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Abstract

We find a d’Alembert type formula for the solution of the Cauchy problem for the wave equ
on finite weighted networks. We also discuss the periodicity in time of the solution in terms
spectrum of the discrete graph associated with the network and finally we present two sign
examples to illustrate and clarify the general analysis.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a graphΓ with its set of verticesV and its set of edgesE. If every edge
e ∈ E is seen as a homeomorphic copy of the interval[0,1], and obvious identification
between endpoints of different edges are made in order to account for the verticesΓ ,
the graphΓ becomes a topological space (in fact a one-dimensional CW complex
is called a one-dimensional network according to several authors who have develop
analysis on these structures and studied PDEs on them (see, e.g., [1–3,5,7,10,12–
The name is reminiscent of modeling and applications in electrical engineering,

* Corresponding author.
E-mail addresses:carla.cattaneo@unimib.it (C. Cattaneo), fontana@matapp.unimib.it (L. Fontana).

1 Supported by a grant from Istituto Nazionale di Alta Matematica (INDAM).
0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(02)00392-X



404 C. Cattaneo, L. Fontana / J. Math. Anal. Appl. 284 (2003) 403–424

n (see

hisms

case)
tural
ms for
rein).

dges)
loped

lacian

works.
r the

n the

riodic
ifferent

e of
ry

fold).

e

ated,
reduce
lution
e

mple,
itions
famous example comes from biology, namely the Rall–Rinzel model for the neuro
[17,18]). Applications to hydraulic networks (sewers for instance) are also in order.

Even though a network is not a manifold (because of the vertices), the homeomorp
between the edges and the interval[0,1] provide a differentiable structure on most ofΓ .
Suitable conditions on the functions at the vertices (the Kirchhoff conditions in our
will play the role of the differentiability, a notion that in the vertices has no obvious na
meaning. A fairly large amount of the standard existence and uniqueness theore
PDEs were proven in this context (see, for instance, the book [2] and references the

Spectral theory for 1-dimensional finite (i.e., with a finite number of vertices and e
networks and its connection with spectral theory for finite discrete graphs were deve
by Nicaise [12,13] and partially extended to infinite networks by Cattaneo [4].

The aim of this paper is to exploit the relationship between the spectrum of the Lap
on the networkΓ and the spectrum of the discrete Laplacian on the vertices ofΓ in order
to solve the Cauchy problem for the wave equation on finite connected weighted net
We look for an extension to these structures of the classical d’Alembert formula fo
wave equation on the real line

u(t, x)= 1

2

(
f (x + t)+ f (x − t)

)+ 1

2

x+t∫
x−t

g(s) ds,

wheref andg are the prescribed initial value datau(0, x) and(∂u/∂t)(0, x), respectively.
The previous formula also solves the Cauchy problem for the wave equation o

interval [0,1] with homogeneous Neumann condition at 0 and 1 if we extendf andg as
even functions on[−1,1] and then further extend them toR as 2-periodic functions.

On a general network, the formula cannot be so simple. The even and 2-pe
extensions described above do not help anymore. We need a different setting and d
conventions. D’Alembert formula for a network must have the form

u(t, x)=
∫
Γ

K(x, y, t)f (y) dy +
∫
Γ

H(x, y, t)g(y) dy, (1)

where x and y are points ofΓ , f , g and u are functions onΓ and K and H are
“distributions” onΓ × Γ or, to be more precise, elements in the dual of the spac
the continuous functions onΓ × Γ (thus avoiding the problem of developing a full theo
of distributions on a topological space lacking the differentiable structure of mani
Notice then that a functionu onΓ can be identified with a collection(ue)e∈E of functions
on [0,1], one for each edge ofΓ . K andH are thus matrices whoseeiej entry should
account for the influence (in general varying with the timet) that the perturbation on th
edgeej has on the edgeei .

Clearly, from this point of view, the formulae that we expect are rather complic
involving a large number of terms as soon as the graph has enough edges. Ways to
the complexity are however available. For instance, it is possible to compute the so
at the vertices only. If it is needed on a particular edgee too, it would be enough to solv
an initial value problem on the[0,1] interval with prescribed values at the end points.

Other efficient solving techniques for the Cauchy problem are available. For exa
it is possible to solve the problem on each edge with free Dirichlet boundary cond
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and then glue the solutions at the vertices. This process leads to a linear algebra p
that can easily be dealt with by a computer (see, e.g., [8,9]). Nevertheless, our fo
has its fine points. First of all, it is a global formula and therefore it makes easier t
the connections between properties of the network and properties of the solution
wave equation. For instance, we can derive information about the periodicity in tim
the solution from the spectrum of the network. Some sort of diagnostic on the ne
seems also possible. By this we refer to the problem of determining structural ele
of the network (for example, the values of some of the weightsc(e), the degrees of som
vertices, the total number of vertices or edges, or information about the spectrum
the knowledge of the solution of the Cauchy problem restricted to a single edge or v
We are not however pursuing this analysis in the present paper. Similarly, we only m
that interesting development can probably be derived from the solution of the heat eq
that we obtain as a consequence of our work on the wave equation.

In the next two sections we introduce our notation and collect the basic facts
networks, functions and Laplacian on them. In particular in Section 3 we repro
Nicaise’s description of the spectrum of∆ [13]. In Section 4 we reduce the problem
the determination of the kernelH. The main tool is the Fourier expansion with respec
an orthonormal basis of eigenfunctions of∆ onΓ . The geometric structural properties
Γ play their important role through the matricesA, B(1), B(2), Cα , Dα , Fα , Gα . In Section 5
we solve the Cauchy problem (5) withg ≡ 0 by differentiating with respect to the time th
function

∫
Γ H(t, x, y)f (y) dy (Theorem 3). In Section 6 we illustrate the general the

by describing two examples, the most remarkable of which is the complete networ
n+ 1 vertices.

2. Notation and preliminaries

Let Γ = (V ,E) be a finite, connected graph with no self-loops.V = {v1, . . . , v|V |} and
E = {e1, . . . , e|E|} are the set of the vertices and the set of the edges, respectively. For
vertexv in V , we denote bydv the degree ofv, and byEv the set of the edges branchi
out fromv (note thatEv hasdv elements). We say that two verticesv andv′ are neighbours
and writev ∼ v′ if there exists an edgee in E such thate = (v, v′). A circuit of lengthn
is a connected subgraph ofΓ with n distinct vertices, each of degree 2. We identify ev
edgee of Γ with the real interval[0,1]. In this way we associateΓ with a one-dimensiona
CW complex (see, e.g., [11]). Note thatΓ is a metric space in a natural way.

For every vertexv in V and for every edgee in Ev we set

i(v, e)=
{

0 if v is identified with 0,
1 if v is identified with 1.

(2)

We assign a positive weightc(e) to every edgee of Γ . For every vertexv of Γ , c(v)
denotes the sum of the weights of all the edges branching out fromv and 2c is their sum,
i.e.,

c(v)=
∑

c(e) and c =
∑

c(e)= 1

2

∑
c(v). (3)
e∈Ev e∈E v∈V
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We will refer toΓ with the above structure as the one-dimensional weighted net
with the same name.

Let l2(V , c) be the space of all the complex valued functions onV with inner product

(U,W)l2(V ,c) =
∑
v∈V

c(v)U(v)W(v).

For allv, v′ distinct inV , we call transition probability fromv to v′ the following quantity

p(v, v′)=
{∑

e∈Ev∩Ev′
c(e)
c(v)

if Ev ∩Ev′ �= ∅,
0 otherwise,

(4)

and we set

ĉ(v, v′)=
{∑

e∈Ev∩Ev′
c(e)√

c(v)c(v′) if Ev ∩Ev′ �= ∅,
0 otherwise.

For v = v′, we setp(v, v′)= ĉ(v, v′)= 0.

Proposition 1. The matricesP = (p(v, v′))v,v′∈V and C = (ĉ(v, v′))v,v′∈V have the
same eigenvalues and ifU (respectively,Û) is an eigenvector ofP (respectively,C)
corresponding toλ then

Û(v)=U(v)
√
c(v).

We omit the easy proof.
SinceC is symmetric all the eigenvalues ofP are real. Notice that the operatorI − P

is the standard discrete Laplacian on(Γ, c) (see, e.g., [6]).
In this paper we consistently denote byx andy points varying onΓ . Eachx determines

uniquely the edgee to which it belongs, unlessx is a vertex. Ifx is not a vertex, byxe we
denote the number in the interval[0,1] corresponding tox ∈ e under our identification o
the edgee with [0,1]. If x is a vertex,xe is not well defined in general since it can well
the initial point for some of the edges inEx and the terminal point for some other of tho
edges. However, in our formulae any vertex always appears as the initial or the te
point of a specific edgee. In this casexe has the obvious meaning.

We identify any functionu on Γ with a family of functions(ue)e∈E each defined on
a single edgee of Γ and therefore, by our identification, on[0,1], in such a way tha
u(x)= ue(xe). We use the same notationue to denote both the function on the edgee and
the function on the real interval[0,1] identified withe.

The functionu = (ue)e∈E is continuous onΓ if and only if ue is continuous on[0,1]
for everye in E, andue(i(v, e)) = ue′(i(v, e′)) for all the edgese, e′ in Ev and for allv
in V . So we can associate with every continuous functionu onΓ a functionU well defined
onV by

U(v)= ue
(
i(v, e)

)
,

wheree is any one of the edges inEv .
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Integration onΓ is performed edge by edge. Namely

∫
Γ

u(x) dx =
∑
e∈E

c(e)

1∫
0

ue(xe) dxe,

wheredxe denotes the Lebesgue measure on the interval[0,1].
We define the spaceL2(Γ, c) as the space of all the functionsu = (ue)e∈E onΓ such

thatue ∈L2(0,1) for everye in E.
Analogously, for every integerm > 0, we define the Sobolev spaceHm(Γ, c) as the

space of all the functionsu= (ue)e∈E onΓ such thatu is continuous onΓ , ue ∈Hm(0,1)
for everye in E.

The above spaces are Hilbert spaces with inner products

(u,w)L2(Γ,c) =
∑
e∈E

c(e)(ue,we)L2(0,1),

(u,w)Hm(Γ,c) =
∑
e∈E

c(e)(ue,we)Hm(0,1).

Notice thatu ∈Hm(Γ, c) is a continuous function onΓ for everym� 1 but continuity at
the vertices for the derivativeu′ = (u′

e)e∈E is not assured.
Consider the sesquilinear continuous formϕ onH 1(Γ, c) defined by

ϕ(u,w)= (u′,w′)L2(Γ,c)

and let∆ be its associated Laplacian.
It is easy to verify that∆ is a linear, unbounded, self-adjoint, dissipative operato

L2(Γ, c).
Its domain is the subset ofH 2(Γ, c) of the functions satisfying the following Kirchho

type condition∑
e∈Ev

c(e)
∂ue

∂ne

(
i(v, e)

)= 0 at everyv in V,

where(∂ue/∂ne)(i(v, e)) denotes the normal exterior derivative of the functionue at the
endpointi(v, e) of the interval[0,1], i.e.,

∂ue

∂ne

(
i(v, e)

)= {−u′
e(0+) if i(v, e)= 0,

u′
e(1−) if i(v, e)= 1

(see, e.g., [13]).
Notice that (∆u)e = u′′

e for every e in E and for everyu in D(∆). Moreover, if
u,v ∈D(∆), the Kirchhoff condition implies that

∫
Γ
v∆u= ∫

Γ
u∆v.

The Cauchy problem for the wave equation


∂2u
∂t2

=∆u, t > 0,

u(0, ·)= f (·),
∂tu(0, ·)= g(·)

(5)

is an example of second-order evolution problem. It can be transformed into a first
system by defining the vectorU(t, x) = (u(t, x), (∂u/∂t)(t, x)). When the initial dataf
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andg belong toD(∆) andH 1(Γ, c), respectively, the theory of semigroups and the Hil
Yosida–Phillips theorem can be used to prove existence, uniqueness and regularity
solution. In particular the vectorU turns out to be a continuous function oft with values
in D(∆)×H 1(Γ, c). We collect all these results in the following theorem, referring to
book [2] for the proof.

Theorem 1. The Cauchy problem(5)with dataf andg in D(∆) andH 1, respectively, has
a unique solutionu(t, x) such that the vectorU = (u, ∂u/∂t), as a function oft , belongs
to

C1([0,∞),H 1(Γ, c)×L2(Γ, c)
)∩ C0([0,∞),D(∆)×H 1(Γ, c)

);
moreover,u ∈H 1([0, T ] × Γ ) for arbitrary T > 0 andu(t, ·) ∈H 2(Γ, c) for all t � 0.

Notice thatu(·, x) and(∂u/∂t)(·, x) are continuous functions for allx in Γ .
We conclude this section by observing that the finite propagation property for w

holds on networks. Indeed it holds on each single edge and iff andg are concentrated o
an edgee, the solution, on any other edgee′ is 0 until one of the vertices ofe′ is influenced
by the perturbation originated one.

3. The spectrum of the Laplacian ∆

Since∆ is a self-adjoint non-positive operator on the Hilbert spaceL2(Γ, c), there exists
an orthonormal basis ofL2(Γ, c) composed of eigenfunctions of∆. For finite networks
such a basis has been described by Nicaise (see [13]). In this section we recall th
facts about the spectral decomposition of∆ omitting most of the proofs.

(1) For any network 0∈ σ(∆) with multiplicity 1 and the constantw0 ≡ c−1/2 (wherec
is defined in (3)) as eigenfunction.

(2) The numbers−k2π2, k ∈ N, belong toσ(∆) with multiplicity

mk =
{ |E| − |V | + 2 if Γ has no odd circuits,

|E| − |V | + 1+ (−1)k if Γ has at least one odd circuit.

To obtain a basis for the eigenspace of(−k2π2) we consider the|V |× |E| matrixA(k)

whose elements are

A(k)
v,e =

{
(−1)i(v,e)(k+1)c(e) if e ∈Ev,

0 otherwise,

and we choose an orthonormal basis{b(k)j } of Ker(A(k)) with respect to the norm∑
e∈E

c(e)|αe|2 = ∥∥(αe)e∈E∥∥.
Our notation can be misleading here. Notice that we are actually dealing with
matrices. One fork even and one fork odd. Whenk is even the dimension of Ker(A(k))
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is given bym = |E| − |V | + 1, while if k is odd then it ism− 1 if Γ has at least an
odd circuit andm if Γ has no odd circuits.
A basis for the eigenspace of(−k2π2) is then constructed in the following way.
If k is odd andΓ has at least one odd circuit we choose the functions

wk,j,e(xe)= √
2b(k)j,e sinkπxe for j = 1, . . . ,m− 1 (6)

as our orthonormal basis.
If k is odd andΓ has no odd circuits the set of the functions given in (6) mus
completed by

wk,m+1,e(xe)=
√

2

c
ae coskπxe, (7)

whereae is equal to 1 or−1 according to the condition

(−1)i(v,e)ae = (−1)i(v,e
′)ae′ for all e, e′ in Ev and allv in V

(i(v, e) defined in (2)).
Finally if k is even we must complete the set (6) with the function

wk,m+1,e(xe)=
√

2

c
coskπxe. (7′)

(3) The remaining part ofσ(∆) is the set{−λ < 0: cos
√
λ ∈ (σ(P ) ∩ (−1,1)

)}
. (8)

The multiplicity mλ of the eigenvalue(−λ) is equal to the multiplicity of the
eigenvalue cos

√
λ of P . We write eachλ as λ = ((2k − 1)π ± α)2, wherek ∈ N

andα belongs to the set

N = {0< α < π : (−cosα) ∈ σ(P )
}
. (9)

The orthonormal basis for the corresponding eigenspace is described by the foll

Proposition 2. Let{Zα,j (v)}1�j�mα be an orthonormal basis inl2(V , c) of the eigenspac
of the eigenvalue(−cosα) of P . For every edgee = (v, v′) define

zα,j,e(0)=Zα,j (v)
(
1− i(v, e)

)+Zα,j (v
′)
(
1− i(v′, e)

)
, (10)

zα,j,e(1)=Zα,j (v)i(v, e)+Zα,j (v
′)i(v′, e), (11)

i.e., zα,j,e(0) and zα,j,e(1) are eitherZα,j (v) or Zα,j (v
′) depending on which of th

vertices is identified with0. Then the functions

z±
α,k,j,e(xe)= ∓√

2

sinα

(
zα,j,e(0)sin

(
(2k − 1)π ± α

)
(1− xe)

+ zα,j,e(1)sin
(
(2k − 1)π ± α

)
xe

)
(12)

are an orthonormal basis inL2(Γ, c) of the eigenspace for the eigenvalue−((2k − 1)π ±
α)2 (by ± we mean that we actually have two functions, in the first we select consis
+ and in the second−).
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Proof. It is easy to prove that the functions{z±
α,k,j } are eigenfunctions of the eigenval

−((2k − 1)π ± α)2 of ∆. To prove that they are orthonormal (we sketch it since it is
in [13]) it is enough to show that(

z±
α,k,j , z

±
α,k,i

)
L2(Γ,c)

= (Zα,j ,Zα,i)l2(V ,c). (13)

We know that all the eigenvectors of the matrixP are real so we can assume that
functionsZα,j are real. Equation (13) follows from straightforward calculations using∑

e∈E
c(e)

(
zα,j,e(0)zα,i,e(0)+ zα,j,e(1)zα,i,e(1)

)=∑
v∈V

c(v)Zα,j (v)Zα,i(v)

and ∑
e∈E

c(e)
(
zα,j,e(0)zα,i,e(1)+ zα,j,e(1)zα,i,e(0)

)
=
∑
v∈V

c(v)Zα,j (v)
(
P(Zα,i )(v)

)= −cosα
∑
v∈V

c(v)Zα,j (v)Zα,i (v). ✷

Let a, zα,j (0), zα,j (1) be the|E|-vectors with entriesae, zα,j,e(0), zα,j,e(1), respec-

tively. Recall that in formula (6) theb(k)j,e were the entries of the vectorsb(k)j .

4. The solution of the Cauchy problem with f = 0

Our aim is to determine as explicitly as possible the solution of the Cauchy proble(5)
wheref belongs to the domain of the Laplacian andg belongs toH 1(Γ, c).

From the point of view of spectral theory this amount to find the two opera
cost (

√−∆) and sint (
√−∆)/

√−∆, so that

u(t, x)= cost
(√−∆

)
(f )(x)+ sint (

√−∆)√−∆
(g)(x). (14)

Since

cost
(√−∆

)
(f )(x)= ∂

∂t

sint (
√−∆)√−∆

(f )(x)

we begin by determining the solution of (5) withf = 0.
The eigenfunctions of∆ that we have described in the previous section are

orthonormal basis ofL2(Γ, c). Thus we have

Lemma 1. The solutionu(t, x) of the Cauchy problem(5) with f = 0 has the following
expansion relative to our orthonormal basis ofL2(Γ, c):

u(t, x)= a0(g)tw0(x)+
∑ mk∑ ak,j (g)

kπ
sinkπtwk,j (x)
k�1 j=1
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exed
+
∑
α∈N

∑
k�1

mα∑
j=1

[
bα,k,j (g)

(2k − 1)π + α
sin
(
(2k − 1)π + α

)
tz+
α,k,j (x)

+ cα,k,j (g)

(2k − 1)π − α
sin
(
(2k − 1)π − α

)
tz−
α,k,j (x)

]
,

where

ak,j (h) :=
∫
Γ

hwk,j , bα,k,j (h) :=
∫
Γ

hz+
α,k,j

and

cα,k,j (h) :=
∫
Γ

hz−
α,k,j .

As a consequence of Lemma 1 we have that the operator sin(t
√
∆)/

√−∆ is an integral
operatorg(x)→ ∫

Γ H(t, x, y)g(y) dy whose kernel is

He,e′(t, xe, ye′)= tw0,e(xe)w0,e′(ye′)

+
∑
k�1

sinkπt

kπ

mk∑
j=1

wk,j,e(xe)wk,j,e′(y
′
e)

+
∑
α∈N

∑
k�1

mα∑
j=1

[
z+
α,k,j,e(xe)z

+
α,k,j,e′ (ye′)

sin((2k − 1)π + α)t

(2k − 1)π + α

+ z−
α,k,j,e(xe)z

−
α,k,j,e′(ye′)

sin((2k − 1)π − α)t

(2k − 1)π − α

]
. (15)

The sums of the series in (15) (that converge both pointwise a.e. and inL2(Γ )) can be
computed explicitly and to write them we introduce the following|E| × |E| “structure”
matrices for the networkΓ (all the vectors are column vectors whose entries are ind
after the edges, andaT denotes the row vector transposed ofa; notice thataaT is a
|E| × |E| matrix):

A =
{
c−1aaT if k odd andΓ has no odd circuits,
0 if k odd andΓ has an odd circuit,

B(1) =
m2k−1∑
j=1

b(2k−1)
j b(2k−1)T

j ,

B(2) =
m2k∑
j=1

b(2k)j b(2k)Tj ,

Cα =
mα∑
j=1

(
−zα,j (0)zTα,j (0)cos2α − zα,j (1)zTα,j (1)

− (zα,j (0)zTα,j (1)+ zα,j (1)zTα,j (0)
)
cosα

)
,
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Dα =
mα∑
j=1

(
zα,j (0)zTα,j (0)+ zα,j (1)zTα,j (1)

+ (zα,j (0)zTα,j (1)+ zα,j (1)zTα,j (0)
)
cosα

)
,

Fα =
mα∑
j=1

(
2zα,j (0)zTα,j (0)cosα + zα,j (0)zTα,j (1)+ zα,j (1)zTα,j (0)

)
,

Gα =
mα∑
j=1

(−zα,j (0)zTα,j (1)+ zα,j (1)zTα,j (0)
)
,

wherec, a, b(k), zα,j (0) andzα,j (1) were defined in Section 3.
Then, by using the orthonormality (inL2(Γ, c)) described in the previous section, w

have

w0,e(xe)w0,e′(ye′)= c−1,

m2k−1∑
j=1

w2k−1,j,e(xe)w2k−1,j,e′(ye′)= 2Ae,e′ cos(2k − 1)πxe cos(2k − 1)πye′

+ 2B(1)
e,e′ sin(2k − 1)πxe sin(2k − 1)πye′,

m2k∑
j=1

w2k,j,e(xe)w2k,j,e′(ye′)

= 2c−1 cos2kπxe cos2kπye′ + 2B(2)
e,e′ sin 2kπxe sin2kπye′,

mα∑
j=1

z±
α,k,j,e(xe)z

±
α,k,j,e′(ye′)= Cα,e,e′

cos((2k − 1)π ± α)(xe + ye′)

sin2α

+ Dα,e,e′
cos((2k − 1)π ± α)(xe − ye′)

sin2α

+ Fα,e,e′
sin((2k − 1)π ± α)(xe + ye′)

sin((2k − 1)π ± α)

+ Gα,e,e′
sin((2k − 1)π ± α)(xe − ye′)

sin((2k − 1)π ± α)
,

where by± we mean that we actually have two formulae. In the first we select consis
+ and in the second−.

From Lemma 1 we obtain

He,e′(t, xe, ye′)

= tc−1 + 2
∑
k�1

sin 2kπt

2kπ

(
c−1 cos 2kπxe cos 2kπye′ + B(2)

e,e′ sin 2kπxe sin2kπye′
)

+ 2
∑ sin(2k − 1)πt

(2k − 1)π

(
Ae,e′ cos(2k − 1)πxe cos(2k − 1)πye′
k�1
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+ B(1)
e,e′ sin(2k − 1)πxe sin(2k − 1)πye′

)
+
∑
α∈N

∑
k�1

sin((2k − 1)π ± α)t

(2k − 1)π ± α

×
(

Cα,e,e′
cos((2k − 1)π ± α)(xe + ye′)

sin2α

+ Dα,e,e′
cos((2k − 1)π ± α)(xe − ye′)

sin2α

∓ Fα,e,e′
sin((2k − 1)π ± α)(xe + ye′)

sinα

∓ Gα,e,e′
sin((2k − 1)π ± α)(xe − ye′)

sinα

)
. (16)

The above double sign± is to be intended as the sum of the two expressions obta
selecting consistently the sign+ first, and then the sign−.

It is easy to see that the series forH converges inL2 and pointwise a.e.
By using the standard trigonometry identities we replace the products of sine

cosines in (16) by suitable sums of sines and cosines whose arguments depend
quantitiesθ = xe ± ye′ ± t for all four possible choices of the signs. In the next lemma
evaluate the trigonometric series in the variablesθ that appear at this point in the express
for H. We introduce the following notation: ify is not an odd integer then there is a uniq
decomposition

y = 2ly + [y]2 (17)

with ly integer and[y]2 ∈ (−1,1). As y approaches an odd integer from the left or fro
the right, we have well defined left or right limits forly and[y]2.

Lemma 2. Let α ∈ (0,π). The following equalities hold inL2 and pointwise(providedθ
is not an integer):

(a)
∑
k�1

sin2kπθ

2kπ
= 1

4

(
sgn([θ ]2)− 2[θ ]2

)
,

(b)
∑
k�1

sin(2k − 1)πθ

(2k − 1)π
= 1

4
sgn
([θ ]2),

(c)
∑
k�1

(
sin((2k − 1)π + α)θ

(2k − 1)π + α
+ sin((2k − 1)π − α)θ

(2k − 1)π − α

)

= sgn[θ ]2 cos
(
2lθ + 1

2sgn[θ ]2
)
α

2 cosα/2
,

(d)
∑
k�1

(−cos((2k − 1)π + α)θ

(2k − 1)π + α
+ cos((2k − 1)π − α)θ

(2k − 1)π − α

)

= sgn[θ ]2 sin
(
2lθ + 1

2sgn[θ ]2
)
α
.

2 cosα/2
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Proof. The left-hand sides of (a) and (b) are just the Fourier series of the 2-pe
functions on the right-hand sides. To prove (c) and (d) recall that for 0< x < 2π and
β /∈ Z the following formulae hold:

∞∑
k=−∞

sin(k + β)x

k + β
= π and

∞∑
k=−∞

cos(k + β)x

k + β
= π cotπβ (18)

(see, e.g., [20, p.71]).
If we setβ = −1/2+ β1 andx = 2πθ , divide by 2π and replace 2πβ1 with α ∈ (0,π),

after some changes in the summation indices, we obtain (c) and (d) forθ ∈ (0,1). We
extend the result to(−1,1) using the fact that sin is odd and cos even. Finally the exten
to all non-integerθ is easily achieved by writingθ as in (17). ✷

To state our formula for the kernelH it is convenient to introduce some more notati
Let

ε(θ)=
{

1 if θ = (xe ± ye′)+ t,

−1 if θ = (xe ± ye′)− t,

η(θ)=
{

1 if θ = xe + ye′ ± t,

−1 if θ = xe − ye′ ± t,

Sθα,e,e′ =
{

Cα,e,e′ if θ = xe + ye′ ± t,

Dα,e,e′ if θ = xe − ye′ ± t,

Tθ
α,e,e′ =

{
Fα,e,e′ if θ = xe + ye′ ± t,

Gα,e,e′ if θ = xe − ye′ ± t .

Let us denote by
∑

θ=a±b f (θ) the sum f (a + b) + f (a − b). More generally∑
θ=a±b±c f (θ) shall mean

∑
θ=a+b±c f (θ)+∑θ=a−b±c f (θ).

By Lemma 2 we can transform the identity (16) as follows.

Theorem 2. The kernelH has the following expression:

He,e′(t, xe, ye′)

= tc−1 + 1

8

∑
θ=xe±ye′±t

[
−2
(
c−1 − η(θ)B(2)

e,e′
)
ε(θ)

([θ ]2)

+ (c−1 + Ae,e′ − η(θ)B(1)
e,e′ − η(θ)B(2)

e,e′
)
ε(θ)sgn

([θ ]2)]
+
∑
α∈N

1

4 sin2α cosα/2

×
∑

θ=xe±ye′±t

[
Sθα,e,e′ε(θ)sgn

([θ ]2)cos

(
2lθ + 1

2
sgn[θ ]2

)
α

− sinαTθ
α,e,e′ε(θ)sgn[θ ]2 sin

(
2lθ + 1

2
sgn[θ ]2

)
α

]
.
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5. The Cauchy problem with g ≡ 0

We need a variation of the notation introduced in the previous section:

Sα,e,e′(s)=
{

Cα,e,e′ if s > 0,
Dα,e,e′ if s < 0,

Tα,e,e′ (s)=
{

Fα,e,e′ if s > 0,
Gα,e,e′ if s < 0,

and we set

k1,e,e′ = c−1 + Ae,e′ + sgn[r]2
(
B(1)
e,e′ + B(2)

e,e′
)
,

k2,e,e′ = c−1 − Ae,e′ + sgn[r]2
(
B(1)
e,e′ − B(2)

e,e′
)
.

Then

Theorem 3. If g ≡ 0 andf ∈D(∆), then the solution of the Cauchy problem(5) is

ue(t, xe)= 1

4

∑
e′∈E

c(e′)
∑

r=xe±t

{
ae,e′(r)fe′

(∣∣[r]2∣∣)+ be,e′(r)fe′
(
1− ∣∣[r]2∣∣)},

where

ae,e′(r)= k1,e,e′ + 2
∑
α∈N

(
Sα,e,e′(−[r]2)

sin2α
cos2lrα − Tα,e,e′(−[r]2)

sinα
sin 2lrα

)

and

be,e′(r)= k2,e,e′ + 2
∑
α∈N

(−Sα,e,e′([r]2)
sin2α

cos
(
2lr + sgn[r]2

)
α

+ Tα,e,e′ (−[r]2)
sinα

sin
(
2lr + sgn[r]2

)
α

)
.

Proof. Let f ∈ D(∆). By Theorem 1 and general facts about the wave equation
function v(t, x) = ∫

Γ
H(t, x, y)f (y) dy is C1 in t and its t-derivative is the solution o

problem (5) wheng ≡ 0.
In order to do the lengthy computations implied by that derivative, we writer = xe ± t

and observe that by Theorem 2,v is essentially the sum of the following integra∫ 1
0 [r±y]2f (y) dy,

∫ 1
0 sgn([r±y]2)f (y) dy,

∫ 1
0 sgn([r±y]2)cos(2lr±y+sgn([r±y]2))×

αf (y) dy and finally its companion with cos replaced by sin.
These integrals are continuous functions ofr (and hence oft). Moreover, they are deriv

able at every non-integerr. Whenr is an integer, each of the above integrals has non-e
left and rightt-derivatives. These singularities cancel out in the sum since we know
orem 1) that the solution is continuous. To understand how this happens, notice t
integral values ofx+ t or x− t some of thefe′ are evaluated at the vertices of the netwo
If the functionf vanished at the vertices, then all our integrals would be derivablet .
When that is not the case, we must recall thatf belongs to the domain of the Laplacian a
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so it satisfies continuity conditions at the vertices ofΓ . They play the major role in the can
celling out of the singularities when we sum the contributions coming from all the ed

We can therefore perform thet-derivative on each of the above integrals and
confident that no disturbance will arise in the end from the points where it does not
For example, the integral

1∫
0

sgn
([r + y]2

)
cos
(
2lr+y + sgn

([r ± y]2/2
)
αf (y)

)
dy

is equal to




∫ 1−[r]2
0 cos(2lr + 1/2)αf (y) dy − ∫ 1

1−[r]2 cos(2lr + 3/2)αf (y) dy

if [r]2 > 0,

− ∫ −[r]2
0 cos(2lr − 1/2)αf (y) dy + ∫ 1

−[r]2 cos(2lr + 1/2)αf (y) dy

if [r]2 < 0,

and itst-derivative is{−2ε(r)f (1− [r]2)cos(2lr + 1)α cosα/2 if [r]2 > 0,
2ε(r)f (−[r]2)cos2lrα cosα/2 if [r]2 < 0,

performing similar calculations on the other integrals and collecting all the terms we o
the formula foru whenxe± t is not an integer. The formula is then true without restricti
(but with our convention about values at the vertices) becauseu is a priori known to be
continuous. It might be worth mentioning that the derivative oft/c

∫
Γ
f (y) dy cancels out

with part of the derivatives of the first couple of the integrals above.✷
Notice that whenx is a vertex (withxe = 0 for definiteness),r = ±t and observing tha

l(−r) = −lr and[−r]2 = −[r]2 whenr is not an odd integer, the formula becomes

ue(t,0)= 1

2

∑
e′∈E

c(e′)
{[

1

c
+ Ae,e′ +

∑
α∈N

(
Cα,e,e′ + Dα,e,e′

sin2α
cos2ltα

+ sgn[t]2 Fα,e,e′ − Gα,e,e′

sinα
sin2ltα

)]
fe′
(∣∣[t]2∣∣)

+
[

1

c
− Ae,e′ −

∑
α∈N

(
Cα,e,e′ + Dα,e,e′

sin2α
cos
(
2lt + sgn[t]2

)
α

− sgn[t]2 Fα,e,e′ − Gα,e,e′

sinα
sin
(
2lt + sgn[t]2

)
α

)]
fe′
(
1− ∣∣[t]2∣∣)

}
. (19)

A similar formula gives the solution at the vertices whose coordinates arexe = 1.
At the vertexx we can also compute the solution of the problem (5) withf ≡ 0

obtaining
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∫
Γ

g(y) dy + λ1(t)

|[t ]2|∫
0

ge′(y) dy + λ2(t)

1−|[t ]2|∫
0

ge′(y) dy

+ λ3(t)

1∫
0

ge′(y) dy,

where theλi depend on the network through our structure matrices and ont through the
quantity 2lt and sign of[t]2 only. We omit the rather complicated formulae.

Of course, knowing the initial datumfe and the solution in the vertices ast varies we
can recover the solution on the edgee.

From the spectral formula (14) we can easily deduce the following

Proposition 3. If all the α ∈N are rational multiples ofπ , then the solutionu(t, x) of the
Cauchy problem(5) is a time-periodic function whose period is an integer. If at least
of theα ∈ N is not a rational multiple ofπ , then there are dataf for which the solution
of the Cauchy problem(5) with g ≡ 0 is not periodic in time.

Proof. If {φk} is an orthonormal basis of eigenvectors of∆ and {−λk} are the
corresponding eigenvalues, formula (14) can be written as

u(t)=
∑
k

cos
(
t
√−λk

)
(f,φk)φk +

∑
k

sin(t
√−λk)√−λk

(g,φk)φk. (20)

If all α ∈N are rational multiples ofπ then all the
√−λk are multiple of the same ration

fraction ofπ and thereforeu is time-periodic with integer period.
If α ∈ N is not a rational multiple ofπ let φ one of the eigenfunctions associated to

and let−λ2 the corresponding eigenvalue. Consider the solutionu of the Cauchy problem
with g = 0 andf = φ +ψ whereψ is one of the eigenfunctions with eigenvalue−µ2 of
the form−k2π . Then

u(t)= costλφ + costµψ.

Sinceφ andψ are linearly independent,u(t +T )= u(t) implies that cos(t +T )λ= costλ
and cos(t + T )µ= costµ which is impossible becauseλ/µ is irrational. ✷

We close this section by observing that, since the well known formula

e−tx2 = 1√
4πt

∞∫
−∞

e−s2/(4t ) cos(sx) ds

has the following operatorial counterpart:

et∆ = 1√
4πt

∞∫
−∞

e−s2/(4t ) cos
(
s
√−∆

)
ds,

we can use Theorem 3 to solve the Cauchy problem for the heat equation
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∂U
∂t

=∆U, t > 0,

u(0, ·)= f (·).
(5′)

In fact, if u(t, x) solves the Cauchy problem (5) withg ≡ 0, then

U(t, x)= et∆(f )(x)= 1√
4πt

∞∫
−∞

e−s2/(4t )u(s, x) ds

is the solution of problem(20). Using the formula foru given by Theorem 3, the fact th
the functionsfe are defined to be zero outside the interval[0,1], the fact that the kernel i
the integral is even ins, and careful changes of variables and computations, we obta
following formula:

U(t, x)= 1

2

∑
e′∈E

c(e′)√
4πt

{ 1∫
0

fe′(s)
∞∑
n=0

(
A+
n (e, e

′)e−(n+s+xe)
2/(4t )

+A−
n (e, e

′)e−(n−s−xe)
2/(4t ) +B+

n (e, e
′)e−(n+s−xe)

2/(4t )

+B−
n (e, e

′)e−(n−s+xe)
2/(4t ))ds

}
,

where the coefficientsA±
n (e, e

′) andB±
n (e, e

′) depend only on the structure of the netwo
through our structure matrices.

Implicit in the above formula is the heat kernel on the networkΓ . Notice that the quan
tity n+s+xe can be interpreted as the length of a path inΓ connecting the pointx ∈ e with
the points ∈ e′ by joining the 0-vertex ofe to the 0-vertex ofe′ with a chain of oriented
edgese1, . . . , en such that the initial vertex ofe1 and the terminal vertex ofen coincide
with the 0-vertices ofe ande′, respectively, and the terminal vertex ofek coincide with the
initial term of ek+1 for k = 1, . . . , n− 1, travelling back and forth being allowed. Simil
interpretation are valid forn + s − xe, n − s + xe andn − s − xe where the connectio
is established between the 0-vertex and the 1-vertex or the two 1-vertices of the ee
ande′. With this in mind, it is possible to compare our formula for the heat kernel with
one obtained by Roth in [19]. In Roth’s paper all thec(e) are 1, but he considers edges
arbitrary finite lengthsl1, . . . , ln. His representation for the heat kernelh(t, x, y) in terms
of transmission coefficients and paths joining the two pointsx andy is more intuitive than
ours and seems to have more physical and geometrical flavour. On the other hand,
efficients seem easier to compute than his. But the comparison between the two fo
(obviously when the lengths and the weights of the edges are all 1) can probably l
many interesting relations of a combinatorial nature connecting path related quantitie
spectrum related ones as in Roth’s theorem 1 in [19] (trace of the heat kernel). We w
however pursue these investigations in this paper.
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6. Two examples

6.1. The cross shaped network

Let Γ be the network consisting of four edges branching out from a common v
with unitary weights. A similar example can be found in [2] although Dirichlet condit
replace there our Neumann conditions at the four dead ends. At the fifth verte
common one, in both examples the Kirchhoff condition is required.

We denote by 1, 2, 3, 4 the four edges and we orient them in such a way th
common vertex become 0 in our standard identification with the interval[0,1]. We name
the remaining four vertices of the graph after the edges to which they belong.

In this case the eigenvalues are 0 (with multiplicity 1),(−k2π2), for anyk ∈ N (with
multiplicity 1) and((2k − 1)π ± π/2)2 (with multiplicity 3).

The constant functionw0 ≡ 1/2 and the functionswk,1 whose restrictions to the edg
j are

√
2/2 coskπxj , provide an orthonormal basis for the direct sum of the eigensp

associated to the eigenvalues with the multiplicity 1.
To construct the eigenfunctions corresponding to the eigenvalues with multiplic

we need an orthonormal basis (inl2(V )) for the kernel of the matrix

P =




0 1/4 1/4 1/4 1/4
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


 ,

for instance, the vectors

Z1 =
√

2

2




0
1

−1
0
0


 , Z2 =

√
2

2




0
0
0
1

−1


 , Z3 = 1

2




0
1
1

−1
−1


 .

Then, according to the general construction, we compute

z1(0)= z2(0)= z3(0)=



0
0
0
0




and

z1(1)=
√

2

2




1
−1
0


 , z2(1)=

√
2

2




0
0
1


 , z3(1)= 1

2




1
1

−1


 .
0 −1 −1
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Finally we have that the matricesB(1), B(2), Fα andGα are the null matrix,A is the matrix
whose entries are all equal to 1/4, Dα = −Cα and

Cα = 1

4




−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3


 .

We can therefore write the components of the kernelH as follows (note that in this cas
we have cos(2lθ + sgn([θ ]2)/2)α = (−1)lθ /

√
2 )

Hi,i (t, xi, yi)= t

4
− 1

16

∑
θ=xi±yi±t

ε(θ)[θ ]2

+ 1

16

∑
θ=xi−yi±t

(
1+ 3(−1)lθ

)
ε(θ)sgn

([θ ]2)

+ 1

16

∑
θ=xi+yi±t

(
1− 3(−1)lθ

)
ε(θ)sgn

([θ ]2),
Hi,j (t, xi, yj )= t

4
− 1

16

∑
θ=xi±yi±t

ε(θ)[θ ]2

+ 1

16

∑
θ=xi−yi±t

(
1− (−1)lθ

)
ε(θ)sgn

([θ ]2)

+ 1

16

∑
θ=xi+yi±t

(
1+ (−1)lθ

)
ε(θ)sgn

([θ ]2).
To write the solution of the Cauchy problem withg ≡ 0 we calculatek1ij = 1/2 and

k2ij = 0, for i, j = 1,2,3,4. Then we findaii = 1/2+(3/2)(−1)lrsgn([r]2) and, forj �= i,
aij = 1/2− (1/2)(−1)lrsgn([r]2).

Finally

ui(t, xi)= 1

4

∑
r=xi±t

(
1

2
+ 3

2
(−1)lrsgn

([r]2)
)
fi
(∣∣[r]2∣∣).

+ 1

4

∑
j �=i

∑
r=xj±t

(
1

2
− 1

2
(−1)lrsgn

([r]2)
)
fj
(∣∣[r]2∣∣).

Notice that the solution is periodic int with period 4.

6.2. The complete network withn+ 1 vertices

The complete graph withn + 1 vertices hasn(n + 1)/2 edges and constant degr
equal ton at every vertex. We define complete the networkΓ associated to the comple
graph. We concentrate on the simplest case where all the weights are equal to 1. Ac
to the general discussion in Section 3, the spectrum ofΓ consists of the eigenvalues
(−k2π2) (with multiplicities (n2 − n+ 2(−1)k)/2) and finally−((2k − 1)π ± α)2 (with
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multiplicity n) whereα = arccos1/n and−1/n is the only eigenvalue of the matrixP in
(−1,1).

For all the complete networks the matrixA vanishes identically whereas the matric
B(1), B(2), Cα , Dα , Fα andGα must be computed time by time asn varies. Things simplify
dramatically if we concentrate our attention on the solution at a fixed vertexv. In this case,
the symmetry of the structure allows us to writeu(t, v) explicitly in terms of the initial data
f andn for anyn (we are assuming that the weightsci = 1 for all i). Of course, since al
vertices in the complete network are equivalent, we actually have the solution explic
all the vertices (it is just a matter of permutations of the components of the initial daf )
and from that we could, if needed, reconstruct the solution on any specific edge sim
solving an initial value problem on the unit interval with prescribed values at the edg

Theorem 4. LetΓ be a complete network withn+1 vertices and all the weights equal to1.
For definiteness, assumev is the initial vertex for all the edges inEv . Then the solution o
the Cauchy problem with dataf = (fe)e∈E andg ≡ 0 in v is given by

u(t, v)= − 2
√

2sgn([t]2)
(n+ 1)

√
n(n− 1)

sinlt α cos
2lt + sgn([t]2)

2
α

×
∑
e/∈Ev

(
fe
(∣∣[t]2∣∣)+ fe

(
1− ∣∣[t]2∣∣))

+ 1

n+ 1

∑
e∈Ev

((
1

n
+ cos2ltα

)
fe
(∣∣[t]2∣∣)

+
(

1

n
− cos

(
2lt + sgn

([t]2))α
)
fe
(
1− ∣∣[t]2∣∣)

)
.

We remark that ifv were the terminal vertex for some of the edgese in Ev the
only needed modification would be the interchanging of the correspondingfe([t]2) with
fe(1− [t]2) in the above formulae.

Proof. Oncev is fixed, the edges of our complete network fall in the two disjoint cla
Ev andE \ Ev , and by the symmetry of the structure the members of each of them
interchangeable as far as their influence onv is concerned. Iff ∈ D(∆) has support on
the edgee /∈ Ev , then by the finite propagation property of the solution we see tha
t ∈ (0,1), u(t, v)= 0 and therefore formula (19) implies

0 = 1

2

[
2

n(n+ 1)
+ n2

n2 − 1
(Dα,e,e′ + Cα,e,e′)

]
fe′ (t)

+ 1

2

[
2

n(n+ 1)
− n2

n2 − 1
(Dα,e,e′ + Cα,e,e′)

1

n
+ Fα,e,e′ − Gα,e,e′

]
fe′ (1− t).

Sincefe′ is arbitrary, we have that

2 + n2

2 (Dα,e,e′ + Cα,e,e′)= 0,

n(n+ 1) n − 1
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2

n(n+ 1)
− n

n2 − 1
(Dα,e,e′ + Cα,e,e′)+ Fα,e,e′ − Gα,e,e′ = 0,

and thusDα,e,e′ + Cα,e,e′ = −2(n− 1)/n3 andFα,e,e′ − Gα,e,e′ = −2/n2. Plugging these
values of the constants in formula (19) we have the claim forf supported on an edge n
belonging toEv .

If f has support on an edgee ∈ Ev , the finite propagation argument is not enough
determineDα,e,e + Cα,e,e and Fα,e,e − Gα,e,e, but sincev is the initial vertex ofe, for
t ∈ (0,1), v cannot be influenced by the wave travelling toward the terminal edgee.
Therefore the coefficient offe(1− t) in (19) must vanish, and thus we get

2

n(n+ 1)
− n

n2 − 1
(Dα,e,e + Cα,e,e)+ Fα,e,e − Gα,e,e = 0.

By the definition ofCα andDα and the choice ofv as initial vertex, we have that

Dα,e,e + Cα,e,e = (1− cos2α)
n∑

j=1

z2
α,j,e(0)= 2(n2 − 1)

n2

n∑
j=1

Z2
α,j (v).

Since the vectorsZα,j , j = 1, . . . , n, complemented by the vector whose components
all equal to 1/

√
n(n+ 1) form an orthonormal basis ofl2(V , c), elementary facts abou

orthogonal matrices imply that
∑n

j=1Z
2
α,j = 1/(n + 1) and thereforeDα,e,e + Cα,e,e =

2(n− 1)/n2, whenceFα,e,e − Gα,e,e = 0.
Having found the structural constants, the theorem follows at once.✷

Lemma 3. If n� 3 then the angleα ∈ (0,π/2) defined bycosα = 1/n cannot be a rationa
multiple ofπ .

Proof. If α were a rational multiple ofπ , the complex numberzα = cosα + i sinα would
be aN th root of unity for some natural numberN and therefore the quadratic polynomi

(z− zα)(z− z̄α)= z2 − 2

n
z+ 1

would be a factor ofZN − 1. Since all monic factors with rational coefficients of a mo
polynomial with integer coefficients must have integer coefficients, the above qua
polynomial can divideZN − 1 only if n= 1 or 2. ✷

The above lemma and Proposition 3 imply that on a complete network with at
four vertices we have both time-periodic and non-periodic solutions. It is enough to c
as initial datag = 0 andf equal to an eigenfunction of one the eigenvalues of the f
−k2π2 to obtain periodicity while thef described in the proof of Proposition 3 produ
non-periodic solutions.

However, we can also show that, on a complete network, no wave originated
initial datumf having support concentrated on a single edge can be time-periodic.

Proposition 4. LetΓ be a complete network withn+ 1 vertices and all the weights equ
to 1. If g ≡ 0 andf �≡ 0 is supported on a single edge, then the solutionu of the Cauchy
problem(5) cannot be periodic in time.
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Proof. If f is supported one, consider the solutionu(t, v) evaluated at a verte
v /∈ e. Suppose firstfe(s) + fe(1 − s) �≡ 0. If u were time-periodic with periodT then
u(t + kT , v) = 0 for any naturalk and anyt ∈ (0,1). By Theorem 4 this would imply
fe(|[t+kT ]2|)+fe(1−|[t+kT ]2|)= 0 for all k �= 0 such thatt+kT is not an odd intege
since the factors sinltα and cos((2lt ± 1)/2)α cannot vanish forlt > 0 (by Lemma 3α is
not a rational multiple ofπ ). Now, T cannot be rational, otherwise by choosingk so that
kT is an even integer, we would getfe(t) + fe(1 − t) = 0 for all t ∈ (0,1) against our
assumption. IfT were not rational, than|[kT ]2| would be dense in(0,1) ask varies inN.
As a result, the continuous functionfe(s) + fe(1 − s) would be 0 on a dense subset
(0,1) and thus everywhere against our assumptions.

In the remaining case, i.e.,f (s)= −f (1− s) for all s ∈ [0,1], we evaluate the solutio
at the initial vertexv of e. Theorem 4 and our assumption lead to

u(t,0)= 2

n+ 1
cos

α

2
cos

4lt + 1

2
αfe
([t]2)

when[t]2 ∈ (0,1). Reasoning as above we obtain that the solution is periodic only w
f ≡ 0. ✷
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