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Abstract: In this paper a sensor data fusion approach for characteristics field monitoring, based on time variance control 
model, is proposed. Distributed sensing and remote processing are the basic features of the employed architecture. In fact, 
in order to obtain meaningful information about the temporal and spatial variations, which characterize the field levels of 
some characteristics (electromagnetic, air pollution, seismic, etc), a distributed network of wireless and mobile smart-
sensors has been designed. 

Starting from the partitioned configuration of a monitored geographic areas, this model allows to take into account the 
different levels of degradation over time in the sensors' performances associated with the different geographic partitions, 
progressively increasing the severity of the control. To this end, through the introduction of a reliability curve, a revised 
traditional control chart for variables is proposed.   

The proposed approach, further constituting an element of the scientific debate, aims to be a useful operational tool for 
professionals and managers employed in the environment control. 
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1. Introduction 
The main objective of monitoring is to obtain a better 
understanding of the observed phenomenon, combining a 
geographical approach with a metrological one. This task 
is not always easy, in fact, often a direct physical 
knowledge of the process behaviour or an ‘a priori’ 
information is not available, so should be done only 
generic assumptions. Therefore, a careful study is required 
in order to single out both influence factors and 
phenomenology correlated to the considered application. 
The proposed model, starting from the partitioned 
configuration of a monitored geographic area (De Capua 
et al., 2005), allows to take into account the different levels 
of degradation over time in the performance of the sensors 
associated with the different geographic partitions, 
progressively increasing the severity of the control of the 
monitored parameters. To this end, through the 
introduction of a reliability curve, a review of the 
traditional control chart for variables is proposed. A 
similar approach based on reliability applied to the field of 
remote sensing in the energy sector is followed by Zhou 
and other authors (Zhou et alk., 2010). Other methods 
applied in different field are, for instance recognizable in 
monitoring the main vegetation changes (Favretto, 2018). 
Particularly, the basic idea behind the work is to consider 
the traditional tool for controlling environmental processes 
(Haibin et al., 2017) that insist on a certain geographical 
area, i.e. the variable control chart, and to modify this 
indicator in order to improve the quality of information 
that it produces. To modify it in this sense, this 

methodology takes into account a natural degradation over 
time of the performance of the sensors through which the 
processes are monitored. 
Traditional control charts are based on the assumption that 
the measurement data detected by the field sensors, 
relating to the average of each subgroup of the parameters 
under observation of a monitored environmental 
characteristic, are reported regardless of the stability of its 
parameters over time (Elhoseny et al., 2015; Quing et al., 
2006). 
The traditional approach involves the construction of 
control charts characterized by stationary limits, ignoring 
the possibility of an "adjustment" of the aforementioned 
limits in relation to time (degradation after a certain delta 
t) and space (in terms of gradient between geographical 
partitions of a large area to be monitored). This conceptual 
innovation determines the possibility of having an 
instrument capable of carrying out a control of the 
"trajectory tracking" type, modulated on the possible 
variations of the measurand. The modeling for the 
described scenario is based on the implementation of the 
reliability function as a source of the variability of the 
control limits, as it can be predetermined through the life 
curves of the performance of the environmental sensors.  
The results achievable through the proposed approach 
allow to improve the "sensitivity" of the remote 
monitoring sensor networks through the modulation of the 
control limits. In this way is, therefore, possible acquire a 
beneficial discriminatory power capable of separating the 
effects of random variability deriving from common 
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causes, from those related to deterministic variability of 
the measurand. 
The quality of the information collected through remote 
sensing is expressed with characteristics that can be 
verified with deterministic and probabilistic techniques. 
The formers are represented by tolerance limits and the 
measurement usually takes place by verifying their degree 
of conformity. The seconds are represented by expected 
performances over time of the monitored environmental 
characteristic. 
These methodologies are used to guarantee the variation 
within allowed limits of environmental characteristics 
(EM field values, air pollution, etc.) over time and to 
prevent their associated human, natural or artificial risks 
(Chang, Yu, 2012). 
The control charts could be used, in fact, to control the 
variability of the environmental characteristics to which 
man and the environment itself are exposed. 
The variability of a monitored feature is affected by two 
different types of causes, common causes and special 
causes. The common causes are attributable to an 
identifiable set of anomalies and dysfunctions always 
present in a process. The variability depending from these 
causes is predictable: the “bell curve”, representing the 
standard variability, is contained within standard limits. 
Special causes occur accidentally and induce systematic 
variations in the monitored environmental characteristic. 
In the following paragraph the model of the revised control 
chart is developed considering the degradation of the 
environmental sensors’ performance among the common 
causes. This solution allows a more severe control as it is 
more selective with respect to the intrinsic variation of the 
phenomena monitored in a geographical area. 
Subsequently, the results of an application of this control-
map to a real case of environmental monitoring will be 
reported and discussed. The conclusions then will close the 
contribution. 
 

2. Time Variance Control model 
In the traditional process control of an environmental 
characteristic by means of remote sensing, the control 
ranges normally associated with common causes are 
assumed according to the normal standard quantiles 
(figure 1), according to which (Huitian, 2001): 
- 68.27% of the results of a measurement fall within the 
range M ± σ; 
- 95.45% of the results of a measurement fall within the 
range M ± 2σ; 
- 99.73% of the results of a measurement fall within the 
range M ± 3σ; 

 

(1) 

with σ mean square deviation. 
In this framework, a key point emerges concerning the fact 
that any environmental characteristic to be monitored, if 

considered isolated from any external influence, results 
characterized by its own natural variability that is 
generally adequately predictable. 
A system under these conditions is in a state of control. 
As previously mentioned, in this situation the system 
constituted by the characteristic to be monitored and by the 
network of remote sensors, comes to be influenced by a 
series of common causes: 
- the common causes depend by the way in which the 
system was designed and built; these causes are, therefore, 
intrinsic features of the system; 
- in the presence of only common causes, the extent of data 
dispersion is constant and predictable, and in this interval 
the variability is random; 
- if only common causes act on a system, it makes no sense 
to operate on a specific aspect of the system, cause if the 
variability is too great it can only be reduced by modifying 
the system. 
External causes outside of the system that create variability 
characterized by the same sign, are called special causes. 
These causes alter natural variability and generate 
unpredictable variability that disturbs the functioning of 
the process. 
Unlike common causes, it is possible to act directly on 
special causes as these are outside the natural functioning 
of the system; in this situation it is necessary to act on a 
specific aspect of the system to remove the source of 
disturb and so consequently remove the variation it has 
generated. 
The Control Chart is a statistical tool that allows to alert if 
a system is out of control. The most common form of the 
control chart records in chronological order and 
graphically the values detected by the sensors, with 
reference to limits that take into account the natural 
variability of the monitored process. 
There are two basic types of control charts: 
-variables' charts, used when it is necessary to take a 
measurable environmental characteristic under control 
(E.M fields, air pollution, etc); 
-attributes' charts, used when the characteristic (and their 
values) should be judged in terms of "good" or "not good". 
The most common type of variable control chart is the X-
R chart. 
The core values of the X-R Control Chart are: 
- the average of the parameter x, obtained from 
measurements performed on samples taken from an 
environment process to be monitored;  
- the Range (R), representing the difference between the 
minimum and maximum values in the acquired samples; 
- the upper and lower limits within which the process is 
maintained if it respects its natural variability. 
Each point of the control chart reflects the average value 
of several samples of the same parameter. When a point 
gets out of bounds it is likely that the process is no longer 
under control. 
The out of control state can also occur if the points do not 
remain outside the limits but they draw particular 
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configurations inside the control limits not attributable to 
a random situation. 
The X-R maps are presented as two distinct diagrams, 
which have in common the abscissa scale, graduated 
according to the frequency of the acquired samples 
deriving from field sensors, and show in ordinate data 
obtained from measurements carried out on the average 
values related to samples of the subgroups. 
For the construction of X-R chart, could be traced: 
for the X Chart  
- a continuous line corresponding to the average value x, 
calculated as the average of the xi measured values, 
relating to the various subgroups considered, or of the 
expected average value, x; 
- two broken lines for process analysis, called Upper 
Control Limit (UCL) and Lower Control Limit (LCL); 
- two dotted lines that identify the warning values that 
foreshadow the approach of out-of-control situations; 
for the R chart 
- a continuous line corresponding to the R value, the 
average of the values of the deviation R of all the 
considered subgroups; 
- a broken line corresponding to the Upper Control Limit. 
 
The distance between UCL and LCL from the mean line is 
established in relation to the permissible dispersion for the 
process according to the choice of severity level control 
compliance with the mission critical of the phenomena. 
In a normal distribution, the probability that any value of 
the parameter under observation is included in the area 
under the curve, between the x-3σ and x + 3σ abscissas is 
equal to 99.73% (where x is the average value). 
In current practice, the control limit values with respect to 
the mean are precisely set equal to x + 3σ (UCL) and x-3σ 
(LCL). 
It should be noted that the line of the average value to be 
reported in the diagram may be, according to the intended 
use for the chart, that corresponding to the average of the 
experimentally detected xi values, or that of the expected 
specification value, x. 
In the first case, the objective of the paper is to statistically 
examine the process, to see if only common causes act on 
it, which is the dispersion of the results and finally to check 
if there are any possible variations. When the goal is to 
ensure that the process reflects the project specifications, 
inside the bandwidth UCL-LCL, value corresponding to 
the allowable deviation must be reported. 
The control lines are useful for immediately identifying the 
out-of-control situation of the process and the need to act 
with corrective actions and avoid out-of-specification 
points. 
The warning lines, often also represented on the diagrams, 
are vice versa used to highlight the approaching risk 
situations of out of control; these lines are generally fixed 
at a distance equal to + 2σ and -2σ from the central line. 
When the data calculated by a subgroup lies between the 
warning line and the adjacent control line, it is good 

practice to observe the process to understand if a special 
cause has occurred or if there is a process of significant 
alteration of one of the influencing parameters.  
R-Chart, to be used in conjunction with X-Chart, can also 
be accompanied by an indication of the value evaluated as 
the average of the measurements carried out on the 
subgroups, or by that of specification. In this chart, of 
course, only the upper control limit is indicated. The 
observation of the R chart is above all useful to check the 
extent of the dispersion in the process. 
The traditional control charts, as previously introduced, 
are characterized by stationary control limits, set at ± 3σ, 
with respect to the mean of the considered parameter under 
observation. In this case, reference is made to a system of 
Cartesian axes, with the number of subgroups taken on the 
abscissa and the values of the parameter under observation 
on the ordinate, with particular attention to the average of 
the same subgroups.  
The typical control chart, therefore, will appear as in figure 
1. 
 

 
Figure 1. Control chart 
 
In order to "transform" the traditional control chart into a 
"reliability chart" varying over time, it is necessary, as a 
first step, to make the abscissa axis linked to time, 
replacing the data collected on the abscissa of the subgroup 
data from the sensors according to their acquisition 
sequential time. 
 

2.1 Time variance monitoring chart (case σ constant) 

For the purposes of the construction of the proposed 
monitoring reliability chart, assessed by the failure rate 
relating to the particular sensor of the specific 
geographical partition of the area to be monitored, the 
following assumptions must be observed: 
• constant σ variance: the characteristic under examination 
does not introduce a variation in the variance over time; 
• approximately constant failure rate λ: given the failure 
rate the reliability function R (t) will be known, which 
decreases exponentially with time (Toscano and Lyonnet, 
2008) (Fig. 2). 
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Figure 2. Reliability curve 
 
On the basis of the hypotheses taken into consideration, the 
control chart changes by presenting variable limits, no 
longer of the type ± 3σ (stationary), but of the type ± (3Kσ 
+ k'σ), where the coefficient k depends on time through the 
reliability function with k = f [R (t)] and with coefficient k  
to be considered as a design parameter representing the 
tolerance increase to be assigned to the monitoring system. 
The choice of k should consider that in the initial phase the 
reliability value is maximum and therefore the probability 
of non-compliance is characterized by low average. 
In fact, in the modeling of the system, an increase of the 
tolerance equal to 3σ of the additional quantity k'σ has 
been assumed, which represents the largest share from 
which to start exponentially degrading the control limits. 
Particularly, for a constant failure rate λ it results as in (2). 

𝑹(𝒕) = 𝒆 ∫ 𝝀(𝒕)𝒅𝒕
𝒕
𝟎 = 𝒆 𝝀𝒕 (2) 

In t = 0, the reliability is maximum. Therefore, the 
constraint of a 3σ tolerance can result in a high cost of 
managing the system (given by the sum of the cost of the 
control and the cost of restoring the system) in relation to 
the low probability of having an out of control. Therefore, 
it is more appropriate, with the aim to minimizing the cost 
/ benefit ratio (objective ratio), to risk in this phase of being 
out of control, while having a lower system management 
cost. 
In the following instants of time, vice versa, always with 
the aim to minimizing the objective ratio, it is more 
convenient, being the increased probability of finding an 
out of control, to adopt a more selective control in which 

the term 3σ decreases as 𝒆 𝝀𝒕. 

Considering the incremental value k's, an intersection 
point beyond which the control will be more selective than 
the stationary limit 3σ will remain identified, depending 
from the failure rate of the system under observation and 
the σ of the measured data. 
With the same peculiar rules of a traditional control chart, 
but taking into account the hypotheses previously defined 
and the new variable control limits, it will be possible to 
construct the reliability control chart increasing severity of 
the control (Fig. 3). 
 

 
Figure 3. Time variance reliability control chart 
 
The area highlighted in figure 3 shows an out of control 
situation detected by the time variance reliability control 
chart, but not by the traditional one. Once the reliability 
function for each geographical partition of an area to be 
monitored (hypothesis of homogeneous clusters per single 
partition) is known, therefore, the control becomes more 
strict (less wide control limits) where the decrease in the 
performance of the monitored characteristic becomes more 
evident. 
Conversely, through the new time variance reliability 
control chart (TVRC2), however, it is possible to detect in 
the initial section a situation of out of control for the 
traditional chart, which is instead considered in control by 
the reliability chart. The chart is initially characterized by 
milder limits, with an aim to maximizing costs/benefits 
ratio. In the initial phase, in fact, the low probability of 
having an out of control does not justify corrective actions 
to improve the sensor networks. While in the final phase 
the high probability justifies a more selective control 
system. In fact, making the control more severe implies an 
increase in costs initially avoided through this proposed 
approach. It is useful to make the control dependent from 
the reliability function, according to which the network of 
remote sensors, during their useful life, works by reducing 
its performance only over time. 
 

2.2 Time variance monitoring chart (case σ not 
constant) 

Indeed, the measurements acquired through a sensors’ 
network could be affected by intrinsic variability deriving 
from degradation over time (Basso et al., 2009). In fact, 
there is an increase in the variance, σ (caused both by the 
measurand and by the measurement system), relating to the 
different values progressively measured, as shown in 
figure 4. 
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Figure 4. Intrinsic variability 
 
It is possible to approximate the variance trend over time 
through a linear law such as σ = a1 + a2t.  
In this case, the time variance reliability control chart will 
have control limits resulting from the envelope of 
parametric curves in increasing σ (given the linear 
relationship), i.e. of greater intensity gradually over time 
(Fig. 5). 
 

Figure 5. Case σ not constant 
 
Therefore, the previously defined hypothesis of constant 
variance over time should be removed (also if it can be 
considered valid approximately only for the first intervals 
used for taking the measurements of the various 
subgroups, for which the variance, in fact, does not present 
significant differences). 
In this sense, suppose considering n elements that make up 
the subgroups in each of the 4 time intervals considered. 
Generally, it can be said that for each time interval ∆ti (i = 
1, ... 4), there is an increasing value of σi (i = 1, ... 4). This 
happens because the variance of the parameters under 
observation in the subgroups undergoes a degradation 
between one time interval and the next one. Therefore, it 
could possible to obtain a bundle of parametric limit curves 
in σ, parallel and translated according to the linear 
relationship σ = a1 + a2t, such that the control limit will be 
of the type + (3Kσi + K'σi). 
The Upper Control Limit (UCL) to be considered is the 
union of the various branches of the σ-parametric beam, 

 
1 The monitoring activity was carried out in collaboration with 

the Measurement Laboratory of the "Mediterranea" 
University of Reggio Calabria, Italy, with Professor Claudio 

obtained through the knowledge of the variation σ (t) (Fig. 
6). 
Obviously, it is possible to iterate this construction also at 
the Lower Control Limit (LCL) of the reliability time 
variance monitoring chart. 

 
Figure 6. Envelope Upper Control Limit 
 

2.3 Spatial approach 

Once the model of temporal influence on the performance 
of the monitored environmental characteristics in an area 
is known, it is possible to move to a spatial approach and, 
therefore, to proceed to a space-time data fusion activity. 
In fact, by considering homogeneous clusters of sensors in 
the geographical partitions into which a large area is 
divided, it is possible to obtain as many envelope-curves 
as there are geographical partitions. 
In this way, great efficiency is achieved in remote sensing, 
minimizing the uncertainty on the data detected and 
maximizing the management costs of the sensor network. 
At each point of a monitored area it is therefore possible to 
know the severity of the control to be set and it is possible 
to identify any anomalous situations of out of control 
without false positives or false negatives. The level of 
severity to set in each part of the monitored area will 
depend from its particular feature in term of human or 
artificial risk. 
This generally doesn’t happen in sensor networks that do 
not foresee neither a geographical partition in 
homogeneous areas, neither a temporal dependence on the 
uncertainty of the data collected. 
 

3. Application 
The proposed model was applied in a densely populated 
urban area1. 

3.1 Configurable area partitioning 

The number and size of the clusters are not constant but 
variable and configurable according to the needs (Zhang, 

Maria De Capua (Chief of Laboratory) and Prof. Rosario 
Morello. 
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Chen, 2019) and to the different types of risks as already 
highlighted. Care is paid about the determination of the 
single cluster in order to achieve a correlation among the 
different measurements within the local area; in fact it is a 
pressing constraint for a meaningful processing of data 
which must be comparable. Once selected a proper 
Cartesian coordinates system, the horizontal and vertical 
dimensions of the investigated area have to be selected. 
Then, by choosing the starting width of the grid, an initial 
mask indicates the location coordinates where the sensors 
have to be placed (Chen at al., 2014). Often is recognizable 
the need of analyzing particular areas more in depth, cause 
of the bigger population density or cause of the presence 
of electromagnetic pollution sources. So the implemented 
algorithm, once drawn the geographical grid, waits for one 
of this two inputs: a density of population function f(x,y) 
of the examined zone or an indication of the sub-area, 
chosen by user, that has to be more precisely investigated. 
In the first case, the mean of the f function is evaluated, 
and the algorithm automatically thickens sensors in the 
zones where this mean overcomes a fixed threshold value. 
In the second case, the information about the zone where 
thicken the sensors is obtained through selection of the 
coordinates of a point in the sub-area or by clicking a point 
of the graph. The algorithm automatically thickens sensors 
in the sub-area grid, by dividing each zone in equal sub-
zones (Fig. 7). User can choose to continue the thickness 
process, for a more narrow grid or to stop it. Through this 
algorithm, a simple, graphical information about the 
location where positioning the sensors can be achieved. 
 
 

 
Figure 7. Configuration sensors’ area partitioning 
 
Wide urban area has to be monitored, so it is required a 
distributed architecture for the measurement system (He at 
al., 2016). The network design consists of wireless and 
smart web-sensors moving through the whole area (De 
Capua et al, 2005a,b). The sensing units and the same 
network have been projected according to the guidelines 
of the IEEE 1451 Standard (IEEE). In order to reduce the 

computational burden of each sensor, the area has been 
partitioned in several local zones. The specifications of the 
partition are function of the desired resolution and 
accuracy, so the number and size of the zones are variable 
according to the severity level of the sampling plan. 
Starting from information on the population density 
distribution and topographical data of the area, an original 
algorithm allows to perform the area partition. In details, 
at first, an initial grid is applied on the map of the area. 
According to the available resources and the sensors 
number, the user specifies the number of partitions. By a 
simple subdivision of the total territory extent, the area is 
equally divided in several local zones having the same 
size. Subsequently it is possible to thicken the partition in 
the ‘sensible zones’, which require a greater level of 
attention. Typically, a partition made up of numerous 
small zones should allow a more careful monitoring, but 
on the other side it would involve high costs. 
So, the matter requires a reasonable compromise between 
the tolerable costs and the desired accurateness of the 
monitoring. In fact, the limitation of the available 
resources imposes a clear constraint to the maximum 
number of allowed zones in the area partition. So, it needs 
a criterion for characterizing the zones which require more 
attention and a more careful monitoring. A first parameter 
of choice is the population density. Densely populated 
zones have high risks in presence of hazardous situations, 
if the possible consequences on population are considered. 
Therefore, the algorithm reduces the size of the clusters 
characterized by high population density or by the 
presence of ‘sensible targets’ as hospitals or schools. The 
single interest zone is then further divided in other four 
additional sub-zones of same size (Fig. 8). In this way 
specific plans allow to perform a thorough monitoring of 
the sub-zones, in order to get more information depending 
on the chosen detail level.  
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Figure 8. Partition of the monitored area. 
 
The single web-sensor is equipped with probes measuring 
the electromagnetic field levels. The sensing unit (Fig. 9), 
has been realized by three transducers orthogonally 
displaced on a plexiglas support according to a Cartesian 
system x-y-z. 
 

 
Figure 9. Sensing unit and conditioning circuit. 
 
The output signals are analog voltages ranging from μV to 
mV values, each signal is proportional to the field 
orthogonally colliding with the surface of the device (Hu 
et al., 2016). By a conditioning circuit the three signals are 
amplified according to the working levels of the system. 
Several scales of measuring are available, so a set of 
programmable switches allows to perform an auto-scale 
setting. In this way the smaller scale is selected according 
to the input signal optimizing the resolution and accuracy 

of sensing. A 16 bit A/D converter digitalizes the three 
signals. 
The control unit is based on a microcontroller architecture 
which manages the data-flow operations. So, according to 
the sampling frequency, the total electromagnetic field 
level, by the modulus of the three field levels, is stored in 
a Secure Digital (SD) memory which allows a sufficient 
autonomy of recording for several days. A General Packet 
Radio Service (GPRS) modem permits wireless 
communication, whereas a Global Positioning System 
(GPS) module provides the geographical location of the 
sensor. Two 9V batteries provide the required voltage 
supply making the sensor an independent unit. 
After the sampling procedures, each sensor sends acquired 
data to the own dynamic Web Page in Active Server Pages 
(ASP) format. Every page stores both the electromagnetic 
field levels of the single zone, and information on the same 
sensor about its history, metrological characteristics and 
operating state, as explained in the third paragraph. A 
remote workstation gains access to the Web pages 
information only by means of a password. In this way, it 
will have a first view on the field behaviour in each zone 
(Fig.10). Data are then processed with the time variance 
reliability control chart’s procedure in order to test the 
electromagnetic field compliance with the exposure limits. 
 

 
Figure 10. Data Acquisition Web Interface. 
 

3.2 Results 

The results considered σ constant are shown in figure 11. 
From the comparison between the traditional chart and the 
TVRC2 one, there is initially an out of control not detected 
by the new chart. However, the low probability of having 
an out of control (as indicated by the reliability function), 
indicates that the point seen on the chart is an isolated 
point, and therefore the cost of a restore intervention on the 
system (in this case on the EM field sensor) it's not 
convenient. 
On the contrast, in the tenth subgroup (the subgroups are 
ordered according to time as explained in the previous 
paragraphs) from the observation of the traditional chart, 
unlike the reliability one, a control situation is observed, 
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where instead the system is reducing its performance, 
given the reliability function. Therefore, starting from the 
tenth subgroup onwards, all the effectiveness of the more 
selective proposed model is clear. 
 

 
Figure 11. EM monitoring with TVRC2. Case σ constant. 
 
In figure 12 the particularization to the case σ not constant 
with the beam of the parametric curves in σ, is shown. 
 

 
Figure 12. EM monitoring with TVRC2. Case σ not 
constant. 
 

4. Conclusions 
In this paper has been proposed an innovative management 
of a sensor network for an environmental monitoring 
application. 
The proposed model, starting from the partitioned 
configuration of a monitored geographic area, allows to 
take into account the different levels of degradation over 
time in the performance of the sensors associated with the 
different geographic partitions, progressively increasing 
the severity of the control of the monitored parameters. To 
this end, a modification of the traditional variable control 
chart is proposed, through the introduction of a reliability 
curve. 
Particularly, the proposed modeling allows the use of a 
control chart for variables modified to adhere to real cases 
of degradation of the performance of the sensors of 
partitions of a geographical area to be monitored. 
In fact, professionals have a double problem, on the one 
hand optimizing monitoring costs and on the other hand, 

having a very sensitive control tool. In order to satisfy both 
of these two antithetical needs, the reliability function has 
been used, as a "modulating guide" of the  control limits 
with the result of having a milder control where conditions 
allow it (early monitoring periods), avoiding thus, 
especially in the case of automatic recovery systems, 
untimely and expensive interventions and, at the same 
time, to have greater sensitivity and greater severity in 
detecting anomalous events where conditions are more 
likely to occur (long monitoring periods). 
The work reports the quantitative results of an application 
of the proposed modeling to a high-density urban area in 
which the levels of exposure to EM fields were monitored. 
Indeed, the theoretically described cases of greater 
efficiency of the new proposed time variance chart have 
been detected. 
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