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Abstract 

The most important advantages of water jet are the capability to cut nearly every material, the low cutting temperature and the 
negligible cutting forces. When end users are interviewed, most of them point out that the most critical problem of water jet  
machines is the reliability of the system components, together with the difficulty in estimating their life time. As far as the UHP 
(Ultra High Pressure) intensifier is concerned, there are several components that work under extreme fatigue conditions, as the 
pressure inside the cylinders can reach 400 or even 600 MPa. Nearly every critical component is located into the UHP intensifier, 
but different failure scenarios can be envisaged, leading to different pattern deviations from nominal behavior conditions. In this 
paper a correlation analysis on multiple signal features with the health status of the machine is presented. Then a multi-sensor based 
monitoring approach is discussed and tested on a real case study: it is based on the usage of control charts for in-control region 
definition and possible detection of faults. 
 
© 2012 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Roberto Teti.  
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1. Introduction 

The reliability of water jet cutting machines is a topic 
of main concern in the industrial field as various 
problems may arise during the process: machine stops 
due to faults, leakages, damages to the workpiece, etc. 
Corrective maintenance is the widest exploited strategy 
with pour results in terms of productivity. As in many 
other fields, the best way to optimize the performances 
of a machine tool is to introduce CBM (Condition Based 
Maintenance) strategies, but their management is quite 
challenging and reliable condition monitoring systems 
are required. There is a great number of works 
concerning water jet machine monitoring ([1] to [5]), 
mainly based on acoustic emission (AE) sensors. The 
goals of these works are different, from nozzle wear 
monitoring to remote controlled applications in 
inaccessible environments. 

In this paper, the attention is focused on the working 
condition of the CMS Tecnocut 60 HP pump 
intensifying machine. This machine is able to reach 
more than 400 MPa by means of 3 single-acting 
cylinders with a maximum water flow rate of 5 l/min 
(orifices up to 0.4 mm in diameter). The condition 
monitoring must be based on a series of sensors that 
permits to monitor the working condition of the 
machine. 

In Section 2 the linear position sensors used for 
condition monitoring are presented. Section 3 describes 
the real case study used to test the monitoring approach; 
Section 4 discusses the proposed fault detection and 
classification methods. Section 5 reports the achieved 
results and Section 6 eventually concludes the paper. 

2. Condition monitoring with linear position sensors 

There is a wide literature on condition monitoring of 
waterjet machines with different aims: remote control of 
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machines [1], control of depth of penetration [2], etc.
Many works are based on acoustic emission sensors ([1]
to [4]) that are used, for instance in [4], to monitor and to
activate a compensation procedure to control nozzle
wear by means of an artificial neural network that 
elaborates frequency domain acoustic signals. In another 
work [5] the electric input signals is related with
mechanical and fluid dynamic signals to design a 
monitoring system.

In the present paper, a novel approach based on linear
position transducers (Gefran ONP1-A) is proposed. The 
aim of the work is to identify different types of faults
that can affect different components of the intensifying
pump. The selected transducer is a contactless
magnetostative linear position sensor with sliding
magnetic cursor and a full scale from 0 to 200 mm. An 
example of the active stroke of cylinder 2 is reported 
below.

 

 

Fig. 1. Compression stroke position for cylinder 2

The first cylinder performs the back stroke in the Fig.
1. When it reaches the end, the third cylinder starts its
pre-compression stroke.

A cylinder comprises a certain number of components
that are subject to wear or cracks. During the normal
machine operations, the pattern of the pre-compression
or compression strokes change and a suitable approach 
can be used to identify it.

The aim of the multi-sensor monitoring approach here
described is to classify the behaviour of the pressure 
intensifier either as normal (i.e. in control) or not by 
using the multiple linear position signals coming from 
sensors mounted on pump cylinders. Once the symptom 
of a fault is detected, the monitoring system should be
able to provide information about the fault nature, to
properly drive the necessary immediate recovery actions
(when required) or the maintenance operations.

3. A real case study

A real case study is presented in this section. The 
selected pump is a 45 kW (model Tecnocut JP 60 HP)
intensifying machine with a nominal working point of 

413.7 MPa and 5 l/min water flow rate. The cylinder 
stroke is about 200 mm.

A total of four sensors are used: 3 linear position
transducers (described above) and a high water pressure
transducer (Gefran TPHA-N-D-V-BO5M). This type of 
transducer is based on the extensimetric measurement
principle with strain gauge on stainless steel. The
measuring range is 0 to 500 MPa.

The three position sensors are installed in the back 
panel of the intensifying pump and the slides are bolted 
to the stems (see Fig. 2). The water high pressure 
transducer is mounted on the main line downstream the 
three cylinders.

The pressure transducer is used in this study to verify
the operative conditions during data acquisition tests, 
performed at the same pressure level, but it is not used 
for monitoring tasks.

Pos 1 Pos 2 Pos 3

Fig. 2. Experimental setup for the linear position transducer

In this study a set of faulty components were selected 
by means of an end-user survey on the major problems
of AWJ intensifiers. The resulting components are the
following: cylinder body, outlet valve body, outlet valve 
housing and orifice.

A series of screening tests was performed to identify 
the minimum set of indicators able to detect a fault on 
the aforementioned components. As it will be seen later,
this set comprises two indicators that can be calculated 
from the sample reported in Fig. 1:

1. The pre-compression stroke 0
2. The compression slope (stem speed) 1
Both indicators can be computed by a linear

regression of the position of the cylinder that is in the
compression (active) stroke.

The case study is represented by a full factorial 
experiment in which new components were compared 
with cracked and worn ones.

Thus, eventually, four different types of faults are
considered, and, for each of them, different samples of 
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data were collected in randomized order. The considered 
faults are:  

Fault A: Cracked cylinder 
Fault B: Cracked delivery valve body 
Fault C: Extremely worn delivery valve housing 
Fault D: Brocken orifice 
 
Two orifice diameters have been considered: 0.25 and 

0.33 mm. 
A simple part-program is used in the tests for the 

production of a 75 mm square plate with four 6.5 mm 
holes at a nominal working pressure of 350 MPa. 

A total of 18 tests replicated 2 times were conducted 
on 3 days: a total number of 12 replicates under normal 
conditions and 6 replicates for each fault were performed 
in order to gather data characterizing both in-control and 
out-of-control conditions. 

4. Fault Detection and Classification 

The goal of the condition monitoring system is to 
detect a possible deviation from the in-control behaviour 
of the pressure intensifier and to identify which type of 
fault is the root cause for the out-of-control observations. 

It is important to recognize which cylinder is affected 
by the contingency and to classify the nature of the 
contingency itself. Furthermore, it is of great importance 
to distinguish a fault of a pressure intensifier component 
from any other problems of different nature, with 
particular regard to possible orifice breakages, that are 
quite frequent events in waterjet cutting. Such a fault can 
be easily detected if an operator is supervising the 
process, but in case of unsupervised operative conditions 
there is the need to suddenly detect the breakage and 
stop the process. Thus, the monitoring system should be 
able to properly classify any out-of-control observation 
as a symptom of either an orifice breakage or a pressure 
intensifier fault, to allow the required recovery action. 

In order to accomplish such a task it is here proposed 
to apply a control chart to each couple of synthetic 
indicators i(t) = [ 0,i(t), 1,i(t)] associated to ith cylinder 
(i ) at time t, where N is the number of cylinders. 

A T2 control chart is used: being [ i(t1), 
i(t2 i(tM)] a set of indicator values collected under 

in-control conditions (i.e. Phase I data), with mean ¯ i = 
[¯ 0,i, ¯ 1,i] and Variance-Covariance matrix S, the T2 

 
 

iiiii ST 12                   (1) 

 
Parameters ¯ i and S computed in Phase I are then 

used to monitor any following observation (Phase II). 

When the chart is applied to single observations 
under the assumption of multi-normality of indicators 
vectors, the following control limits are typically used 
[7]: 
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Where p is the number of monitored variables (here 

p = 2), and M is the number of observations in Phase I, 
whereas  F  100(1-  
percentiles of Beta and Fisher distributions, with degrees 
of freedom indicated into brackets. 

However, it has been observed in the frame of the 
study that the selected indicators are typically 
characterized by a skewed distribution, which violated 
the multi-normality assumption (e.g., see Fig. 3, where 
the normal probability plot of indicators 0 and 1 
computed for the real case study described in Section 3 
shows a non normal distribution). 
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Fig. 3. Normal probability plots for 0 and 1 

This is a frequently encountered situation in practice 
and different authors have discussed available solutions 
to face such an issue: Chang and Bai [8] propose a 
heuristic method to build the chart when data are 
characterized by skewed distributions, based on an 
adjustment of covariance matrix; Chen, Kruger et al. [9] 
present a non-parametric approach based on Kernel 
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Density Estimation, whereas in [6] the application of the
bootstrapping technique for T2 control charts is 
discussed and compared with other methods; eventually 
the book of Mason and Young [10] is dedicated to the
properties of T2 control charts and deals with the 
problem of multi-normality violations.

The bootstrap approach is used in this study, 
accordingly to [6]; it is a widely used resampling with 
replacement technique which allows determining
statistics estimates when the population distribution is
not known, and it does not require any data modeling
step [11]. 

The bootstrap-based T2 control charting methods thus
works as follows: T2 statistics are computed for each 

hus 

bootstrap sample (( ) in phase I and the
corresponding 100(1- percentile value is computed;
then, the average of B percentiles is used as empirical
control limit for the T2 statistics. Here B = 1000 is used.

N control charts must be used at the same time on N
different cylinders, and hence the Bonferroni approach is
applied to type I error selection, such that = famf / N, NN
where famf is the family type I error (here famf = 0.0027
is used).

The usage of a dedicated control chart for each
cylinder allows to detect any anomalous behaviour and 
to rapidly identify the cylinder affected by the
contingency. Moreover, when an orifice breakage
occurs, all the N control charts are expected to suddenly
signal an out-of-ff control behaviour, and hence a fault 
involving a single cylinder can be easily distinguished 
from this latter event.

Further parameters to be used for diagnostic task are
the distances 0,i(t) and 1,i(t) defined as follows:

iii tt ,0,0,0 (4)

iii tt ,1,1,1                                (5)

They are the norm of projections of a vector 
connecting the Phase I mean ¯ i = [¯ 0,i, ¯ 1,i] with any 
new observation < 0,i(t), 1,i(t) > at time t, in the two
dimensional feature space spanned by indicators
< 0,i, 1,i >.

A crack or an advanced wear level of a valve is
0,i(t) of indicator 

0, and a reduced deviation (or possibly no deviation at 
all) on indicator 1: the outlet valve is opened during the 
compression stroke so it has no influence on the stem 
speed whilst the pre-compression phase needs the outlet 
valve to be closed. As a result, cracks or advanced wear 
cause leakages that change the condition inside the

cylinder causing a modification in the pre-compression 
stroke pattern.

A crack on a cylinder, instead, is expected to cause a 
deviation for both the indicators as the leakages are
present in both pre-compression and compression
phases. If a huge crack is present, the pump fails to
perform its cycles and the NC goes to duty error.

An orifice breakage, instead, is expected to cause a 
1,i(t) of indicator 1, and no deviation (or a 

moderate one) of indicator 0 as the orifice define the
pump load. Pump load can be seen from the cylinders
only in the compression phase. The effect of a broken 
orifice is expected to be an increment in the diameter so
an increment in the required water flow rate (i.e. pump
load) and this is expected to be seen in all the three
cylinders indicators.

Therefore the bootstrap-based control charts can be 
coupled with the logging of parameters 0,i(t) and 

1,i(t): after any out-of-ff control detection provided by 
the charts, the operator can use those deviation 
parameters to assess which is the most likely root cause
of observed symptoms, and hence exploit such
additional information to drive the maintenance 
operations, when required.

Notice that the condition monitoring system here
proposed allows both failure detection and classification
capabilities by exploiting only the knowledge of nominal
(in-control) behaviour of the pressure intensifier, without 
any need to collect data under faulty conditions, that is
always a very complex task.

5. Summary of Results

Phase I data were collected under in-control 
conditions by performing 12 replicates of the same
cutting process, described in Section 3. The in-control 
conditions depend on the selected mean pressure level 
and orifice diameter (water flow rate), i.e. the pump
load. An overall number of M = 100 complete cycles for 
each cylinder were acquired: first 50 cycles are used as
Phase I data, whereas remaining 50 cycles are used to
test the chart under nominal conditions.

The indicators vector were standardized by using the
sample mean ¯ i = [¯ 0,i, ¯ 1,i] and sample Variance-
Covariance matrix S.

Two examples of T2 control charts are reported in 
Fig. 4 and Fig. 5, where both bootstrap-based and 
traditional control limits are shown; the former shows
the chart referred to cylinder 1 when Phase II is actually 
in-control, whereas the latter shows the chart for the 
same cylinder when Fault A (cracked cylinder) is
observed.
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Fig. 4. T2 control chart for an in-control process 
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Fig. 5. T2 control chart for a Fault A in cylinder 1 

Fig. 6 shows the percentage of alarms signaled by the 
control charts in presence of the four different types of 
fault here considered (percentages are reported for each 
cylinder). 
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Fig. 6. Percentage of alarms for each considered fault 

The figure shows that when Fault A, B and C are 
injected, the charts properly signal alarms on the 
cylinder where the fault is present (in this case it is 
always cylinder #1). Notice that some alarms are 

signaled also on next cylinders, but this is physically 
correct. In fact if a crack or a worn valve is present in ith 
cylinder, the other two have different operating 
condition as water pressure is not guaranteed during the 
cylinder compression stroke, and hence other cylinders 
cycle is affected by the fault too, even though with a 
reduced effect.  

In presence of fault D (orifice breakage), instead, a 
high percentage of alarms is signaled on every cylinder, 
and this is consistent with the nature of the fault. 

The inspection of alarms provided by the N control 
charts allows one to draw preliminary conclusions about 
the nature of the contingency and its location within the 
pressure intensifier. 

As discussed in the previous Section, further 
parameters 0,i 1,i(t) may provide additional 
information about the root cause of observed alarms. 

0,i(t) and 
1,i(t) for the four considered types of fault, computed 

for the cylinders with higher percentage of alarms, i.e. 
cylinder 1 for faults A, B, and C, and cylinders 1, 2, and 
3 for fault D. The largest difference between mean 
values 0,i(t) ¯¯¯¯¯  and 1,i(t) ¯¯¯¯¯  are observed in presence of 
fault B, C and D, with very low values of 0,i(t) ¯¯¯¯¯  with 
fault B and C, and a very low value of 1,i(t) ¯¯¯¯¯  with fault 
D, in complete accordance with the expected behaviour 
discussed in previous Section. This means that when a 
fault involving a valve is present, the most affected 
indicator is 0 (i.e. the excursion in pre-compression 
phase); when a breakage of the orifice occurs the most 
affected indicator is instead 1 (i.e. the compression 
speed); and, eventually, when fault A is present both the 
indicators are affected. 

However, the Figure also shows a very large 
0,i 1,i(t), which can 

be an issue to be faced with if one wants to apply an 
hypothesis test or a univariate control chart to single 
indicators, especially when diagnostic conclusions must 
be drawn from reduced amount of observed data.  

The scatter plot shown in Fig. 8 shows how the 
different types of faults here discussed tend to occupy 
different portions of the 2D space spanned by indicators 
< 0,i, 1,i >, with respect to the in-control region, even 
though the position and dispersion of the clusters of 
faulty data are expected to vary considerably depending 
on fault severity (e.g. wear level, dimension of the crack, 
etc.). Such a variability leads to the need to adopt fault 
detection and classification methods that exploit only in-
control data, as the one here proposed. 

6. Conclusions 

The selected indicators (compression speed 1 and 
pre-compression stroke 0) are used to design 3 control 
charts to monitor the working condition. Each of the 
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control chart refers to a cylinder, so the fault is directly 
related to corresponding cylinder. 
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Fig. 7. Boxplots of parameters 0,i(t) and 1,i(t) 
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Fig. 8. Scatter plot of the indicators 

Selected features allow to properly classify a 
contingency as a component fault or an orifice breakage. 
Moreover, the fault detection and classification 
capability are provided without any need to train the 
system on faulty data, but only on data acquired under 
normal behaviour. Another interesting result is that 
analyzing 0,i(t) and 1,i(t) it is possible to distinguish, 
inside the cylinder in out-of-control state, among three 

faulted components: cylinder body, outlet valve body or 
outlet valve housing. The system here presented is 
currently under development in a real-time suite 
exploitable in industrial environment. However, next 
steps of the study will be focused on improving the fault 
classification performances and reducing the false alarm 
risk. 
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