

uct, u ◦ v := uv + vu. Also, we shall write c := [y2, y1] for shortness.

Lemma 5.4 The polynomial

w̄ := w(y1, y
2
1|y2|z)− 2(p + q)wy1 if p + q 6= 0
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or

w̄ := w(y1|y2|z, z ◦ y1)− 2kwy1 if p + q = 0

is a higher consequence of w for (p + q + 1, p)⊗ (k).

Proof Assume at first that p + q 6= 0 and k > 0. Then, by Lemma 4.3,

w = [z, y1, . . . , y1
︸ ︷︷ ︸

q

][y2, y1]pzk−1

and write

w1 := w
y1 7→y2

1

=

q
∑

i=1

[z, y1, . . . , y
2
1
↑
i

, . . . , y1][y2, y1]pzk−1

+ [z, y1, . . . , y1
︸ ︷︷ ︸

q

]
∑

i+ j=p−1

[y2, y1]i[y2, y
2
1][y2, y1] jzk−1

Here we shall denote by
∑q

i [z, . . . , u, . . . ] the summation

[z, u
↑
1

, y1, . . . , y1] + [z, y1, u
↑
2

, y1, . . . , y1] + · · · + [z, y1, . . . , y1, u
↑
q

].

We shall write [z, . . . ] as a shortcut for [z, y1, . . . , y1
︸ ︷︷ ︸

q

] if there is no ambiguity. Finally,

we shall shorten
∑

i+ j=α,
∑

i+ j+h=α in
∑α

i, j ,
∑α

i, j,h respectively.

In order to simplify the notation, we shall use these shortcuts through the rest of

this section. Actually, we shall add some more shortcuts in the following lemmas. We

shall emphasize them as soon as they occur.

Since in the partial linearization w1 we are replacing the symmetric element y1 by

the symmetric element y2
1, w1 is a consequence of w. Hence w̄ is a consequence of w,

as well.

It is worth noticing that

[y2, y
2
1] = y1 ◦ [y2, y1]

[z, . . . , y2
1, . . . ] = y1 ◦ [z, . . . ]

as direct calculations show. Hence

w1 = q(y1 ◦ [z, . . . ])cpzk−1 + [z, . . . ]

p−1
∑

i, j

ci(y1 ◦ c)c jzk−1.



52 F. Benanti, O. M. Di Vincenzo and V. Nardozza

Since in w̄ the variable y2 occurs in [y2, y1] only, w̄ is y2-proper and w̄
y2 7→y1

= 0.

Moreover, since w is Y -proper, w
y1 7→1

= 0. Hence

w̄
y1 7→1

= 2q[z, . . . ]cpzk−1 + 2p[z, . . . ]cpzk−1 − 2(p + q)w = 0

and w̄ is y1-proper, as well. We have to prove that w̄ is not a polynomial identity in
(

M2(K), ∗
)

. Since a2
= e and y2

1 occurs in w1 in commutators only, deduce that

w1(a, b, c) = 0 hence w̄(a, b, c) = −2(p + q)w(a, b, c)a 6= 0.

Now assume that k = 0. Then, by Lemma 4.3,

w = [c, . . . ]cp−1

and

w̄ =
[

[y2, y
2
1], . . .

]
+

q
∑

i

[c, . . . , y2
1, . . . ]cp−1

+ [c, . . . ]

p−2
∑

i, j

ci[y2, y
2
1]c j − 2(p + q)wy1

= [y1 ◦ c, . . . ] + q(y1 ◦ [c, . . . ])cp−1 + [c, . . . ]

p−2
∑

i, j

ci(y1 ◦ c)c j − 2(p + q)wy1

= (q + 1)(y1 ◦ [c, . . . ])cp−1 + [c, . . . ]

p−2
∑

i, j

ci(y1 ◦ c)c j − 2(p + q)wy1.

Then

w̄
y1 7→1

= 2(q + 1)w + 2(p − 1)w − 2(p + q)w = 0.

As before, w̄
y2 7→1

= w̄
y2 7→y1

= 0 because y2 occurs in [y2, y1] only, and again w̄(a, b, c) =

−2(p + q)w(a, b, c) 6= 0. In both cases (k = 0 and k 6= 0) the polynomial w̄ is a

h.w.v. for (p + q + 1, p)⊗ (k). Hence w̄ is a higher consequence of w for the module

(p + q + 1)⊗ (k).

Now assume p + q = 0. Hence w = zk (k > 0), by Lemma 4.3, and

w̄ =

k−1∑

i, j

zi(y1 ◦ z)z j − 2kzk y1.

Since in the partial linearization w
z 7→z◦y1

we are replacing the skew-symmetric element

z by the skew-symmetric element z ◦ y1, w
z 7→z◦y1

is a consequence of w. Hence w̄ is a

consequence of w.
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Clearly

w̄
y1 7→1

= 2kzk − 2kzk
= 0,

so w̄ is y1-proper (and Y -proper). Since c, a anti-commute, c ◦ a = 0. Hence

w̄(a, c) = −2kcka 6= 0.

So w̄ is a higher consequence of w.

The proof of the following lemma is very similar, and we shall omit it.

Lemma 5.5 Let q ≥ 1.

(1) If k > 0, then

w̄ = w(y1, y2|y2|z, z ◦ y1)− 2kw(y1, y2|y2|z)y1 − qw(y1|y2|z, z ◦ y2) + 2kqwy2

is a higher consequence of w for (p + q, p + 1)⊗ (k).

(2) If k = 0, then

w̄ = 2pqwy2 − 2pw(y1, y2|y2|z)y1 + w(y1|y2, y
2
2|z)

+ w(y1, y2|y2, y2 ◦ y1|z) + qw(y1, y
2
2|y2, y1|z)

is a higher consequence of w for (p + q, p + 1)⊗ (0).

So far, we proved that the components (a, b) ⊗ (c) obtained by gluing an extra

box to one row of (p + q, p) ⊗ (k) are higher consequences of the given irreducible

component of B2

(
M2(K), ∗

)
. Now we start with deleting one box from a row and

gluing a new box in each of the remaining rows.

Lemma 5.6 Let k > 0. Then

w̄ = w(y1|y2|z, [y2, y1])

is a higher consequence of w for (p + q + 1, p + 1)⊗ (k− 1).

Proof Since k > 0, by Lemma 4.3

w = [z, . . . ]cpzk−1.

Then

w̄ = [c, . . . ]cpzk−1 + [z, . . . ]cp

k−2∑

i, j

zicz j .
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It is a consequence of w because in the partial linearization we are replacing the skew-

symmetric variable z by the skew-symmetric element [y2, y1] of the free algebra. The

polynomial w̄ is clearly Y -proper, has the right degree and w̄
y2 7→y1

= 0. Thus we have

to check that w̄ /∈ T∗
(

M2(K)
)

. It is the case, since

w̄(a, b, c) = −2[c, a, . . . , a](−1)p2pcpck−1 − 2[c, a, . . . , a](−1)p2pcp

k−2∑

i, j

cicc j

= (−2)p+1k[c, a, . . . , a]cp+k−1 6= 0.

Hence w̄ is a higher consequence of w.

The proof of the following lemma involves much more calculation:

Lemma 5.7 Let q ≥ 2.

(1) If k > 0 then

w̄ = (q2 − 1)w(y1, [z, y2]|y2|z)− (q + 1)w(y1, y2, [z, y1]|y2|z)

+ (q− 1)w(y1, y2|y2, [z, y2]|z) − w(y1, y2, y2|y2, [z, y1]|z)

is a higher consequence of w for (p + q− 1, p + 1)⊗ (k + 1).

(2) If k = 0 then

w̄ = (p − q− 1)(q− 1)w(y1, [z, y2]|y2|z) + (q− 1)w(y1, y2, [z, y2]|y2, y1|z)

+ w(y1, y2, y2|y2, [z, y1]|z) + (q + 1)w(y1, y2, [z, y1]|y2|z)

is a higher consequence of w for (p + q− 1, p + 1)⊗ (1).

Proof First assume that k > 0. Thus w = [z, . . . ]cpzk−1 by Lemma 4.3. Split

w̄ into the linearizations w1,w2,w3,w4 of w which are the summands of w̄. Since

[z, y1], [z, y2] are symmetric elements, these summands are consequences of w.

Then, we follow the steps listed in Remark 5.2 for each of them in order to prove

that w̄ is an highest weight vector in B2

(
M2(K), ∗

)
. Thus we shall compute, for

i = 1, 2, 3, 4, the partial linearizations wi
y1 7→1

, wi
y2 7→1

, wi
y2 7→y1

, and the values wi(a, b, c) in

(
M2(K), ∗

)
.

w1 = w(y1, [z, y2]|y2|z)

=

q
∑

i

[z, . . . , [z, y2], . . . ]cpzk−1 − [z, . . . ]

p−1
∑

i, j

ci[z, y2, y2]c jzk−1

w1
y1 7→1

= w1
y2 7→1

= 0
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w1
y2 7→y1

=

∑

i

[
z, . . . , [z, y1], . . .

]
cpzk−1 − 2[z, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1

− [z, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1

w1(a, b, c) = 2p+q+1(−1)p+q(p + q)aqcp+k

(note that in computing w1
y2 7→y1

we use [z, y1, y2] = [z, y2, y1]+[y2, y1, z] by the Jacobi

law).

Here and for the rest of this section we adopt the notation

∑

i 6= j

[z, . . . , f , . . . , g, . . . ]

to mean the summation

[z, f , g, . . . ] + [z, g, f , . . . ] + [z, f , ·, g, . . . ]

+ [z, g, ·, f , . . . ] + · · · + [z, . . . , f , g] + [z, . . . , g, f ].

Now let us consider the second summand.

w2 = w(y1, y2, [z, y1]|y2|z) =
∑

i 6= j

[
z, . . . , y2, . . . , [z, y1], . . .

]
cpzk−1

−
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1

−
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1

w2
y1 7→1

= w2
y2 7→1

= 0

w2
y2 7→y1

= (q− 1)
∑

i

[
z, . . . , [z, y1], . . .

]
cpzk−1 − q[z, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1

−
∑

i

[z, . . . , y2, . . . ]
∑

i, j

ci[z, y1, y1]c jzk−1 − q[z, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1.

In order to compute w2(a, b, c), note that [a, b, c] = 0 and so is any 3-commutator

with these three elements, for all their place permutations. Furthermore, note that

∑

i 6= j

[c, . . . , b, . . . , b, . . . ] = 2
∑

i<q
i odd

[c, . . . , b
↑
i

, b, . . . ] = 2
∑

i<q
i odd

[c, . . . , a
↑
i

, a, . . . ].
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We shall denote by d(1, q− 1) the number of odd integers between 1 and q− 1. With

this notation,

∑

i 6= j

[c, . . . , b, . . . , b . . . ] = 2q+1d(1, q− 1)caq.

Hence we get

w2(a, b, c) = −2
∑

i 6= j

[c, . . . , b, . . . , b, . . . ](−1)p2pcp+k−1

= −2(−1)p+q2p+q+1d(1, q− 1)aqcp+k.

Let us proceed with the next polynomial.

w3 = w(y1, y2|y2, [z, y2]|z)

=

∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1 + [z, . . . ]

p−1
∑

i, j

ci[z, y2, y2]c jzk−1

w3
y1 7→1

= w3
y2 7→1

= 0

w3
y2 7→y1

= (q + 2)[z, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1 + [z, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1

+
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[z, y1, y1]c jzk−1

w3(a, b, c) = (−1)p+q−12p+q+1 paqcp+k.

Similarly,

w4 = w(y1, y2, y2|y2, [z, y1]|z)

=

∑

i 6= j

[z, . . . , y2, . . . , y2 . . . ]

p−1
∑

i, j

ci[z, y1, y1]c jzk−1

+ 2
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1

+ 2
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1

w4
y1 7→1

= w4
y2 7→1

= 0
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w4
y2 7→y1

= 2q
∑

i

[z, . . . , y2, . . . ]

p−1
∑

i, j

ci[z, y1, y1]c jzk−1

+ 2q[z, . . . ]

p−1
∑

i, j

ci[z, y2, y1]c jzk−1 + 2q[z, . . . ]

p−1
∑

i, j

ci[c, z]c jzk−1

w4(a, b, c) = 2(−1)p+q−12p+q+1 pd(1, q− 1)aqcp+k.

Since w̄ = (q2 − 1)w1 − (q + 1)w2 + (q− 1)w3 − w4, by the previous calculations

we got w̄
y1 7→1

= w̄
y2 7→1

= w̄
y2 7→y1

= 0. Moreover,

w̄(a, b, c) = (−1)p+q2p+q+1
(

(q2 − 1)(p + q) + 2(q + 1)d(1, q− 1)

− p(q− 1) + 2pd(1, q− 1)
)

aqcp+k

which is not zero since q ≥ 2 implies q2 − 1 > q − 1 and p + q > p, hence

(q2 − 1)(p + q) > p(q− 1).

Now assume that k = 0. In this case, w = [c, . . . ]cp−1 by Lemma 4.3. Similarly to

what was done in the previous case, we split the calculations for each summand of w̄.

w1 = w(y1, [z, y2]|y2|z) = −
[

[z, y2, y2], . . .
]

cp−1

+
∑

i

[
c, . . . , [z, y2], . . .

]
cp−1 − [c, . . . ]

p−2
∑

i, j

ci[z, y2, y2]c j

w1
y1 7→1

= w1
y2 7→1

= 0

w1
y2 7→y1

= −2
[

[z, y2, y1], . . .
]

cp−1 −
[

[c, z], . . .
]

cp−1 +
∑

i

[
c, . . . , [z, y1], . . .

]
cp−1

− 2[c, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j − [c, . . . ]

p−2
∑

i, j

ci[c, z]c j

w1(a, b, c) = (−1)p+q2p+q+1(p + q)aqcp.

Then, consider w2,w3,w4

w2 = w(y1, y2, [z, y2]|y2, y1|z) = −p
∑

i

[
c, . . . , [z, y2], . . .

]
cp−1

+ (p − 1)[c, . . . ]

p−2
∑

i, j

ci[z, y2, y2]c j −
∑

i

[
[z, y2, y1], . . . , y2, . . .

]
cp−1

−
∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j + (p − 1)
[

[z, y2, y2], . . .
]

cp−1

w2
y1 7→1

= w2
y2 7→1

= 0
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w2
y2 7→y1

= −p
∑

i

[
c, . . . , [z, y1], . . .

]
cp−1

+ (2p − q− 2)
(

[c, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j +
[

[z, y2, y1], . . .
]

cp−1
)

+ (p − 1)
(

[c, . . . ]

p−2
∑

i, j

ci[c, z]c j +
[

[c, z], . . .
]

cp−1
)

−
∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y1, y1]c j

−
∑

i

[
[z, y1, y1], . . . , y2, . . .

]
cp−1

w2(a, b, c) = −(−1)p+q2p+q+1 p(p + q− 1)aqcp

w3 = w(y1, y2, y2|y2, [z, y1]|z)

= 2
(∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j +
∑

i

[
[z, y2, y1], . . . , y2, . . .

]
cp−1
)

+ 2
(∑

i

[
[c, z], . . . , y2, . . .

]
cp−1 +

∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[c, z]c j
)

+
∑

i 6= j

[
[z, y1, y1] . . . , y2, . . . , y2, . . .

]
cp−1

+
∑

i 6= j

[c, . . . , y2, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y1, y1]c j

w3
y1 7→1

= w3
y2 7→1

= 0

w3
y2 7→y1

= 2q
(∑

i

[
[z, y1, y1] . . . , y2, . . .

]
cp−1

+
∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y1, y1]c j
)

+ 2q
([

[z, y2, y1], . . .
]

cp−1 + [c, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j
)

+ 2q
(

[c, . . . ]

p−2
∑

i, j

ci[c, z]c j +
[

[c, z], . . .
]

cp−1
)
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w3(a, b, c) = −2(−1)p+q2p+q+1 pd(1, q− 1)aqcp

w4 = w(y1, y2, [z, y1]|y2|z) =
∑

i 6= j

[
c, . . . , y2, . . . , [z, y1] . . .

]
cp−1

−
∑

i

[
[z, y2, y1], . . . , y2, . . .

]
cp−1 −

∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j

−
∑

i

[
[c, z], . . . , y2, . . .

]
cp−1 −

∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[c, z]c j

w4
y1 7→1

= w4
y2 7→1

= 0

w4
y2 7→y1

= (q− 1)
∑

i

[
c, . . . , [z, y1], . . .

]
cp−1 −

∑

i

[
[z, y1, y1] . . . , y2, . . .

]
cp−1

−
∑

i

[c, . . . , y2, . . . ]

p−2
∑

i, j

ci[z, y1, y1]c j − q
[

[z, y2, y1] . . .
]

cp−1

− q[c, . . . ]

p−2
∑

i, j

ci[z, y2, y1]c j − q
[

[c, z], . . .
]

cp−1 − q[c, . . . ]

p−2
∑

i, j

ci[c, z]c j

w4(a, b, c) = −2(−1)p+q2p+q+1d(1, q− 1)aqcp.

Hence w̄
y1 7→1

= w̄
y2 7→1

= w̄
y2 7→y1

= 0. Moreover, w̄(a, b, c) = (−1)p+q2p+q+1αaqcp where

α = −
(

q(q− 1) + 2d(1, q− 1)
)

(p + q + 1) 6= 0.

The proof of the next lemma is very similar to the previous one, and we shall omit

it.

Lemma 5.8 Let p > 0. Then

w̄ = w(y1|y2, [z, y1]|z)

is a higher consequence of w for (p + q + 1, p − 1)⊗ (k + 1).

We summarize the results in Lemmas 5.3–5.8 in the following corollary:

Corollary 5.9 Let W , W̄ be the irreducible components of B2

(
M2(K), ∗

)
correspond-

ing to the diagrams (p + q, p)⊗ (k), (a, b)⊗ (c) respectively. If (a, b)⊗ (c) is obtained

by (p + q, p)⊗ (k) as the result of one of the following operations:

1. glue a new box to one row,
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2. delete a box from a row and glue a new box to each other row,

then W̄ is a higher consequence of W .

Now we look for consequences of bigger degrees.

Lemma 5.10 Let W be the irreducible submodule of B2

(
M2(K), ∗

)
corresponding to

µ2

µ1 ⊗ k . If W̄ is the irreducible submodule of B2

(
M2(K), ∗

)
corresponding

to the diagram (a, b)⊗ (c) satisfying






a + b + c ≥ 2(µ1 + µ2 + k)

a + b ≥ µ1 + µ2

b + c ≥ µ2 + k

then W̄ is a higher consequence of W .

Proof By comparing the length of the rows of the two diagrams we distinguish eight

cases. It is clear by our assumptions that the cases







a < µ1

b < µ2

c ≥ k

,







a ≥ µ1

b < µ2

c < k

and







a < µ1

b < µ2

c < k

are not possible. Moreover the case







a < µ1

b ≥ µ2

c < k

is not possible as well.

Indeed it holds: c + a < µ1 + k, therefore µ1 + k + b > a + b + c ≥ 2(µ1 + µ2 + k)

and b > µ1 + 2µ2 + k. Hence µ1 > a ≥ b > µ1 + 2µ2 + k, and 2µ2 + k < 0 which is

impossible. Then we study the following four cases:

1.







a ≥ µ1

b ≥ µ2

c ≥ k

, 2.







a ≥ µ1

b < µ2

c ≥ k

, 3.







a < µ1

b ≥ µ2

c ≥ k

and 4.







a ≥ µ1

b ≥ µ2

c < k

.

(1) If







a ≥ µ1

b ≥ µ2

c ≥ k

, then we can apply Lemma 5.3 (c − k) times to obtain a higher

consequence of w for the module corresponding to (µ1, µ2)⊗ (c). Hence, by ap-

plying successively Lemma 5.4 and Lemma 5.5, we obtain a higher consequence

w̄ of w for (a, b)⊗ (c).

(2) If







a ≥ µ1

b < µ2

c ≥ k

, then we have to remove (µ2 − b) boxes. Hence we apply

Lemma 5.8 (µ2 − b) times. We obtain a higher consequence of w for

(µ1 + µ2 − b, b) ⊗ (µ2 + k − b). We can apply Lemma 5.3 and Lemma 5.4

suitable times because c ≥ µ2 + k− b and a ≥ µ1 +µ2− b. In this way we obtain

a higher consequence w̄ of w for (a, b)⊗ (c).
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(3) If







a < µ1

b ≥ µ2

c ≥ k

, then we can use Lemma 5.7 to obtain a higher consequence of

w for (a, µ1 + µ2 − a) ⊗ (µ1 + k − a) (notice that µ1 + µ2 − a ≤ b ≤ a). It

is trivial to prove that µ1 + µ2 − a ≤ b. Moreover, our assumptions on a, b, c
force µ1 + k ≤ a + c. Indeed, suppose on the contrary µ1 + k > a + c. It follows

µ1 + k− c + b > a + b, therefore µ1 + k + b > a + b + c ≥ 2µ1 + 2µ2 + 2k. Hence

b > µ1 + 2µ2 + k and it follows µ1 + k− c > a ≥ b > µ1 + 2µ2 + k, so−c > 2µ2

which is impossible. Therefore µ1 + k − a ≤ c and we can use Lemma 5.3 and

Lemma 5.5 to glue the remaining boxes and obtain a higher consequence w̄ of w

for (a, b)⊗ (c).

(4) Finally, if







a ≥ µ1

b ≥ µ2

c < k

, then we move away (k − c) boxes applying (k − c) times

Lemma 5.6, and we get the higher consequence for (µ1 + k− c, µ2 + k− c)⊗ (c).

We note that µ2 + k − c ≤ b holds; on the other hand it is µ1 + k ≤ a + c, that

is µ1 + k − c ≤ a. Hence we may apply Lemmas 5.4 and 5.5 and get the higher

consequence of w for (a, b)⊗ (c).

6 A Description of the Proper Subvarieties

For convenience of the reader,we recall Definition 2.2: Let B(n)(∗) be the space of all

Y -proper polynomials of degree n in K〈Y,Z〉. The T∗-ideals of K〈Y,Z〉, U1 and U2,

are ∗-asymptotically equivalent if there exists ν0 ∈ N such that for all n ≥ ν0

U1 ∩ B(n)(∗) = U2 ∩ B(n)(∗)

and we write

U1 ≈∗ U2.

Here is the main result of our investigation:

Theorem 6.1 Let ∗ = t the transpose involution. If U is the T∗-ideal of K〈Y,Z〉 of

a proper subvariety of the variety of algebras with involution generated by
(

M2(K), ∗
)

,

then

U ≈∗ T∗(Rp) ∩ T∗(Sq)

for suitable p and q.

Proof Let U be a T∗-ideal properly containing T∗
(

M2(K)
)

. By Theorem 4.1 it is

enough to consider Y -proper polynomials in B2(∗). We may consider the submodule

Ū :=
(

U∩B2(∗)
)
/
(

T∗
(

M2(K)
)
∩B2(∗)

)

of the GL2×GL2-module B2

(
M2(K), ∗

)
.

It describes all Y -proper identities in U ∩ B2(∗) which do not hold for
(

M2(K), ∗
)

.
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Since U % T∗
(

M2(K)
)

and U is generated by its Y -proper polynomials, we obtain

that Ū is not zero. For simplicity of notation, we denote the irreducible GL2×GL2-

module W(α,β) ⊗W(γ) by (α, β) ⊗ (γ). If the unique irreducible submodule W of

B2

(
M2(K), ∗

)
associated to (a, b)⊗ (c) occurs in the decomposition of Ū , then all its

higher consequences occur in the decomposition of Ū , as well.

Now write:

p1 := min .{α + β | (α, β)⊗ (γ) occurs in Ū},

q1 := min .{β + γ | (α, β)⊗ (γ) occurs in Ū and α + β = p1}.

Choose (a1, b1)⊗ (c1) in Ū such that a1 + b1 = p1 and b1 + c1 = q1.

Let

q2 := min .{β + γ | (α, β)⊗ (γ) occurs in Ū},

p2 := min .{α + β | (α, β)⊗ (γ) occurs in Ū and β + γ = q2}.

Choose (a2, b2)⊗ (c2) in Ū such that b2 + c2 = q2 and a2 + b2 = p2.

Note that p1 ≤ p2 and q1 ≥ q2. Now set p = p1, q = q2 and V := T∗(Rp) ∩
T∗(Sq). We want to show that U ≈∗ V . By Theorem 4.1 it is enough to show that the

irreducible Y -proper submodules occurring in U ∩ B(n)
2 (∗) and V ∩ B(n)

2 (∗) are the

same from a suitable positive integer n on. Since U and V both contain T∗
(

M2(K)
)

we may work modulo T∗
(

M2(K)
)

.

Note that if (α, β) ⊗ (γ) ∈ Ū =
(

U ∩ B2(∗)
)
/
(

T∗
(

M2(K)
)
∩ B2(∗)

)

(with

abuse of notation), then

i. α + β ≥ p1 and, if α + β = p1, then β + γ ≥ q1 ≥ q2;

ii. β + γ ≥ q2 and, if β + γ = q2, then α + β ≥ p2 ≥ p1.

Certainly, it is already true that if (α, β)⊗(γ) ∈
(

U∩B2(∗)
)
/
(

T∗
(

M2(K)
)
∩B2(∗)

)

,

then

(α, β)⊗ (γ) ∈
(

V ∩ B2(∗)
)
/
(

T∗
(

M2(K)
)
∩ B2(∗)

)

,

as a consequence of the choice made for p and q in view of Lemmas 4.4 and 4.5. To

complete the proof, set

n0 := max{2(q1 + a1), 2(p2 + c2), p2 + q1}.

If (α, β)⊗(γ) ∈ (V ∩B2)/
(

T∗
(

M2(K)
)
∩B2

)

is of degree at least n0, i.e., γ+α+β ≥

n0, then by Lemmas 4.4 and 4.5 it satisfies

{

α + β ≥ p1

β + γ ≥ q2

. Hence, if α + β ≥ p2,

then (α, β)⊗ (γ) is a higher consequence of (a2, b2)⊗ (c2) by Lemma 5.10; so it is in
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(
U ∩ B2(∗)

)
/
(

T∗
(

M2(K)
)
∩ B2(∗)

)

. Suppose this is not the case, so α + β < p2.

If β + γ ≥ q1, then Lemma 5.10 applies, so (α, β) ⊗ (γ) is a higher consequence of

(a1, b1)⊗ (c1). Therefore we suppose that this is not the case, that is β + γ < q1. But

this yields a contradiction, since we get

{

α + β < p2

β + γ < q1

yields γ + α + β ≥ n0 ≥ p2 + q1 > γ + α + 2β.

This ends the proof.
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