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Abstract: The classification of plant associations and their mapping play a key role in defining
habitat biodiversity management, monitoring, and conservation strategies. In this work we present a
methodological framework to map Mediterranean forest plant associations and habitats that relies
on the application of the Functional Principal Component Analysis (FPCA) to the remotely sensed
Normalized Difference Vegetation Index (NDVI) time series. FPCA, considering the chronological
order of the data, reduced the NDVI time series data complexity and provided (as FPCA scores) the
main seasonal NDVI phenological variations of the forests. We performed a supervised classification
of the FPCA scores combined with topographic and lithological features of the study area to map
the forest plant associations. The supervised mapping achieved an overall accuracy of 87.5%. The
FPCA scores contributed to the global accuracy of the map much more than the topographic and
lithological features. The results showed that (i) the main seasonal phenological variations (FPCA
scores) are effective spatial predictors to obtain accurate plant associations and habitat maps; (ii) the
FPCA is a suitable solution to simultaneously express the relationships between remotely sensed
and ecological field data, since it allows us to integrate these two different perspectives about plant
associations in a single graph. The proposed approach based on the FPCA is useful for forest habitat
monitoring, as it can contribute to produce periodically detailed vegetation-based habitat maps that
reflect the “current” status of vegetation and habitats, also supporting the study of plant associations.

Keywords: habitats mapping; NDVI time series; Functional Principal Component Analysis; plant
association; Phytosociology; Land-Surface Phenology; Habitats Directive

1. Introduction

Phytosociology, today, plays key roles in European policies dedicated to the conservation
of biodiversity, such as the 92/43/EEC Habitats Directive [1] and the Natura 2000 network.
Plant associations and the other phytosociological levels, in fact, allow for the diagnosis of natural
and seminatural habitats listed in Annex I of the Habitats Directive [2–5]. According to the Directive,
each European member state is obliged to survey, monitor, and report about habitats, their distribution,
and status of conservation every 6 years. The phytosociological maps (e.g., plant associations map)
can adequately represent the distribution of the habitats and, if updated and repeated, would be
helpful in evaluating and monitoring the status of conservation of the habitats [6–8]. These activities,
to be performed every 6 years, require a lot of resources (i.e., field survey, photo-interpretation)
that is constraint making the update of habitat maps particularly difficult due to costs and required

Remote Sens. 2020, 12, 1132; doi:10.3390/rs12071132 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3913-4749
https://orcid.org/0000-0001-5281-9200
http://www.mdpi.com/2072-4292/12/7/1132?type=check_update&version=1
http://dx.doi.org/10.3390/rs12071132
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 1132 2 of 22

time. Ichter et al., [9,10] reported that in Europe, after the adoption of the Habitats Directive in 1992,
habitat project mapping based on phytosociological approach maps has increased, but very few maps
have been updated and repeated. Discrimination of contiguous plant associations or upper syntaxa
through the visual interpretation of remote images is based on subjective decisions and could be time
and labor intensive. Moreover, the accuracy of these maps is often neglected or absent [10,11].

Remote sensing is an important and complementary source of information in field surveys
that contributes to a better understanding of the diversity of natural and seminatural habitats, their
spatial distribution, and their conservation status [12,13]. It provides multiple advantages over
traditional mapping (i.e., photo-interpretation and field surveys), such as faster mapping production
that facilitates repeatability even in inaccessible areas [11]. The increasing availability of remote
sensing data free of charge of high spatial and temporal resolution (e.g., Sentinel-2 and Landsat-8)
offers dense multi-temporal measures of greenness, such as the Normalized Difference Vegetation
Index (NDVI) [14] times series, that are a useful proxy for the seasonal and inter-annual vegetation
phenological changes [15]. These changes have proved useful in the discrimination of contiguous
Mediterranean habitats [16–18] and to produce phenology-based mapping of the vegetation [19,20].

We hypothesize that Mediterranean forest plant associations have distinct phenological behavior
during the year (NDVI time profile). Moreover, the application of the Functional Principal Component
Analysis (FPCA) on remotely sensed NDVI enables the identification of the main seasonal phenological
variations—FPCA scores—that are effective spatial predictors for plant associations mapping. Therefore,
we present a novel methodological framework, as to the best of our knowledge, no previous study has
used the FPCA for mapping forest plant associations supported by remotely sensed data to automatize
the overall process. In this framework, our main objectives are: (i) identify the main seasonal variations
(phenological) by applying the FPCA to the remotely sensed pixel-based NDVI time series; (ii) identify
the main topographic and lithological gradients by applying the Principal Component Analysis (PCA)
to the local terrain attributes (extracted from a Digital Elevation Model (DEM)) and the lithology;
and finally, (iii) perform a supervised classification of the predictors to discriminate and map the
Mediterranean forest plant associations and assess their importance in contributing to the final accuracy
of the map. The methodology here presented aims to demonstrate the capability to generate high
accuracy habitat maps based on phytosociological data with a reduced human effort due to automation
of several processes.

2. Materials and Methods

2.1. Study Site

The study area (650 ha) is located in the eastern coast of Central Italy (Mount Conero, 43◦.5500147 N,
13◦.5912452 E; 572 m a.s.l) (Figure 1). It is part of the Natura 2000 network, and it is included within
the Special Areas of Conservation (SACs) “Monte Conero” (code: IT5320007) and “Portonovo e falesia
calcarea a mare” (IT5320006). The mean annual precipitation is 710 mm, while the mean annual
temperature is 14.9 ◦C. According to the bioclimatic classification of Rivas-Martinez [21], the area
belongs to the Temperate sub-Mediterranean macrobioclimate [22]. Bedrock is mainly limestone
and the vegetation cover is predominantly made by woods. To carry out analyses, we have masked
non-forest areas (grasslands, shrublands and garrigues) using ancillary layers [7]. The forest plant
associations known for the study area, according to Biondi et al., [23–25], are: (i) the Cyclamino
hederifolii-Quercetum ilicis—an evergreen forest association dominated by Quercus ilex, with a high
occurrence of Mediterranean species (e.g., Smilax aspera, Pistacia lentiscus, Phillyrea latifolia, Juniperus
oxycedrus, Osyris alba, and Rosa sempervirens). Fraxinus ornus is the only deciduous tree occurring
(average height 8 ± 2 m); (ii) the Cephalanthero longifoliae-Quercetum ilicis—a mixed forest association
dominated by Quercus ilex, with quite abundant deciduous trees (Ostrya carpinifolia, Fraxinus ornus,
Acer obtusatum, Quercus virgiliana) and mesophilous species (e.g., Ilex aquifolium, Laurus nobilis, Viola
reichembachiana, Mercurialis perennis, Ruscus hypoglossum, Hedera helix, Hepatica nobilis etc.; average
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height 11.5 ± 2 m); (iii) and the Asparago acutifolii–Ostryetum carpinifoliae—a deciduous forest association
dominated by Ostrya carpinifolia, with abundant occurrences of Acer obtusatum and Quercus virgiliana.
The latter plant association is rich in nemoral species (e.g., Buglossoides purpureocoerula, Primula
vulgaris, Stachys officinalis, Campanula trachelium, Melittis melissophyllum: average height is 12.5 ± 1 m).
Furthermore, in the same area, the evergreen conifer forest plantations (mostly dominated by Pinus
halepensis and P. pinea with an average height of trees of 14.5 ± 1.5 m) are widespread. In the 1930s,
the western sectors of Mount Conero were in a very degraded hydrogeological state and, for this
reason, they were reforested [26].
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The distribution is derived from the “Web Geographic Information System of Marche region” [7]. Red
points are the reference data (field survey and photo-interpretation).

As Cyclamino hederifolii-Quercetum ilicis and Cephalanthero longifoliaee-Quercetum ilicis belong to the
habitat 9340, “Quercus ilex and Quercus rotundifolia forests” [5], and the area falls within the Natura
2000 network, the vegetation field plot surveys and the habitats mapping based on plant associations
must be repeated every 6 years [1,27]. Nevertheless, because of the “traditional” mapping approach
adopted and the complex spatial organization of the plant associations determined by the joint action
of the topographic variability with biotic (e.g., dynamic vegetation processes) and anthropic factors,
the production of vegetation maps has been irregular and discontinuous to date. The latest “traditional”
plant association-based habitat map was carried out in the 2005 and was made available by the “Web
Geographic Information System for Fauna, Flora, and Plant Landscape Data Management of Marche
region” (http://sitbiodiversita.ambiente.marche.it/sitrem/) [7]. For all these reasons, the study area is
suitable to test the proposed mapping approach.

http://sitbiodiversita.ambiente.marche.it/sitrem/
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2.2. Data Collection

2.2.1. Remote-Sensed NDVI Times Series

The extent of the forest patches, according to O’Neill et al. [28], fit the spatial resolution of the
Landsat 8 remote-sensed images (30 m) here adopted. We looked for all cloud-free Landsat 8 Level-2
images (that had already been preprocessed with absolute radiometric correction) available for the
period April 2013 (when Landsat 8 started)-April 2019. These six-year data are suitable for the 4th
report ex Art. 17 of Habitats Directive (2013-2018). Ninth one images (9 of 2013, 14 of 2014, 15 of 2015,
12 of 2016, 17 of 2017, 16 of 2018 and 6 of 2019) were collected (Table A2).

We co-registered the images, normalized the topographic effect [29] and then applied the NDVI
index (by the R “RStoolbox” package [30]). Before analyzing the intra-annual variations (which
represent the seasonality of the vegetation) we checked the inter-annual variation through a harmonic
regression of the monthly median NDVI values of the 91 scenes collected (see Figure 4a). In addition
to an obvious annual periodic variation, this analysis showed for the study area slight biennial and/or
triennial variations. These slight variations allow consideration of the years of the period as useful
replicas to describe the average intra-annual variations for the investigated period. Any land use
changes that have occurred on small surfaces (e.g., coppicing, fire), which cannot be captured by
harmonic regression, are detected by FPCA (see Section 2.2.2). Then, the NDVI surfaces, chronologically
ordered according to the Day of Year (DoY), were collected in a raster stack. A preliminary analysis of
the stack showed that the distribution of the acquisition dates of the scenes indicated by the DoY is
irregular and not very dense (87 days out of 365). The same dates converted into weeks (weeks) are
denser (40 weeks out of 53 total), and practically provide a complete coverage over the study period
if converted into periods of 14 days (bi-week). In this last case, in fact, there are NDVI values in 25
bi-weeks out of the 26 totals (only bi-week 21 is missing). Therefore, after checking and removing the
anomalous values (function clean.ts() of the R package “forecast”; [31,32]), we aggregate the DoY
NDVI values to bi-weekly mean values and obtained a (one-year) bi-weekly pixel-based NDVI times
series that represented the mean intra-annual seasonality variation of the forests.

2.2.2. Functional Principal Component Analysis of NDVI Time Series

FPCA is a tool of functional data analysis [33]. FPCA, explicitly accounts for the chronology of
data (here bi-weeks) treating the whole NDVI curve as the statistical unit. Indeed, the classic PCA
is not appropriate for time series analysis because bi-weeks would be considered to be independent
vectors of values [34]. FPCA decomposes the space of functional data (e.g., NDVI time series) into
low orthogonal functional principal components [35]. FPCA provides: (i) eigenvalues that account
for the variation explained by each component; (ii) the vector of principal component scores (FPCA
scores) that summarizes the similarity between the sampling units (here the pixel-based NDVI time
series) and (iii) the eigenfunctions (which replace the eigenvectors of the classical PCA) that represent
the principal “modes of variation” of the data [34]. To identify the main modes in which the forests
vary during the year, we applied the FPCA to the mean bi-weekly pixel-based NDVI times series.
We used the nonparametric method called “principal components analysis through the conditional
expectation” (PACE) [36], implemented in the R “fdapace” package [37]. The pixel-based FPCA scores,
which express the main modes in which forests vary during the year, were central to the subsequent
analysis. They were used as input variables (predictors) for the supervised plant association mapping
and for relationship analysis with lithological and topographic variables and plant associations. These
scores are also useful to detect outliers (extreme FPCA scores indicate pixels with anomalous NDVI
curves) that in some pixels (areas) could correspond to a change in the land use.

2.2.3. Topographic and Lithological Factors

Lithology and topography determine different environmental conditions that affect the forest plant
association composition and distribution [25,38]. If combined with multi-temporal remote sensing data,
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they could improve the accuracy of habitat mapping [39,40]. Then, from a DEM with 30m resolution
(the DEM has been derived from the NASA Shuttle Radar Topography Mission (SRTM) that ensures
data 1 arc-seconds), we extracted a set of parameters by using the System for Automated Geoscientific
Analyses (SAGA) GIS software [41]. These parameters are useful proxies of the main topo-climatic and
hydrological variations [42] (Table 1). The lithological information was derived from the lithological
map of the Marche Region [43].

Table 1. Acronyms and description of lithology and the terrain parameters (derived from a Digital
Elevation Model with 30 m of resolution by using the System for Automated Geoscientific Analyses
(SAGA) GIS software) used.

Acronym Description

ELEV Altitude (m a.s.l)
SLO Slope of the terrain (◦)

SOL

Potential Incoming Solar Radiation. It characterizes the
insolation intensity variation of the study area determined by
the topography assuming uniform albedo and clear sky
conditions. It was Calculated by the Module “Potential
Incoming Solar Radiation”

WIN
Effect of the cold wind “Bora” that has a North-East direction,
calculated by the Module “Wind Effect
(Windward/Leeward Index)”

TWI

Topographic Wetness Index. It is a parameter describing the
tendency of a cell to accumulate water and it is useful to
characterize the wetness of the landscape. It was calculated
by the module “SAGA Wetness Index”

TPI

Multi-Scale Topographic Position Index. Integrates in one
single grid the Topographic Position Index (TPI) as proposed
by Guisan et al. [44] calculated for different scales. It was
calculated by the Module “Multi-Scale Topographic
Position Index”

L
Lithologies (L1: “scaglia rossa” formation; L2: “scaglia
variegata” formation; L3: “Maiolica” formation; L4:
landslide deposit; L5: slope deposit)

A standardized PCA (using the R package “RStoolbox”; [30]) of the terrain parameters and
the binarized class lithology was applied. The pixel-based PCA scores, which express the main
environmental (topographic and lithological) gradients were used as input variables (predictors) for
the supervised plant association mapping.

2.2.4. Forest Plant Associations and Reference Data Collection

The collected reference data are based on field observations (phytosociological analysis)
subsequently integrated with observations extracted through visual interpretation of high-resolution
satellite images.

Phytosociological analysis was performed in 2 steps: in the first, phytosociological relevés were
performed in 53 circular plots of 200 square meters (see Figure A1 showing the variation of vegetation
in the study area). This plot dimension, suited to forest plant associations [45], allowed us to center the
plot by a Real Time Kinematic (RTK) Global Positioning System (GPS) receiver in the pixel. At each
plot, all vascular plant species and their Braun–Blanquet abundance scale values were recorded [46].
The sites x species abundance matrix was processed by hierarchical cluster analysis (the chord distance,
and the Unweighted Pair Group Method with Arithmetic mean (UPGMA) linkage). The final number of
clusters (plant associations) was chosen on expert-based comparison with the literature [23–25,47]. The
Indicator Species Analysis [48] was performed to identify the indicator species of the plant associations
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(phi coefficient > 0.4, p-value = 0.05). In the second step, another 27 sites (pixels), by a field expert-based
similarity comparison, were assigned to the plant associations identified in the first step.

Finally, in order to increase the number of reference plots and obtain a balanced space distribution
for the reference data, we added reference plots assigned to the plant associations by visual interpretation
of the Google Earth imagery (Google Earth images, 26/04/2018 and 31/08/2017 with 0.5m resolution,
see Figure A2). The total number of reference plots was 175; 80 were collected by phytosociological
analysis and 95 were photo-interpreted (Section 2.3 provides more details about reference plots).
The final reference data classification was used as training data for the supervised plant association
mapping and as for relationships analysis with the main phenological gradients identified by FPCA.

2.2.5. Relationships between NDVI Seasonality, Topography, and Forest Plant Associations

The first two FPCA scores (FPCA1 and FPCA2) were used to define the reduced phenological
ordination space of all pixel-based NDVI time series. The correlations with terrain parameters (vectors)
and lithologies (categorical) were tested (envfit function; vegan package in R statistical software [49])
and those that were significant (alpha level p < 0.05) were overlaid onto the ordination space. To evaluate
and characterize the phenological behavior of the plant association, the reference data classification
was overimposed, as a spiderplot, onto the ordination and used to fit the plant association NDVI
temporal profiles (curve) (by the CreatePathPlot function of the fdapace package [37]).

2.3. Supervised Mapping of the Forest Plant Associations

As shown in the workflow diagram (Figure 2), the supervised random forest classification (RF) [50]
of the pixel-based FPCA scores (which represent the main modes of forest NDVI variation during the
year) and the pixel-based PCA scores (which represent the topographic and lithological gradients)
were used to discriminate and map the forest plant associations. The reference data classification was
used as training data.

We resampled the pixel size of the predictors at 10m by a bilinear interpolation to ensure the
maximum correspondence between the reference and predictors data. Then we extracted and assigned
(by a bilinear interpolation using the four nearest raster cells) the predictor values to the reference data.

RF is a tree-based classification method that aggregates the results of many trees (ntree) to make
a prediction for estimating the model error. The trees were created by subset of the training data
(“in-bag samples”) with the remaining “out-of-bag samples” to estimate the model error, known as the
out-of-bag (OOB) error. In addition, there was a random subset of candidate predictor variables (mtry).
RF makes it possible to evaluate the predictor importance, by selecting and ranking those predictors
with the greatest ability to discriminate between the target classes [51].

It is known for the area that the Asparago acutifolii–Ostryetum association is rather limited, and thus
we expected the training data to be unbalanced. Statistical classifiers such as RF can be biased if
the proportions of training and validation data are unbalanced. Final classification can show an
over-prediction of the majority classes and an under-prediction of the minority class. Over-sampling and
under-sampling are used to produce more balanced datasets [52]. We incorporated the down-sampling,
which makes the frequency of the majority class closer to those of the rarest class, into the RF. We
finally set RF as the following: ntree = 1500; subset of training data = 4 * nmin, where 4 is the number of
target groups. This means that the RF model for 1500 can take a balanced random sample without loss
of information for the majority classes. Finally, we check mtry from 2 to the square root of the number
of input variables, as usually set [51].
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Figure 2. Workflow of the Mediterranean forest plant association mapping based on the Functional
Principal Component Analysis of the Landsat 8 NDVI time series and topography.

To calibrate the model and provide a robust estimate of the accuracy by limiting the bias,
we repeated the 10-fold cross-validation 20 times. A mean overall accuracy (OA) index, Kappa index
(and their respective Standard Deviations (SD)), and a cross-validated confusion matrix (representing
the error distribution for class among the 20 repeats) were calculated. The importance of the predictors
was evaluated and ranked by the normalized RF OOB Mean Decrease Accuracy index. The higher the
values, the greater the relevance of the predictor. We run a RF model only with phenological variables
(FPCA scores) to evaluate how topography and lithology contribute to the final OA (see Section 3.3).
Furthermore, the map resulting from the application of the RF model obtained for all the pixels was
visually interpreted and compared with the previous traditional maps (these analyses were performed
using the packages “raster” [53] and “caret” [54]).
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3. Results

3.1. Forest Vegetation Field Survey and Plant Associations

In the first phase of field phytosociological analysis, the abundance values of 77 plant species
were recorded in the 53 phytosociological relevés. The hierarchical cluster analysis of the relevés x
species abundance data matrix provided the dendrogram with four principal clusters (Figure 3).
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Figure 3. Dendrogram of the field vegetation abundance data matrix of the Mount Conero forests
(Marche, Central Italy). Plant associations (Clusters): 1, Cephalanthero longifoliae-Quercetum ilicis; 2,
Cyclamino hederifolii-Quercetum ilicis; 3, Asparago acutifolii–Ostryetum carpinifoliae; 4, Pinus halepensis e P.
pinea plantation.

According to Biondi et al. [23–25,47], Cluster 1 corresponds to the Cephalanthero
longifoliae-Quercetum ilicis association, Cluster 2 to the Cyclamino hederifolii-Quercetum ilicis, Cluster 3
to the Asparago acutifolii–Ostryetum carpinifoliae, while Cluster 4 is the plantation of Pinus halepensis
and P. pinea. The frequency species composition and the indicator species of plant associations are
summarized in Table A1. Through the subsequent field analyzes (step 2) and the visual interpretation
of the high-resolution images (Figure A2), we obtained the training data of the plant associations. The
training dataset, as expected, is quite unbalanced where the Asparago acutifolii–Ostryetum carpinifoliae
association is the minority class (Table 2).

Table 2. Reference data used for training. Number of plot references for plant associations acquired
by field phytosociological analysis (in parenthesis the number of plots analyzed by phytosociological
relevés) and visual interpretation of high-resolution images.

Plant Associations
Training Data

Phytosociological
Analysis

Visual Interpretation
of Images Total

Cephalanthero longifoliae-Quercetum ilicis 29 (22) 43 72
Cyclamino hederifolii-Quercetum ilicis 18 (18) 19 37

Asparago acutifolii–Ostryetum carpinifoliae 11 (7) 2 13
Pinus sp. plantation 22 (6) 31 53

3.2. Main Seasonal NDVI Variation of the Forests

Figure 4a shows the inter-annual neglectable variations that confirms an unchanged land use or
the absence of extensive changes. Figure 4b shows the six-year period NDVI variations combined in a
unique year according to the DoY and finally. Figure 4c shows the 7292 bi-weekly pixel-based NDVI
time series obtained and analyzed through FPCA. Seven orthogonal FPCA components, which reflected
the main contrasting modes of NDVI forest variation during the year, were identified. The first two
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FPCA components explain 90.7% of the total variation. FPCA components, in practice, represent the
amount of deviation from the overall mean of the NDVI time series. The FPCA1 component accounted
for 68.0% of the total variation. It opposes and orders the pixel-based bi-weekly NDVI times series
that, in the autumn–winter period (months of January, February, and March, bi-weeks 1–8; months
of October, November, and December, bi-weeks 18–26), have low NDVI values, to those with high
values (Figure 5a,c). The FPCA2 component accounted for 22.7% of the total variation. It opposes and
orders the pixel-based NDVI time series that, in the spring–summer period (from March to September;
bi-weeks 9–19), have quite constant NDVI values to those that increase up to early August (18th
bi-week) (Figure 5b,c).
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Figure 4. Variations of the NDVI values extracted from the Landsat 8 images covering the Mount
Conero area (East coast of Central Italy) relating to the period April 2013-April 2019. (a) Inter-annual
NDVI variations fitted by a harmonic regression. Red line represents the fitted values and the blue
ones the confidence interval. Black points are the monthly median NDVI values. (b) Intra-annual
variation. The colored circle (according to the year of acquisition) is the median value of the scene.
The gray line is the range of variation of the pixels of the scene. The scenes are distributed during the
year in agreement by the DoY. X-axis: above the bi-weeks of the year, below the DoY. (c) The mean
intra-annual NDVI seasonality variation of the forests described by the 7292 bi-weekly pixel-based
NDVI times series. X-axis is the bi-weeks of the year.
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Figure 5. Result of the Functional Principal Component Analysis (FPCA) applied to the mean Landsat
8 pixel-based NDVI time series (2013–2019) of the forests of Mount Conero (Central Italy), and the
relationships with lithology, topography, and plant associations. (a) FPCA1 principal functional
component (68.0% of the total variation). (b) FPCA2 principal functional component (22.7% of the
total variation). (c) Reduced phenological ordination space defined by FPCA1 and FPCA2. Gray dots
are all pixel-based NDVI time series. Black dots are the plant associations reference data. Arrows
(length proportional to the correlation value) are correlated topographic variables (ELE = elevation,
SOL = mean annual solar potential radiation, TPI = topographic position index, WIN = cold wind
exposure, SLO = slope) while labels correlated lithologies (L1 = “scaglia rossa” formation, L4 = Landslide
deposits). Spiderplots, in different colors, are the plant associations reference data. With same colors the
plant association NDVI mean annual profiles (bold colored line is the median NDVI value, the polygon
is the 10–90% percentile; the black line is the mean NDVI values of the study area). Green = Asparago
acutifolii–Ostryetum carpinifoliae, Orange = Cephalanthero longifoliae-Quercetum ilicis, Red = Cyclamino
hederifolii-Quercetum ilicis, Purple = Pinus halepensis and P. pinea forest plantation.

Relationships between NDVI Seasonality, Topography, and Forest Plant Associations

The first two FPCA scores (FPCA1 and FPCA2) allowed us to define the reduced phenological
ordination space, where the significant correlated topographic and lithological variables were overlaid.
FPCA1 is positively correlated with ELEV, TPI, SOL and the lithology (L1) while negatively with L4.
FPCA2 is positively correlated with WIN, SLO, while negatively with SOL (Figure 5c). The plant
associations, superimposed as spiderplots, show a distinct behavior during the year, clearly represented
by the respective NDVI fitted temporal profiles (Figure 5c).

The Asparago acutifolii–Ostryetum carpinifoliae (green spiderplot and NDVI profile in Figure 5c),
which has the lowest NDVI values in the autumn–winter period and high NDVI values in
spring–summer period, is allocated in the negative part of FPCA1 and positive of FPCA2. The
NDVI profile shows a great NDVI seasonality. The 5th and 6th bi-weeks (the beginning of March) are
the beginning of the season where a rapid change of the slope in the fitted NDVI values occurs, quickly
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reaching their maximum (0.82) at the 13th bi-week (end of June). Then, the values gradually begin to
decrease until the end of the year.

The Cephalanthero longifoliae-Quercetum ilicis (orange spiderplot and NDVI profile in Figure 5c)
has NDVI values about 0.75 (ranging from 0.6 to 0.8) in the autumn–winter period and the highest
values in the spring–summer period. Indeed, it is allocated in the middle part of FPCA1 (both in the
negative and positive parts), and in the positive part of FPCA2. The NDVI profile shows that this plant
association, on average, has less NDVI seasonality than the previous one. In the fifth and the sixth
bi-weeks, the NDVI values start to increase, reaching a maximum value of 0.85 at the 15th bi-week
(end of July). Then the values begin to gradually decrease up to 0.75.

The Cyclamino hederifolii-Quercetum ilicis (red spiderplot and NDVI profile in Figure 5c) has high
NDVI values in the autumn–winter period and in the spring–summer period. It is allocated in the
positive part of FPCA1 and FPCA2. Its NDVI profile shows a low NDVI seasonality. NDVI values
slightly increase in the summer period up to the 17th bi-week (end of August), where they reach the
maximum value (about 0.85); then, the NDVI values decrease slightly until the end of the year.

The Pinus halepensis and P. pinea plantation (purple spiderplot and NDVI profile in Figure 5c)
has NDVI values ranging from 0.75 to 0.8. Unlike the other plant associations, it has the NDVI
autumn–winter values greater than the spring and summer ones. This plantation is thus allocated in
the positive part of FPCA1 and the negative part of FPCA2.

3.3. Phenology and Topography-Based Plant Association Map

The random forest mapped the four forest plant associations (Figure 6) with a high overall
classification accuracy (87.50 ± 7.1%) and Kappa statistic (0.81 ± 0.11). The confusion matrix (Table 3)
showed that the producer’s accuracy ranges from 42.0% (Asparago acutifolii–Ostryetum carpinifoliae) to
95.6% (Cephalanthero longifoliae-Quercetum ilicis), while user’s accuracy is between 81.6% (Cephalanthero
longifoliae-Quercetum ilicis) and 98.5% (Pinus sp. plantation) The OOB Mean Decrease Accuracy index
revealed that the first four principal seasonal NDVI variations were the most important predictors for
mapping accuracy and were higher than the topographic and lithological ones. The first eight OOB
Mean Decrease Accuracy values (in descending order) are listed: FPCA2 (100.0), FPCA1 (97.2), FPCA3
(60.2), FPCA4 (44.6), PC4 (35.5), FPCA5 (32.9) PC1 (28.9), PC2 (24.1). PC4 and PC2, mostly represent
the lithological variability (“scaglia rossa” and “maiolica” formations) while PC1 separates hot sunny
areas from those exposed to the north and “bora” wind. The contribution to the OA of topography and
lithology is limited to 4.3%. In case we exclude the topography and lithology, we obtain an OA of
83.2% (K = 0.75).
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Figure 6. Forest plant associations and habitat map of Mount Conero (Central Italy) obtained
by the supervised random forest classification of the main seasonal remotely sensed (NDVI)
phenological variations, and the main topographic and lithological gradients. Legend (Plant
associations): 1-Cephalanthero longifoliae-Quercetum ilicis; 2-Cyclamino hederifolii-Quercetum ilicis;
3-Asparago acutifolii-Ostryteum carpinifoliae; 4-Pinus halepensis and P. pinea plantation. Cephalanthero
longifoliae-Quercetum ilicis and Cyclamino hederifolii-Quercetum ilicis belong to habitat 9340 listed in
Annex I of the Habitats Directive.

Table 3. Cross-validated confusion matrix (10-fold, repeated 20 times) between the predicted forest
plant association of the Mount Conero (Central Italy). Entries are the percentage of the average counts
across repeats. Producer’s accuracy and user’s accuracy (in percentage) for plant associations are given.
Plant association: 1-Cephalanthero longifoliae-Quercetum ilicis; 2-Cyclamino hederifolii-Quercetum ilicis;
3-Asparago acutifolii-Ostryteum carpinifoliae; 4-Pinus halepensis and P. pinea reforestation.

Training Data

Plant Association 1 2 3 4 User’s Accuracy (%)

Prediction

1 39.4 3.7 4.3 0.9 81.6
2 1.4 17.3 0.0 1.7 84.8
3 0.1 0.0 3.1 0.0 96.8
4 0.3 0.1 0.0 27.7 98.5

Producer’s accuracy (%) 95.6 82.0 42.0 91.4

Overall accuracy (%) 87.5

Kappa statistic (%) 0.81

The pattern distribution of the plant associations is really close to the last phytosociological map
made in the traditional way. Cephalanthero longifoliae-Quercetum ilicis and Asparago acutifolii–Ostryetum
carpinifoliae are distributed mainly on the north-facing slopes, exposed to the cold winter winds, on the
“scaglia rossa” formation, landslide deposits, and slope deposits. The Cyclamino hederifolii-Quercetum
ilicis and Pinus sp. plantations, on the contrary, are spread on the sunny south and west-facing slopes,
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protected from the cold winter winds on “scaglia rossa” formation and high topographic position
index. The Cephalanthero longifoliae-Quercetum ilicis also occurs, in linear forms, along the impluvium
line of the south-facing slopes (Figure 6).

The whole mapping process took about 150 hours: 110 for field analysis (90 for the first step and
20 for the second), and 40 for the other laboratory analyses (visual interpretation of images, Landsat 8
images collection and pre-processing, DEM analysis, FPCA, and RF supervised classification).

4. Discussion

4.1. Mapping Performance and Methodological Considerations

The results suggest that the Mediterranean forest plant association has distinct remotely sensed
phenological behaviors and that the main seasonal phenological variations, useful to discriminate the
contiguous Mediterranean habitats [17,19,20], extracted from the NDVI Landsat 8 time series using
FPCA, are efficacy predictors for mapping the forest plant associations. Thus, the supervised random
forest classification, similarly to Zhu and Liu [55], revealed that the main remotely sensed phenological
seasonal variations (expressed by the first four pixel-based FPCA scores) contributed to the high OA
(87.5%) of the map, much more than the lithological and topographic features.

This mapping methodology (based on the FPCA scores), if compared to traditional maps produced
so far (e.g., [7,24]), shows several different advantages and useful potential implications regarding
the Habitats Directive. This mapping process is time saving, (it required 150 hours for 650 hectares),
furthermore, it facilitates the repetition of plant association mapping (every 6 years) as established
by the Habitats Directive [1] and the Italian guidelines regarding monitoring systems [27]. It is also
an effective tool useful for monitoring and detecting the changes over time of forest habitats, due to
climate change and/or changes in management. For example, attention should be paid to the forests
of Cephalanthero-Quercetum ilicis (habitat 9340), in which the dominance of the holm oak was favored
by the coppicing [24]. Today, this forest is no longer managed but left to its free evolution (passive
management) and the natural inter-specific competition could favor deciduous species such as Ostrya
carpinifolia and Acer obtusatum in the overstory layer at the expense of Quercus ilex, with the consequent
loss of the habitat 9340. Floristic variations at the plot level, as well the variations in the remotely
sensed NDVI curves, could be important warning signals for changes and loss of habitats. However,
this mapping provides important information to identify areas where it is possible to increase the
presence of the habitat. For example, the reforested coniferous areas do not show the capacity to renew
themselves. Indeed, in some sectors, in the understory layer, there is a spontaneous growth of species
such as Quercus ilex, Juniperus oxycedrus, and Pistacia lentiscus which are indicators of the Cyclamino
hederifolii-Quercetum ilicis association (habitat 9340—see Table A1). In these sectors, the phenological
response of forested areas tends to be similar to those of Cyclamino hederifolii-Quercetum ilicis (see
Figure 5). Therefore, the current mapping would allow us to highlight these areas where appropriate
management measures could favor the conversion towards forests of Cyclamino hederifolii-Quercetum
ilicis, with a consequent gain of the habitat 9340. A further advantage, compared to traditional
mapping, is that this method provides the estimate of uncertainty, never provided in previous maps
(e.g., [7,24]). The uncertainty of results can be used to improve the mapping process (e.g., to reinforce
the number of permanent plots) and is important for the end users to evaluate the distribution of
uncertainty over the adopted classes, suggesting how habitat classes could be misclassified with other
ones (e.g., Cephalanthero longifoliae-Quercetum ilicis -Table 3). Besides the statistical data highlighted
in the confusion matrix (Table 3), it is important to evaluate the quality and relevance of the errors.
For example, in the Habitats Directive’s perspective, the misclassifications between the Cephalanthero
longifoliae-Quercetum ilicis and the Cyclamino hederifolii-Quercetum ilicis could be “acceptable” since
both belong to the same habitat (9340). On the contrary, the misclassification of one of the two
plant associations mentioned above with Asparago acutifolii–Ostryetum carpinifoliae or with Pinus sp.
plantation should be considered to be an error. However, the high user accuracy we obtained (with an
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average of 90%, all plant associations have values above 80%) makes the map reliable for multiple
applications in the context of the Habitats Directive (i.e., establishing conservation measures or the
assessment of Plans and Projects significantly affecting Natura 2000 sites as stated in Art. 6).

The approach here proposed, mainly based on FPCA, is a valid tool to mitigate one of the main
problems affecting Remote Sensing and GIS for Habitat Quality Monitoring. The key problem is
the difficult comparability and direct relation between sensor-based and field monitoring data [56].
The FPCA scores, in fact, used in subsequent analyzes (e.g., correlation) have allowed us to test the
relationships between the main remotely sensed phenological gradients with the topographic and
floristic features and to express these relationships, similarly to the well-known (to phytosociologists
and ecologists) PCA ordering technique, in a reduced phenological space (Figure 5). This reduced
(phenological) space is therefore an effective graphical tool which summarizes the relationships between
phytosociological information detected in the field, the environmental information derived from a DEM,
and the main remotely sensed phenological gradients, and facilitates the comparison and ecological
interpretations of different perspectives of the same habitat. FPCA1 is the autumn–winter NDVI
phenological gradient that, increasingly, puts in order the Asparago acutifolii–Ostryetum caprinifoliae,
Cephalanthero longifoliae-Quercetum ilicis and Cyclamino hederifolii-Quercetum ilicis, and is positively
correlated with the aridity and heat gradient due to lithological and topographic features. FPCA2 is the
spring–summer NDVI phenological gradient that discriminates the coniferous needleleaf reforested
areas from the other broad-leaved plant associations (Figure 5).

Even the temporal NDVI profiles are an effective tool, which directly expresses the relationship
between the remote-sensed phenology and the vegetation classified in the field, as similarly
demonstrated in [18,57] for physiognomic types. The temporal NDVI curves of Figure 5 suggest that
the NDVI time profiles can be a functional and diagnostic signature of the Mediterranean forests, not
only at the physiognomic level but also at the plant association level. The comparison and the ecological
interpretation of remotely sensed and field monitoring data could benefit of the plant association NDVI
curves empowered by the FPCA phenological plot (Figure 5).

Considering the increasing availability of remotely sensed data with a high spatial and temporal
resolution (e.g., Sentinel 2) [56], we believe that FPCA could promote the integration between classical
phytosociological analyses and remotely sensed phenological data. For example, in addition to
the methodology proposed here, we hypothesize that a preliminary unsupervised classification
(e.g., k-means clustering) of the FPCA scores, which could identify distinctly homogeneous areas for
phenological characteristics (called pheno-cluster in Bajocco et al., [57,58]) will contribute to define
efficient phytosociological sampling strategies. Furthermore, FPCA scores and NDVI profiles could be
functional vegetation attributes useful for validating new (syntaxonomic) vegetation classifications [59].

4.2. Some Considerations of the Limits of This Study and Future Works

Although this mapping process is accurate and promising, with positive implications for the
Habitats Directive, it should be considered that the study area is limited to 650 hectares, even if
with a wide variety from the phytosociological point of view. We are extending the analysis to other
central Apennine areas and the preliminary results confirm the capability of the above-discussed
method to map five forest categories, two shrublands, and a grassland at the level of plant associations.
Furthermore, it should be mentioned that the study excluded fragmented, residual, and linear forests,
because they are not suited to the spatial resolution of Landsat-8 images (30 m), but are relevant to be
mapped because, in some cases, e.g., if dominated by Quercus pubescens s.l., they are attributable to
the habitat 91AA* [5]. The Sentinel-2 images, with a spatial resolution of 10 meters, were not used
because of the limited availability of the second level images (available from May 2017 not covering
the reference period 2013–2018). Considering the higher temporal and spatial resolution of this set of
images, the proposed methodology should be evaluated to also understand the differences over time.
Finally, the phenological response was anomalous in some cases, such as in the areas of the northern
steep cliff, where winter images are fully shaded [60] (despite the topographic normalization carried
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out in the pre-processing activities of images). These anomalies are visible, for example, in Figure 5
(the elongated branches of the spiderplot are the pixels investigated in the field in the full shaded
situations). However, problems related to topography and low sun elevation angle, can be avoided
by using other types of images (e.g., PlanetScope by Planet). Finally, the harmonic regression (that
shows neglectable inter-annual variation—see Figure 4a) and the FPCA (that not detected outliers in
addition to those of the shaded pixels due to geo-morphology—see Figure 5c) confirmed the absence of
meaningful land use changes (e.g., deforestation, fire . . . ). Then, the phenological responses of plant
associations have not been “distorted” or “confused” by possible land use changes. However, it could
be interesting and useful in the future to analyze (at the pixel level) at the same time both inter-annual
and intra-annual variations by applying the FPCA.

5. Conclusions

The problem of mapping forest plant associations and habitats has a relevant impact on the
decision taken by policy makers to monitor and preserve our environments. The generation of
habitat-vegetation maps is today mainly performed by photo-interpretation, which is a time- and
cost-consuming method. This work presented a new methodological framework based on FPCA to
map the forest plant associations. In this work, NDVI time series from Landsat-8 were used. The
obtained results show that it is possible to identify the main intra-annual seasonal variations by using
Landsat-8 images and that the Mediterranean forest plant associations have different phenological
behaviors. The supervised mapping of the plant associations achieved a global accuracy of 87.5%.
The main seasonal (NDVI) phenological variations (FPCA components), extracted by FPCAs from
the NDVI time series, contributed to the global accuracy of the map much more than the topographic
and lithological variables. This aspect opens-up a new way of creating more detailed (temporal and
spatial) maps. The FPCA was important to map the plant associations considering the phenology,
making explicit reference to the seasonality of the vegetation without giving up the chronological
order of the data. It should also be considered that the FPCA scores, which embody the chronological
order of changes, can be used in subsequent analysis (e.g., ordination, clustering, correlation) enabling
the comparison and interpretation of results from different points of view of the same habitat. The
FPCA scores have an enormous potentiality to develop integrated analysis between the traditional
field plot phytosociological and vegetational data and the remotely sensed data. An unsupervised
classification of the FPCA scores could be useful to steer the phytosociological sampling, especially
in partially explored and investigated areas. The NDVI time profiles and the FPCA scores could be
important attributes useful in the validation processes of the vegetation classification. The NDVI
annual average profile and the seasonal variations identified through FPCA showed to be very effective
functional descriptors of plant associations. They could be considered to be real Plant Functional
Types (PFTs) complementary to species-based approaches in plant community ecology, syntaxonomy,
and biogeography. Indeed, they act as a sensible and pragmatic tool to show, monitor and preview
environmental changes [61]. The obtained results demonstrated that this kind of approach: (i) is cost
saving, effective, accurate and could be run periodically to output maps that reflect the “current” status
of vegetation and habitats also reducing costs and risks of delaying the reporting requested by the
Habitats Directive (92/43/EEC) [19]; (ii) the FPCA is a suitable and elegant solution to simultaneously
express the relationships between remotely sensed and ecological field data. The approach could be
applied to other vegetation typologies also supporting policy makers with updated maps to monitor
and preserve biodiversity with a reduced effort in terms of required resources.

Future works will be steered to assess other vegetational indexes derived from data acquired with
satellite platforms such as Sentinel-2, as well the comparison with other machine learning algorithms
other than RF. Moreover, it could be interesting to analyze at the pixel level both inter-annual and
intra-annual variations by applying the FPCA. For these analyzes, however, it would be necessary to
collect a greater number of scenes by integrating Landsat 7, Landsat 8, and Sentinel 2.
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Appendix A

Table A1. Summary frequency table (percentage) of species composition of the 4 clusters (plant
associations) identified by the hierarchical cluster analysis on 53 field phytosociological relevés of the
forests of Mount Conero (Marche, Central Italy). Plant associations: 1, Cephalanthero longifoliae-Quercetum
ilicis; 2, Cyclamino hederifolii-Quercetum ilicis; 3, Asparago acutifolii–Ostryetum carpinifoliae; 4, Pinus
halepensis and P. pinea reforested plantation. Species with at least 25% of frequency are reported. In gray
the species indicators (phi ≥ 0.4, p-value < 0.05).

Plant Association 3 1 2 4

Number of plots (pixels) 7 22 18 6

Mean Richness
(±SD) of groups

27.7 16 13.6 15.1
(±4.9) (±3.2) (±2.5) (±4.4)

Primula vulgaris 43
Stachys officinalis 57

Campanula trachelium 29
Solidago virgaurea 29

Brachypodium sylvaticum 71
Buglossoides purpurocaerulea 71

Euonymus europaeus 29 17
Cornus mas 29

Sanicula europaea 29
Epipactis helleborine 43 9 11

Hepatica nobilis 57 9
Cornus sanguinea 71 9

Crataegus monogyna 71 9 33
Viola reichenbachiana 71 5

Melittis melissophyllum 86 14
Viola alba ssp. dehnhardtii 100 32 6

Lonicera etrusca 100 5 6 17
Carex halleriana 100 5 6 50
Daphne laureola 100 45 17 33
Acer obtusatum 100 59 6 33

Quercus virgiliana 100 50 44 100
Ostrya carpinifolia 100 100 17

Cyclamen repandum 29 50
Ilex aquifolium 36 17

Mercurialis perennis 32
Quercus ilex 100 100 100 100

Phillyrea media 9 44
Osyris alba 14 61 17

Pistacia lentiscus 50 17
Arbutus unedo 50 100 50

Pinus pinea 5 67
Pinus halepensis 5 11 100

Cyclamen hederifolium 43 45 22
Ruscus hypoglossum 14 50 6

Sorbus domestica 43 14 17
Sorbus torminalis 14 27 6
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Table A1. Cont.

Plant Association 3 1 2 4

Cephalanthera longifolia 29 5 11
Juniperus oxycedrus 39 33

Hedera helix 100 86 44 33
Viburnum tinus 29 95 100 100
Smilax aspera 86 100 100 67

Rubia peregrina 100 77 72 83
Ruscus aculeatus 86 100 100 50
Fraxinus ornus 100 100 100 100

Asparagus acutifolius 100 77 100 83
Coronilla emerus ssp. emeroides 86 50 83 17

Rosa sempervirens 57 36 50 50
Laurus nobilis 14 36 6 17

Brachypodium rupestre 57 5 67
Rubus ulmifolius 57 9 67

Prunus avium 29 17

Table A2. Landsat-8 images covering the study area used with the acquisition dates converted into
Day of Year (DoY), week, bi-week, and month.

Acquisition Date DoY Week Be-Week Month Year

06/01/2015 6 1 1 1 2015
23/01/2018 23 4 2 1 2018
27/01/2017 27 4 2 1 2017
08/02/2018 39 6 3 2 2018
13/02/2014 44 7 4 2 2014
18/02/2019 49 7 4 2 2019
06/03/2019 65 10 5 3 2019
09/03/2017 68 10 5 3 2017
15/03/2019 74 11 6 3 2019
16/03/2017 75 11 6 3 2017
17/03/2014 76 11 6 3 2014
22/03/2019 81 12 6 3 2019
25/03/2017 84 12 6 3 2017
28/03/2018 87 13 7 3 2018
31/03/2019 90 13 7 3 2019
02/04/2014 92 14 7 4 2014
10/04/2017 100 15 8 4 2017
12/04/2015 102 15 8 4 2015
15/04/2013 105 15 8 4 2013
16/04/2019 106 16 8 4 2019
18/04/2014 108 16 8 4 2014
20/04/2018 110 16 8 4 2018
21/04/2015 111 16 8 4 2015
25/04/2014 115 17 9 4 2014
29/04/2018 119 17 9 4 2018
07/05/2015 127 19 10 5 2015
16/05/2016 137 20 10 5 2016
20/05/2014 140 20 10 5 2014
28/05/2017 148 22 11 5 2017
30/05/2015 150 22 11 5 2015
31/05/2018 151 22 11 5 2018
07/06/2018 158 23 12 6 2018
08/06/2015 159 23 12 6 2015
12/06/2014 163 24 12 6 2014
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Table A2. Cont.

Acquisition Date DoY Week Be-Week Month Year

13/06/2017 164 24 12 6 2017
18/06/2013 169 25 13 6 2013
20/06/2017 171 25 13 6 2017
23/06/2018 174 25 13 6 2018
24/06/2015 175 25 13 6 2015
26/06/2016 178 26 13 6 2016
28/06/2014 179 26 13 6 2014
01/07/2015 182 26 13 7 2015
02/07/2018 183 27 14 7 2018
06/07/2017 187 27 14 7 2017
07/07/2014 188 27 14 7 2014
09/07/2018 190 28 14 7 2018
10/07/2015 191 28 14 7 2015
11/07/2013 192 28 14 7 2013
12/07/2016 194 28 14 7 2016
15/07/2017 196 28 14 7 2017
18/07/2018 199 29 15 7 2018
20/07/2013 201 29 15 7 2013
19/07/2016 201 29 15 7 2016
22/07/2017 203 29 15 7 2017
23/07/2014 204 30 15 7 2014
25/07/2018 206 30 15 7 2018
26/07/2015 207 30 15 7 2015
05/08/2013 217 31 16 8 2013
04/08/2016 217 31 16 8 2016
08/08/2014 220 32 16 8 2014
12/08/2013 224 32 16 8 2013
13/08/2016 226 33 17 8 2016
15/08/2014 227 33 17 8 2014
16/08/2017 228 33 17 8 2017
18/08/2015 230 33 17 8 2015
20/08/2016 233 34 17 8 2016
23/08/2017 235 34 17 8 2017
27/08/2015 239 35 18 8 2015
29/08/2016 242 35 18 8 2016
04/09/2018 247 36 18 9 2018
06/09/2013 249 36 18 9 2013
09/09/2014 252 36 18 9 2014
11/09/2018 254 37 19 9 2018
12/09/2015 255 37 19 9 2015
14/09/2016 258 37 19 9 2016
27/09/2018 270 39 20 9 2018
30/09/2016 274 40 20 9 2016
03/10/2017 276 40 20 10 2017
26/10/2017 299 43 22 10 2017
01/11/2016 306 44 22 11 2016
03/11/2014 307 44 22 11 2014
06/11/2015 310 45 23 11 2015
17/11/2016 322 46 23 11 2016
20/11/2017 324 47 24 11 2017
06/12/2017 340 49 25 12 2017
09/12/2018 343 49 25 12 2018
11/12/2013 345 50 25 12 2013
17/12/2015 351 51 26 12 2015
18/12/2013 352 51 26 12 2013
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Ostrya carpinifolia). In green the dominant species Quercus ilex. d) Photo of 19 Nov 2017 on the 
western side of Mount Conero. The association Asparago acutifolii–Ostryetum carpinifoliae (in 
brown-yellow color) can be distinguished from the evergreen neighboring Pinus halepensis and P. 
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Pinus halepensis and P. pinea plantation. Pictures a,c, and e) allow distinguishing of Cyclamino 
hederifolii-Quercetum ilicis from Cephalanthero longifoliae-Quercetum ilicis and Asparago 
acutifolii–Ostryetum carpinifoliae. In a) dark green, dominant, corresponds to Quercus ilex while 
flowering ash (Fraxinus ornus), the only deciduous species of this community, appears white because 
of the abundance of flowers. In c) the abundance of flowering ash (white) and other deciduous species 
(light green) such as Acer obtusatum, Ostrya carpinifolia, Sorbus sp. alternating with Quercus ilex 
(dark green), is very evident. In e) holm oak is absent, indeed only deciduous tall trees occur such as 
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community of a vegetative grows in late summer. In h) the occurrence of light green is evident, while 
in g) it completely lacks. 
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51. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
52. Evans, J.S.; Cushman, S.A. Gradient modeling of conifer species using random forests. Landsc. Ecol. 2009, 24,

673–683. [CrossRef]
53. Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 2.8-4. Available online:

https://cran.r-project.org/package=raster (accessed on 1 April 2020).
54. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
55. Zhu, X.; Liu, D. Accurate mapping of forest types using dense seasonal landsat time-series. ISPRS J.

Photogramm. Remote Sens. 2014, 96, 1–11. [CrossRef]
56. Zlinszky, A.; Heilmeier, H.; Balzter, H.; Czúcz, B.; Pfeifer, N. Remote sensing and GIS for habitat quality

monitoring: New approaches and future research. Remote Sens. 2015, 7, 7987–7994. [CrossRef]
57. Bajocco, S.; Ferrara, C.; Alivernini, A.; Bascietto, M.; Ricotta, C. Remotely-sensed phenology of Italian forests:

Going beyond the species. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 314–321. [CrossRef]
58. Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping Forest Fuels through Vegetation

Phenology: The Role of Coarse-Resolution Satellite Time-Series. PLoS ONE 2015, 10, e0119811. [CrossRef]
59. De Cáceres, M.; Chytrý, M.; Agrillo, E.; Attorre, F.; Botta-Dukát, Z.; Capelo, J.; Czúcz, B.; Dengler, J.; Ewald, J.;

Faber-Langendoen, D.; et al. A comparative framework for broad-scale plot-based vegetation classification.
Appl. Veg. Sci. 2015, 18, 543–560. [CrossRef]

60. Riaño, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in landsat-TM
data for mapping vegetation types (2003). IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [CrossRef]

61. Duckworth, J.C.; Kent, M.; Ramsay, P.M. Plant functional types: An alternative to taxonomic plant community
description in biogeography? Prog. Phys. Geogr. Earth Environ. 2000, 24, 515–542. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/11263504.2011.572569
http://dx.doi.org/10.1890/08-1823.1
https://cran.r-project.org/package=vegan
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1007/s10980-009-9341-0
https://cran.r-project.org/package=raster
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.012
http://dx.doi.org/10.3390/rs70607987
http://dx.doi.org/10.1016/j.jag.2018.10.003
http://dx.doi.org/10.1371/journal.pone.0119811
http://dx.doi.org/10.1111/avsc.12179
http://dx.doi.org/10.1109/TGRS.2003.811693
http://dx.doi.org/10.1177/030913330002400403
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Data Collection 
	Remote-Sensed NDVI Times Series 
	Functional Principal Component Analysis of NDVI Time Series 
	Topographic and Lithological Factors 
	Forest Plant Associations and Reference Data Collection 
	Relationships between NDVI Seasonality, Topography, and Forest Plant Associations 

	Supervised Mapping of the Forest Plant Associations 

	Results 
	Forest Vegetation Field Survey and Plant Associations 
	Main Seasonal NDVI Variation of the Forests 
	Phenology and Topography-Based Plant Association Map 

	Discussion 
	Mapping Performance and Methodological Considerations 
	Some Considerations of the Limits of This Study and Future Works 

	Conclusions 
	
	References

