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Abstract

We find a d’Alembert type formula for the solution of the Cauchy problem for the wave equation
on finite weighted networks. We also discuss the periodicity in time of the solution in terms of the
spectrum of the discrete graph associated with the network and finally we present two significant
examples to illustrate and clarify the general analysis.
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1. Introduction

Consider a grapt” with its set of verticesV and its set of edgeg. If every edge
e € E is seen as a homeomorphic copy of the intef@ll], and obvious identifications
between endpoints of different edges are made in order to account for the vertiCes of
the graphl” becomes a topological space (in fact a one-dimensional CW complex) that
is called a one-dimensional network according to several authors who have developed the
analysis on these structures and studied PDEs on them (see, e.g., [1-3,5,7,10,12-16,19]).
The name is reminiscent of modeling and applications in electrical engineering, but a
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famous example comes from biology, namely the Rall-Rinzel model for the neuron (see
[17,18]). Applications to hydraulic networks (sewers for instance) are also in order.

Even though a network is not a manifold (because of the vertices), the homeomorphisms
between the edges and the interM@l1] provide a differentiable structure on most Bf
Suitable conditions on the functions at the vertices (the Kirchhoff conditions in our case)
will play the role of the differentiability, a notion that in the vertices has no obvious natural
meaning. A fairly large amount of the standard existence and uniqueness theorems for
PDEs were proven in this context (see, for instance, the book [2] and references therein).

Spectral theory for 1-dimensional finite (i.e., with a finite number of vertices and edges)
networks and its connection with spectral theory for finite discrete graphs were developed
by Nicaise [12,13] and partially extended to infinite networks by Cattaneo [4].

The aim of this paper is to exploit the relationship between the spectrum of the Laplacian
on the networkl™ and the spectrum of the discrete Laplacian on the verticé&siaforder
to solve the Cauchy problem for the wave equation on finite connected weighted networks.
We look for an extension to these structures of the classical d’Alembert formula for the
wave equation on the real line

1 1x+t
u(t,x)=—= X X — = g\s)as,
(t,x) 2(f( +1)+ f( t))+2/ (s)d

xX—t

where f andg are the prescribed initial value datéD, x) and(du/0¢)(0, x), respectively.

The previous formula also solves the Cauchy problem for the wave equation on the
interval [0, 1] with homogeneous Neumann condition at 0 and 1 if we extémadg as
even functions offi—1, 1] and then further extend them Bbas 2-periodic functions.

On a general network, the formula cannot be so simple. The even and 2-periodic
extensions described above do not help anymore. We need a different setting and different
conventions. D’Alembert formula for a network must have the form

u(r,x>=/K(x,y,r)ﬂy)dy+/H<x,y,r>g<y)dy, )
I I

where x and y are points ofl", f, ¢ and u are functions on” andK andH are
“distributions” on I x I" or, to be more precise, elements in the dual of the space of
the continuous functions ofi x I" (thus avoiding the problem of developing a full theory
of distributions on a topological space lacking the differentiable structure of manifold).
Notice then that a functiom on I" can be identified with a collectiofu.).cr of functions

on [0, 1], one for each edge af. K andH are thus matrices whosge; entry should
account for the influence (in general varying with the tim¢hat the perturbation on the
edgee; has on the edge .

Clearly, from this point of view, the formulae that we expect are rather complicated,
involving a large number of terms as soon as the graph has enough edges. Ways to reduce
the complexity are however available. For instance, it is possible to compute the solution
at the vertices only. If it is needed on a particular eddeo, it would be enough to solve
an initial value problem on thi, 1] interval with prescribed values at the end points.

Other efficient solving techniques for the Cauchy problem are available. For example,
it is possible to solve the problem on each edge with free Dirichlet boundary conditions
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and then glue the solutions at the vertices. This process leads to a linear algebra problem
that can easily be dealt with by a computer (see, e.g., [8,9]). Nevertheless, our formula
has its fine points. First of all, it is a global formula and therefore it makes easier to see
the connections between properties of the network and properties of the solution of the
wave equation. For instance, we can derive information about the periodicity in time of
the solution from the spectrum of the network. Some sort of diagnostic on the network
seems also possible. By this we refer to the problem of determining structural elements
of the network (for example, the values of some of the weighty, the degrees of some
vertices, the total number of vertices or edges, or information about the spectrum) from
the knowledge of the solution of the Cauchy problem restricted to a single edge or vertex.
We are not however pursuing this analysis in the present paper. Similarly, we only mention
that interesting development can probably be derived from the solution of the heat equation
that we obtain as a consequence of our work on the wave equation.

In the next two sections we introduce our notation and collect the basic facts about
networks, functions and Laplacian on them. In particular in Section 3 we reproduce
Nicaise’s description of the spectrum df [13]. In Section 4 we reduce the problem to
the determination of the kernkl. The main tool is the Fourier expansion with respect to
an orthonormal basis of eigenfunctionssfon I". The geometric structural properties of
I' play theirimportant role through the matricksB®, B®, C,, Dy, Fo, Ge. In Section 5
we solve the Cauchy problem (5) wigh= 0 by differentiating with respect to the time the
function [~ H(z, x, y) f(y) dy (Theorem 3). In Section 6 we illustrate the general theory
by describing two examples, the most remarkable of which is the complete network with
n + 1 vertices.

2. Notation and preliminaries

Let I" = (V, E) be afinite, connected graph with no self-loops= {v1, ..., vjv|} and
E ={ey1, ..., e g} are the set of the vertices and the set of the edges, respectively. For every
vertexv in V, we denote byi, the degree of, and byE, the set of the edges branching
out fromu (note thatt, hasd, elements). We say that two verticeandv’ are neighbours
and writev ~ v’ if there exists an edgein E such that = (v, v’). A circuit of lengthn
is a connected subgraph bfwith n distinct vertices, each of degree 2. We identify every
edgee of I with the real interval0, 1]. In this way we associatE with a one-dimensional
CW complex (see, e.g., [11]). Note thatis a metric space in a natural way.
For every vertex in V and for every edge in E, we set

0 if visidentified with Q )
1 if visidentified with 1

We assign a positive weiglaie) to every edge: of I'. For every vertex of I, c¢(v)
denotes the sum of the weights of all the edges branching outdrand 2 is their sum,
ie.,

i(v,e):{

c(v) = Z c(e) and c= Zc(e) = % Zc(v). )

eckE, ecE veV
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We will refer to I with the above structure as the one-dimensional weighted network
with the same name.
Let/2(V, c) be the space of all the complex valued functiong/owith inner product

U W)z o= c)U®WQ).

veV

For allv, v" distinct in V, we call transition probability from to v’ the following quantity

P, v) = { Secrinr, S8 i E,NEy #0, @
0 otherwise

and we set

c(e) - )
6(1)’ U/) — { ZEEEUQEU/ /() if EyN .Ev # @,
0 otherwise

Forv =1/, we setp(v,v') =¢(v,v) =0.

Proposition 1. The matricesP = (p(v, v'))y ey and C = (¢(v,v"))y ey have the
same eigenvalues and f (respectively,U) is an eigenvector of? (respectively,C)
corresponding ta. then

U®) = U@)/e().

We omit the easy proof.

SinceC is symmetric all the eigenvalues &f are real. Notice that the operatbr P
is the standard discrete Laplacian@n ¢) (see, e.g., [6]).

In this paper we consistently denote.byndy points varying on’”". Eachx determines
uniquely the edge to which it belongs, unlessis a vertex. Ifx is not a vertex, by, we
denote the number in the inter@, 1] corresponding ta € ¢ under our identification of
the edger with [0, 1]. If x is a vertexx, is not well defined in general since it can well be
the initial point for some of the edges k. and the terminal point for some other of those
edges. However, in our formulae any vertex always appears as the initial or the terminal
point of a specific edge. In this casex, has the obvious meaning.

We identify any function: on I" with a family of functions(u.).cr €ach defined on
a single edge of I' and therefore, by our identification, 4, 1], in such a way that
u(x) =u.(x.). We use the same notatiap to denote both the function on the edgand
the function on the real intervé, 1] identified withe.

The functionu = (u.).cg is continuous on” if and only if u, is continuous ono0, 1]
for everye in E, andu.(i(v, ¢)) = u.(i(v, ")) for all the edges, ¢’ in E, and for allv
in V. So we can associate with every continuous funation I" a functionU well defined
onV by

U@) =uc(i(v,e)),

wheree is any one of the edges if,.
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Integration onl” is performed edge by edge. Namely

1
f u(x)dx =7 () / e (xe) dxe,
0

r ecE

wheredx, denotes the Lebesgue measure on the int¢évdl].

We define the spacEZ(F, ¢) as the space of all the functions= (u.).cg on I" such
thatu, € L2(0, 1) for everye in E.

Analogously, for every integer > 0, we define the Sobolev spaég” (I, ¢) as the
space of all the functions= (u.).cg OnI" such thau is continuous o™, u, € H™(0, 1)
for everye in E.

The above spaces are Hilbert spaces with inner products

W W) 200 = Y €(€)(ttes We) 120 1)-
ecE
(U, w)gm(r,c)y = Zc(e)(ue, We) HM (0,1)-
ecE
Notice thatu € H™ (I, ¢) is a continuous function ol for everym > 1 but continuity at
the vertices for the derivativ€ = (u}).c£ is not assured.
Consider the sesquilinear continuous fapron H(I", ¢) defined by

o, w) = ', w/)LZ(r,c)
and letA be its associated Laplacian.
It is easy to verify thatA is a linear, unbounded, self-adjoint, dissipative operator on
LT, ¢).
Its domain is the subset #12(I", ¢) of the functions satisfying the following Kirchhoff
type condition

Z c(e)
eckE,

where(du./on.)(i(v, e)) denotes the normal exterior derivative of the functigrat the
endpointi (v, ¢) of the intervall0, 1], i.e.,

e . ) —u,(0y) ifi(v,e) =0,
(i, 0) = {u;(l_) it i(v, ¢) =1

e

u
one

(i(v.e)) =0 ateveryinV,

(see, e.g., [13]).
Notice that(Au), = u) for everye in E and for everyu in D(A). Moreover, if
u, v € D(A), the Kirchhoff condition implies thaf vAu = [ uAv.
The Cauchy problem for the wave equation

2
U — Au, t>0,

a2
u(0,-) = (), ()
du(0,)=g()

is an example of second-order evolution problem. It can be transformed into a first-order
system by defining the vecta@r (s, x) = (u(t, x), (du/dt)(¢, x)). When the initial dataf
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andg belong toD(A) and HY(I", ¢), respectively, the theory of semigroups and the Hille—
Yosida—Phillips theorem can be used to prove existence, uniqueness and regularity for the
solution. In particular the vectdy turns out to be a continuous function roith values

in D(A) x HY(I", ¢). We collect all these results in the following theorem, referring to the
book [2] for the proof.

Theorem 1. The Cauchy probler(b) with data f andg in D(A) and H1, respectively, has
a unique solution:(z, x) such that the vectot/ = (u, du/dt), as a function of, belongs
to

CH([0, 00), HX(I, ¢) x L3(I, ¢)) N CO([0, 00), D(A) x HX(I', ¢));

moreovery € HY([0, T] x I') for arbitrary 7 > 0 andu(z, -) € H2(I", ¢) forall ¢ > 0.

Notice thatu (-, x) and(du/a1)(-, x) are continuous functions for aflin I".

We conclude this section by observing that the finite propagation property for waves
holds on networks. Indeed it holds on each single edge afiéifdg are concentrated on
an edgez, the solution, on any other edgeis 0 until one of the vertices &f is influenced
by the perturbation originated an

3. The spectrum of the Laplacian A

SinceA is a self-adjoint non-positive operator on the Hilbert spa®@’, ¢), there exists
an orthonormal basis af?(I", ¢) composed of eigenfunctions af. For finite networks
such a basis has been described by Nicaise (see [13]). In this section we recall the main
facts about the spectral decompositiondobmitting most of the proofs.

(1) For any network @& o (A) with multiplicity 1 and the constanbg = ¢~1/2 (wherec
is defined in (3)) as eigenfunction.
(2) The numbers-k%x?, k € N, belong too (A) with multiplicity

_JIEI=V]+2 if I has no odd circuits
k= |E| —|V|4+ 1+ (=1)* if I" has at least one odd circuit

To obtain a basis for the eigenspacé-ek272) we consider théV | x | E| matrix A%)
whose elements are

A _ | (D@06 De(e) if e E,,
R ) otherwise

and we choose an orthonormal ba{m’g‘)} of Ker(A®) with respect to the norm

> el = [[(ee)eck |-

ecE

Our notation can be misleading here. Notice that we are actually dealing with two
matrices. One fok even and one for odd. Wherk is even the dimension of K&k %))



C. Cattaneo, L. Fontana / J. Math. Anal. Appl. 284 (2003) 403-424 409

is given bym = |E| — |V| + 1, while if k is odd then it isn — 1 if I" has at least an
odd circuit andn if I has no odd circuits.

A basis for the eigenspace 6£k272) is then constructed in the following way.

If k is odd andl" has at least one odd circuit we choose the functions

W j.o(xe) = v20) sinkmx, forj=1,....m—1 (6)

as our orthonormal basis.
If k£ is odd andI" has no odd circuits the set of the functions given in (6) must be
completed by

2
wk,m+1,e(xe) = \/gae COSsk xe, (7)
wherea, is equal to 1 o1 according to the condition
(-1)!"9q, = (=1, foralle,e in E, and allvin V

(i(v, e) defined in (2)).
Finally if k is even we must complete the set (6) with the function

Wi, m+1,e(Xe) = \/ECOS](TL’X@. (7
(3) The remaining part af (4) is the set
{1 <0: cosvr e (0(P)N (-1 D)} (8)

The multiplicity m; of the eigenvalue(—1) is equal to the multiplicity of the
eigenvalue co¢/A of P. We write eachx asi = ((2k — 1)7 + «)2, wherek € N
anda belongs to the set
N={0<a<m: (—cosw) ec(P)}. (9)
The orthonormal basis for the corresponding eigenspace is described by the following.

Proposition 2. Let{Z, ;(v)}1<<m, D€ anorthonormal basis if(V, ¢) of the eigenspace
of the eigenvalué— cosx) of P. For every edge = (v, v’) define
Za,je(0) = Za j(0) (1= i(v, €)) + Za j (W) (1 =iV, ¢)), (10)
Zaje(D) = Zo j(0)i(v, €) + Zo j(V)i(V, e), (11)

i.e., Zo.j,e(0) and zq, ;. (1) are eitherZ, ;(v) or Z, ;(v') depending on which of the
vertices is identified witB. Then the functions

V2
Sina
+ 2a .o (D) SIN((2k — 17 & a)xe> (12)

+
Zo:,k,j,e(xé’) =

(za,,,',e(O) sin((2k — D o) (1 — xe)

are an orthonormal basis il %(I", ¢) of the eigenspace for the eigenvakié2k — 1) +
«)? (by + we mean that we actually have two functions, in the first we select consistently
+ and in the second).
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Proof. It is easy to prove that the functlomsik .} are eigenfunctions of the eigenvalue
—((2k — 1) £ «)? of A. To prove that they are orthonormal (we sketch it since it is not
in [13]) it is enough to show that

+ +
(ks Zaki) L2y = Zatji Zaidi2ey.o)- (13)

We know that all the eigenvectors of the mat#xare real so we can assume that the
functionsZ,, ; are real. Equation (13) follows from straightforward calculations using

D c(€) (zarje 2o (0) + 2a je(Dzaie(D) = Y c(v) Ze,j () Zari (V)

ecE veV

and

Z c(e) (Zo:,j,e(o)za,i,e(l) + Za,j,e(l)za,i,e(o))

ecE

= W) Zaj0)(P(Zo.) () = —COS Y c(v)Z (V) Zari(v). O

veV veV

Let &, zq,;(0), z«,j (1) be the|E|-vectors with entries, zq,;,.(0), za, (1), respec-
tively. Recall that in formula (6) thb(k) were the entries of the vectdng‘

4. The solution of the Cauchy problem with f =0

Our aim is to determine as explicitly as possible the solution of the Cauchy prgbjem
where f belongs to the domain of the Laplacian antlelongs toH (I, ¢).
From the point of view of spectral theory this amount to find the two operators

cost(+/—A) and sint (vV—A)/+/—A, so that

u(t,x) = cost(V=2) (/) ) + S'”iﬁ__v V=D ). (14)
Since
cost(/=4)(/)() = - =2 ()

we begin by determining the solution of (5) with=0
The eigenfunctions ofA that we have described in the previous section are an
orthonormal basis of.2(I", ¢). Thus we have

Lemma 1. The solutionu(z, x) of the Cauchy problen) with f = 0 has the following
expansion relative to our orthonormal basisi(I", ¢):

u(t, x)—ao(g)fWO(x)+ZZ = l(g)

k>1j=1

sinkmtwy, j(x)
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bak,j(8)
+ZZZ[(% 1§ — Si(@k = D + @)tz ()

aeNk>1j=1

Cok, i(g) . _
m S|n((2k — 1)7'[ — Ol)tza!k’j(x)i|,
where
ar.; (h) ::/hwk,j, bak.j(h) :=/hz;ik)]
r r
and

Cok.j(h) ::/hz;k,j.

r

As a consequence of Lemma 1 we have that the operat@kAit) //— A is an integral
operatorg(x) — [~ H(z, x, y)g(y) dy whose kernel is

He,e/ (t, Xe, yer) = twO,e(xe)wo,e/ (Ver)

SiNkmt <
+Z ot Zwk,j,e(xe)wk,j,e’ (y;)

k>1 =1
m .
- Sin((2k — D + o)t
+ 2 ZZ[ZUH, DT G0
aeNk>1j=1- e 2k -1+«
- - Sin((2k — Dy — )t
T 20k, jieKe)Zg g o (Ve) Pra — } (15)

The sums of the series in (15) (that converge both pointwise a.e. ah@(if)) can be
computed explicitly and to write them we introduce the followidg x |E| “structure”
matrices for the network™ (all the vectors are column vectors whose entries are indexed

after the edges, and’ denotes the row vector transposedagfnotice thataa’ is a
|E| x |E| matrix):

A— { ¢ laal if k odd andrI" has no odd circuits

0 if k odd andl” has an odd circuit
mok—1
@ _ (2k—1),.(2k—1)T
B® =Y b* b’ ,
Jj=1
mak
2 _ (2k) | (2k)T
B@ =3 "b™bi™",
j=1
My
Co = Z( Zaj 00z ;(0)cOS2x — 74 (D)2 (1)
j=1

~ (20028 ;) + 20, (D2 (0) cos(x),
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Dy = mz(z JOzL (0) + 20, (V2L (D)
j=1
+ (20,7 (0)z] (D) + 24.; (D2, ;(0) c05a),
F, = %(Zza,j (O)zg)j(O) COSx + Zq, j (0)z§,j(1) + za,j(l)zg,j(o))
j=1
Gy = mza(—za,j(o)zg,j(l) + 20, (D2 ;(0)),
j=1
wherec, a, b®, z, ;(0) andz,, ; (1) were defined in Section 3.
Then, by using the orthonormality (ib?(I", ¢)) described in the previous section, we

have
wO,e(xe)u)O,e’ (ye) = C_17
mag—1
Y wak-1je(r)wai-1,j,¢ (ve) = 2A, o OS2k — L) xe COL2k — L7y,
Jj=1
+ 2B, sin2k — D, sin2k — Hye,
mak
Z ka,j,e(xe)u)Zk,j,e/ (Yer)
j=1
= 2c"cos kmx, c0s &y, + 2B, sin 2k x, sin %ny,,
My
n L cog(2k — D) £ a)(x, + yer)
;Za,k,j,e(xe)za,k,j,e’ ye) = Ca,e,e’ sinZa
coS(2k — ) £ a)(xe — yer)

*+Doee sifa

F /sin((2k — D £ a)(xe + yer)
wee Sin((2k — ) £ @)

e /sin((2k — D +a)(xe — yer)
@.e.e sin((2k — ) £ @)

’

where by+ we mean that we actually have two formulae. In the first we select consistently

+ and in the seconé-.
From Lemma 1 we obtain

He e/(ts Xe, Ye’)

sin 2km
+2 Z c Lcos Zmx,cos Ly, + B(z), sin 2k x, Sin 2k yo )

=1
sin(2k — Dt
( )7 (Ac,er COS2k — 1) x, COS2k — D)7y,

*2) oD (2k — Dm

k=1
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+ B(e,lZ’ sin(2k — 1) x, Sin(2k — 1)7T)’e/)
sin((2k — D £ o)t
+2. 2

aeniz1 (k- DmEa
< cos((2k — 1)ir & ) (xe + Yer)
X | Cye.er -
sifa
co9(2k — D £+ — Ve
D, SR DT ey
sifa
sin((2k — D £ ) (xe + vor)
+ Fa,e,e/ [
SINa
sin((2k — Dm £ o)(x, — yor
+ Ga,e,e/ (( ) T )( - Ye )) (16)
sina

The above double sigt: is to be intended as the sum of the two expressions obtained
selecting consistently the signfirst, and then the sigr-.

It is easy to see that the series fbrconverges in.2 and pointwise a.e.

By using the standard trigonometry identities we replace the products of sines and
cosines in (16) by suitable sums of sines and cosines whose arguments depend on the
quantities) = x, &+ y,» == for all four possible choices of the signs. In the next lemma we
evaluate the trigonometric series in the variablésat appear at this point in the expression
for H. We introduce the following notation: i is not an odd integer then there is a unique
decomposition

y=2y+[yl2 (17)

with I, integer andyl> € (—1,1). As y approaches an odd integer from the left or from
the right, we have well defined left or right limits fér and[y]..

Lemma 2. Leta € (0, ). The following equalities hold ii? and pointwisgprovideds
is not an integer.

inZkmé 1
@ Y METT_ 7 (s9n1612) — 21612).

i>1 2k
sin(2k — Hzo 1
(b) Z ————— = >sgn([0]2).
& @-Dr 4
sin((2k — D + )0  sin((2k — ) — )6
© Z( )
i>1 2k—Dr+a 2k -1V —«
_ sgrifl2cod2ly + 35grif]2)a
B 2cosx/2 ’
—cod(2k — D)7 +a)  cos(2k — 1) — )
@ k2>;L< 2k -1+« 2k —-1rm —« )

_ sgrifl2sin(2l + 35gr6]2)a
B 2 cosw/2 ’
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Proof. The left-hand sides of (a) and (b) are just the Fourier series of the 2-periodic
functions on the right-hand sides. To prove (c) and (d) recall that farx0< 27 and
B ¢ Z the following formulae hold:

Z sin(k+,3)x=ﬂ Z cogk + B)x

. and .
Pt +8 o +8

(see, e.qg., [20, p.71]).

If we setg = —1/2+ g1 andx = 20, divide by 2r and replace 261 with « € (0, ),
after some changes in the summation indices, we obtain (c) and (d)dai0, 1). We
extend the result to6—1, 1) using the fact that sin is odd and cos even. Finally the extension
to all non-integep is easily achieved by writing as in (17). O

= cotn B (18)

To state our formula for the kernkl it is convenient to introduce some more notation.
Let

1 i =(xetye) +1,
6(9)—{ 1 if0=(xe£yr)—t,

)1 if 0 =x,+ yos £1,
’7(9)—{—1 if 0 =xp — yo £ 1,

¢  _|Cace ifO=xc+yokr,
a.eel T Da,e,e’ if 6= Xe — Ye/ + z,

10 | Faee fO=xc+ys £t,
e T | Gy If @ =x— yo tit.

Let us denote by} ,_,., f(6) the sum f(a + b) + f(a — b). More generally

> o—atbre J(@) shallmeard o 1y fO)+ D gy pao f(O).
By Lemma 2 we can transform the identity (16) as follows.

Theorem 2. The kerneH has the following expression

He,e/(taXEa )’e’)
1 _
=rc 14 3 Z [—2(6‘ 1o n(@)Bg?z/)E(Q)([G]Z)

O=x.ty, tt

+ (T Ace = (@B, —n©)BE))e@)sgr((61z) |

+y !

aEN4SiI’12aCOSa/2

1
x> [Sf[)e)e,e(é?)sgr(w]z)005(219+§Sgr[9]2>a

O=xexy, 1t

1
- sinaTZ,e,e,e(G)sgr[e]zsin(ZZg + Esgr[@]2>a]
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5. The Cauchy problem with g =0

We need a variation of the notation introduced in the previous section:

| Cueer ifs>0,
Swee(8) = { Dyee ifs <0,
 [Fuee ifs>0,
Taee(s)= { G if 5 <0,

and we set
_ 1 2
kiee =c ! +Ace + Sgr[r]z(Bi)Z/ + BE),Z’)’
_ 1 2
k2o =c l_Ae,e’ +Sgr[r]2(B£))2/ - BE))Z/).
Then

Theorem 3. If g=0and f € D(A), then the solution of the Cauchy problég) is

1
ue(t,x0) =5 3 e 3 {aue ) fe(|rl]) +beo ) fu (1= 1712]) |-

eeE r=xe=t
where
Sue.e(—=Irl2) Taeer(=[rl2) _.
eeo () =kipo+2 —————-c0sd,a — ————=sin2,
Qe o' (T) lee T+ a%\:/( -, sd,a S Si Ol)
and
bee(r)=koee +2 Z (M COS(ZZr + Sgl’[}"]z)ol
= sirf o
To:,e,e’(_[r]Z) .
T Sln(21r + ng[r]z)a) .

Proof. Let f € D(A). By Theorem 1 and general facts about the wave equation, the
functionv(z, x) = fr H(t, x,y)f(y)dy is Clin ¢ and its¢-derivative is the solution of
problem (5) wherg = 0.

In order to do the lengthy computations implied by that derivative, we writex, 4 ¢
and observe that by Theorem 2,is essentially the sum of the following integrals:
Jolr£y12f () dy, [ sanlr+y12) £ () dy, [y s9(r£y12) cos2l,1y +sgnlr+y12)) x
af (y) dy and finally its companion with cos replaced by sin.

These integrals are continuous functions ¢dnd hence of). Moreover, they are deriv-
able at every non-integer Whenr is an integer, each of the above integrals has non-equal
left and rights-derivatives. These singularities cancel out in the sum since we know (The-
orem 1) that the solution is continuous. To understand how this happens, notice that for
integral values of + ¢ or x —t some of thef,, are evaluated at the vertices of the network.

If the function f vanished at the vertices, then all our integrals would be derivable in
When that is not the case, we must recall tfiddelongs to the domain of the Laplacian and
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so it satisfies continuity conditions at the verticegofThey play the major role in the can-
celling out of the singularities when we sum the contributions coming from all the edges.

We can therefore perform thederivative on each of the above integrals and be
confident that no disturbance will arise in the end from the points where it does not exist.
For example, the integral

1

/ sgn([r + y12) o2y + sgn([r £ yl2/2)acf (v)) dy
0

is equal to

folf[r]z cos2l, + 1/2)af (y)dy — fll_[r]z cog2, + 3/2)af (y)dy
if [r]2 > O,

— Jo " o2l — 1/2)af () dy + [1,), cou2; +1/Daf (v)dy
if [r]2 <O,

and itst-derivative is

—2e(r)f(1—[r]2)coq2l, + Dacosa/2 if [r]l2>0,
2¢(r) f(—[r]2) cosd,a cosx/2 if [r]2 <O,

performing similar calculations on the other integrals and collecting all the terms we obtain
the formula forx whenx, &7 is not an integer. The formula is then true without restrictions
(but with our convention about values at the vertices) becausea priori known to be
continuous. It might be worth mentioning that the derivative/@ffr f(y)dy cancels out

with part of the derivatives of the first couple of the integrals abowe.

Notice that when is a vertex (withx, = O for definitenessy; = £+ and observing that
Iy =—I, and[—r]2 = —[r]2 whenr is not an odd integer, the formula becomes

1 1 C '+ D ,
t,o [ / - A , o,e.e a,e.e COSZ
u.(t,0) ZZC(E){[C+ ee + Z<—Sin2a o

e'cE aeN

F  — G ;o
+ Sgr{t]z% sin Zta)i|fe/ (| [t]2|)

1 Ca.e.e’ + Dae,er
+ | =-—Acv — ——— " coq2; +sgrt]2)a
|:C e.e anj\/( sza i t gr{])

Faee/_Gaee/ .
= SQrrlp == e sin(2s + Sgr[tlz)a)} fe(1—l112]) } (19)

A similar formula gives the solution at the vertices whose coordinates,a¢€l.
At the vertexx we can also compute the solution of the problem (5) wfth= 0
obtaining
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I[12] 1-1[t12l
t
ue(t,0)=2/g(y)dy+)\1(t) / g (y)dy + A2(t) / ge(y)dy
T 0

1
+k3(t)/ge/(y)dy,
0

where thel; depend on the network through our structure matrices andtbrough the
guantity 2, and sign ofiz], only. We omit the rather complicated formulae.

Of course, knowing the initial daturfi and the solution in the vertices avaries we
can recover the solution on the edge

From the spectral formula (14) we can easily deduce the following

Proposition 3. If all the « € A are rational multiples ofr, then the solutiom(z, x) of the
Cauchy problent5) is a time-periodic function whose period is an integer. If at least one
of thea € NV is not a rational multiple ofr, then there are datg for which the solution

of the Cauchy problerntb) with ¢ = 0 is not periodic in time.

Proof. If {¢x} is an orthonormal basis of eigenvectors df and {—A;} are the
corresponding eigenvalues, formula (14) can be written as

sin(t«/—\x)
u(t)y =) cofty/—r )(fr o)k + ) ——F—=—=—1(8. dr) . (20)
Dot s £

If all « € AV are rational multiples ot then all the,/—2; are multiple of the same rational
fraction of = and therefore is time-periodic with integer period.

If « € N is not a rational multiple ofr let ¢ one of the eigenfunctions associated to it
and let—22 the corresponding eigenvalue. Consider the solutiofithe Cauchy problem
with ¢ =0 andf = ¢ +  wherey is one of the eigenfunctions with eigenvalug? of
the form—k2x. Then

u(t) = COStA ¢ + COSt .

Sinceg andys are linearly independeni(zr + T) = u(¢) implies that cog + 7)1 = costa
and cos$t + T)u = cost e which is impossible becausg . is irrational. O

We close this section by observing that, since the well known formula

1
VAt

has the following operatorial counterpart:

—tx2 _

o0
/ ¢ 3%/ 40 cogsx)ds
—00

1
At

we can use Theorem 3 to solve the Cauchy problem for the heat equation

etA —

o0
/ PRACD COS(S«/ —A ) ds,
-0
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d
& =AU, >0,
{ at (5/)
u(0,) = f().
In fact, if u(z, x) solves the Cauchy problem (5) wigh= 0, then

8]

/ efsz/(‘”)u(s, x)ds

—00

1

U(t,x)=e"(f)(x) = N

is the solution of probleni20). Using the formula for: given by Theorem 3, the fact that
the functionsf, are defined to be zero outside the intefall], the fact that the kernel in

the integral is even in, and careful changes of variables and computations, we obtain the
following formula:

1
1 c(e) > N —(nts+x,)?
U(t,x):iz 4m{0/fe'(S)Z(A,T(e,e)e (n+s+xe)=/(41)

¢'eE n=0

- —(n—s—x¢)%/ (4 —(nts—x0)2/ (4
+An(e,e’)e (n—s—x¢)</( t)+B;r(e,e/)e (n+s—x0)2/(41)

+ By (e, &)e” IO/ 0 g }

where the coefficientajf(e, e) andBjE (e, ¢') depend only on the structure of the network
through our structure matrices.

Implicit in the above formula is the heat kernel on the netwBriNotice that the quan-
tity n + s + x, can be interpreted as the length of a patirinonnecting the point € e with
the points € ¢’ by joining the O-vertex ot to the 0-vertex ot’ with a chain of oriented
edgeses, ..., ¢, such that the initial vertex of1 and the terminal vertex of,, coincide
with the O-vertices oé ande’, respectively, and the terminal vertexapfcoincide with the
initial term ofex 1 for k =1, ...,n — 1, travelling back and forth being allowed. Similar
interpretation are valid for + s — x., n — s + x, andn — s — x, where the connection
is established between the 0-vertex and the 1-vertex or the two 1-vertices of thecedges
ande’. With this in mind, it is possible to compare our formula for the heat kernel with the
one obtained by Roth in [19]. In Roth’s paper all the) are 1, but he considers edges of
arbitrary finite lengthég, ..., l,. His representation for the heat kerngt, x, y) in terms
of transmission coefficients and paths joining the two poirésidy is more intuitive than
ours and seems to have more physical and geometrical flavour. On the other hand, our co-
efficients seem easier to compute than his. But the comparison between the two formulas
(obviously when the lengths and the weights of the edges are all 1) can probably lead to
many interesting relations of a combinatorial nature connecting path related quantities with
spectrum related ones as in Roth’s theorem 1 in [19] (trace of the heat kernel). We will not
however pursue these investigations in this paper.
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6. Two examples
6.1. The cross shaped network

Let I be the network consisting of four edges branching out from a common vertex
with unitary weights. A similar example can be found in [2] although Dirichlet conditions
replace there our Neumann conditions at the four dead ends. At the fifth vertex, the
common one, in both examples the Kirchhoff condition is required.

We denote by 1, 2, 3, 4 the four edges and we orient them in such a way that the
common vertex become 0 in our standard identification with the intédval. We name
the remaining four vertices of the graph after the edges to which they belong.

In this case the eigenvalues are 0 (with multiplicity (}k%72), for anyk € N (with
multiplicity 1) and((2k — 1)z + 7r/2)? (with multiplicity 3).

The constant functiomo = 1/2 and the functions; 1 whose restrictions to the edge
j arev/2/2 coskrx j, provide an orthonormal basis for the direct sum of the eigenspaces
associated to the eigenvalues with the multiplicity 1.

To construct the eigenfunctions corresponding to the eigenvalues with multiplicity 3,
we need an orthonormal basis (#(V)) for the kernel of the matrix

0 1/4 1/4 1/4 1/4
1.0 0 0 0
p={1 o o o0 o
1.0 0 0 0O
1.0 0 0 0O

3

for instance, the vectors

0 0 0
1 0 1
2 2 1
Zl:% -11, ZZZ% o |, Z3=§ 1
0 1 -1
0 -1 -1
Then, according to the general construction, we compute
0
0
10 =220 =z30) = | 4
0
and
Y 1 0 1
21 -1 0 1|1
Zl(l) - 7 O ) 12(1) - 7 1 ) Z3(1) - E _1
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Finally we have that the matric&?, B@, F, andG,, are the null matrixA is the matrix
whose entries are all equal tg4, D, = —C, and

-3 1 1 1
11 -3 1 1
al1 1 -3 1
1 1 1 -3
We can therefore write the components of the kekhels follows (note that in this case
we have coly + sgn(612)/2)a = (=1)" /+/2)

Co=

t 1
Hiitbxi,y)=5—== Y, €Ol
4 169=x;iy,-it
1
t15 2 (L+3D")e@)sgr(0lo)
O=x;—y; £t
1
15 2 (1=3C-D")e®)sgr((0]).
O=x;+y; %t
t 1
Hijxy) =215 D €Ok
O=x;ty;+t
1
+ 76 (1- (=D)e®)sgn([6]2)
O=x;—y; %t
1
+t15 2 (1 ED)e@)sgr(ol:).
O=x;+y; £t

To write the solution of the Cauchy problem wigh= 0 we calculatecy;; = 1/2 and
koij =0, fori, j =1,2,3,4. Thenwe findy; = 1/2+ (3/2)(—1)"*sgn([r]2) and, forj # 1,
aij = 1/2 = (1/2)(=D"sgn(rl2).

Finally
1 1 3
uiltx) =7 ) (§+5(—1)”Sgr([r]z)>ﬁ(l[r]z|).
r=x;=xt
1 11
+32 Zi (5 — 5D sgr([r]z))f,.(|[r]2|).
J#i r=xj*t

Notice that the solution is periodic inwith period 4.
6.2. The complete network wiitH- 1 vertices

The complete graph with 4+ 1 vertices hasi(n + 1)/2 edges and constant degree
equal ton at every vertex. We define complete the netwbrlassociated to the complete
graph. We concentrate on the simplest case where all the weights are equal to 1. According
to the general discussion in Section 3, the spectrum ansists of the eigenvalues 0,
(—k?m?) (with multiplicities (n? — n + 2(—1)¥)/2) and finally—((2k — 1) + &)? (with
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multiplicity n) wherea = arccos ¥n and—1/n is the only eigenvalue of the matrik in
(-1, 1).

For all the complete networks the matixvanishes identically whereas the matrices
BD,B®@, C,, Dy, F4 andG, must be computed time by time asaries. Things simplify
dramatically if we concentrate our attention on the solution at a fixed vertexthis case,
the symmetry of the structure allows us to wiite, v) explicitly in terms of the initial data
f andn for anyn (we are assuming that the weights= 1 for all ;). Of course, since all
vertices in the complete network are equivalent, we actually have the solution explicitly on
all the vertices (it is just a matter of permutations of the components of the initialfgata
and from that we could, if needed, reconstruct the solution on any specific edge simply by
solving an initial value problem on the unit interval with prescribed values at the edges.

Theorem 4. Let I be a complete network withH- 1 vertices and all the weights equalio
For definiteness, assumeds the initial vertex for all the edges if,. Then the solution of
the Cauchy problem with datA = (f,).cg andg =0in v is given by
_ 2V2sgrt]2) sinla o2 +s9nlrla)

(n+D/nn—-1) 2
x 3 (felltrtzl) + £ (2= [1112]))

e¢kE,

1 1
o > ((Z +cosZ,a)fe(|[t]2\)

eckE,

u(t,v) =

+ (% —coq2; + sgr([t]z))a> fe(1— |[t]2|))‘

We remark that ifv were the terminal vertex for some of the edgesn E, the
only needed modification would be the interchanging of the corresponditidz) with
fe(L—[t]2) in the above formulae.

Proof. Onceuv is fixed, the edges of our complete network fall in the two disjoint classes
E, andE \ E,, and by the symmetry of the structure the members of each of them are
interchangeable as far as their influencewvois concerned. Iff € D(A) has support on

the edgee ¢ E,, then by the finite propagation property of the solution we see that for
t €(0,1), u(z, v) = 0 and therefore formula (19) implies

1 2 n2
0= §|:n(n +1) Tz 1(D°‘se’e' + Ca,e,e’)i|fe'(t)
17 2 n2 1
T2 |:”(n 5~ 721 P + Caeie)y + P = Ga,e,e/}feml— 0.

Sincef, is arbitrary, we have that

2 n n?
nn+1) n2-1

(Da,e,e’ + Ca,e,e/) = 07
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2 n
nn+1) n2-1
and thusD, ¢ o + Cye.er = —2(n — 1)/n® andFy . o — Gy.0.r = —2/n?. Plugging these
values of the constants in formula (19) we have the claimffeupported on an edge not
belonging toE,.
If f has support on an edges E,, the finite propagation argument is not enough to
determineDy ¢c + Cy.e.e @NdFy e — Gy.c.e, DUt SiNCev is the initial vertex ofe, for
t € (0, 1), v cannot be influenced by the wave travelling toward the terminal edge of
Therefore the coefficient of, (1 — ) in (19) must vanish, and thus we get
2 n
nn+1) n2-1
By the definition ofC, andD, and the choice of as initial vertex, we have that

(Da,e,e’ + Ca,e,e’) + Fa,e,e’ - Ga,e,e’ = 0’

(Da,e,e + Ca,e,e) + Fa,e,e - Ga,e,e =0.

" 2(n% — 1) —
Da,e,e + Ca,e,e =(1—cos) Zzg_j,e(O) = T Z Zg,j(v)'
j=1 j=1
Since the vectorg, ;, j =1,...,n, complemented by the vector whose components are
all equal to ¥/n(n + 1) form an orthonormal basis df(V, ¢), elementary facts about
orthogonal matrices imply thafj_; Zi/ =1/(n + 1) and thereford, ., + Cy.ce =
2(n —1)/n?, whenceFy ¢ — Gg.e.o =0.

Having found the structural constants, the theorem follows at once.

Lemma3. If n > 3then the angler € (0, 7/2) defined byosae = 1/n cannot be a rational
multiple ofr.

Proof. If « were a rational multiple of, the complex numbes, = cose + i sina would
be aNth root of unity for some natural numbar and therefore the quadratic polynomial

2
(Z_Zo:)(Z—Za):ZZ_;Z“Fl

would be a factor oZ” — 1. Since all monic factors with rational coefficients of a monic
polynomial with integer coefficients must have integer coefficients, the above quadratic
polynomial can dividez"¥ — 1 onlyifn=10r2. O

The above lemma and Proposition 3 imply that on a complete network with at least
four vertices we have both time-periodic and non-periodic solutions. It is enough to choose
as initial datag = 0 and f equal to an eigenfunction of one the eigenvalues of the form
—k?72 to obtain periodicity while thef described in the proof of Proposition 3 produce
non-periodic solutions.

However, we can also show that, on a complete network, no wave originated by an
initial datum f having support concentrated on a single edge can be time-periodic.

Proposition 4. Let I" be a complete network with+ 1 vertices and all the weights equal
tol. If g=0and f # 0 is supported on a single edge, then the solutiasf the Cauchy
problem(5) cannot be periodic in time.
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Proof. If f is supported ore, consider the solution(t,v) evaluated at a vertex
v ¢ e. Suppose firstf,(s) + f.(1 — s) # 0. If u were time-periodic with period” then
u(t + kT,v) = 0 for any naturak and anyr € (0,1). By Theorem 4 this would imply
fe(lt+kT)2D) + fe(1—|[t+kT]2]) = 0forallk # 0 such that + kT is not an odd integer
since the factors sie and co$(2/; + 1)/2)a cannot vanish fof; > 0 (by Lemma 3 is
not a rational multiple ofr). Now, T cannot be rational, otherwise by choosingo that
kT is an even integer, we would g¢t(¢) + f.(1 —t) =0 for all t € (0, 1) against our
assumption. Il were not rational, thafikT]2| would be dense 0, 1) ask varies inN.
As a result, the continuous functiofy(s) + f.(1 — s) would be 0 on a dense subset of
(0, 1) and thus everywhere against our assumptions.

In the remaining case, i.ef,(s) = — f (1 —s) for all s € [0, 1], we evaluate the solution
at the initial vertexv of e. Theorem 4 and our assumption lead to

2 o 4, +1
M([, 0) = m COSE COSTO{fe ([[]2)

when[t]2 € (0, 1). Reasoning as above we obtain that the solution is periodic only when
f=0. O
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