
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 14 pages

Comparative analysis of the expressiveness of
shared dataspace coordination �

A. Brogi1 N. Busi2 M. Gabbrielli3 G. Zavattaro2

1Dipartimento di Informatica, Univ. di Pisa
2Dipartimento di Scienze dell’Informazione, Univ. di Bologna
3 Dipartimento di Matematica e Informatica, Univ. di Udine

Abstract

We study the expressiveness of the most prominent representatives of the family of
shared dataspace coordination languages, namely Linda, Gamma and Concurrent
Constraint Programming.
The investigation is carried out by exploiting and integrating three different com-

parison techniques: weak and strong modular embedding and property–preserving
encodings.
We obtain a hierarchy of coordination languages that provides useful insights for

both the design and the use of coordination languages.

1 Introduction

Coordination languages are emerging as suitable architectures for making the
programming of distributed applications easier. Most of the language pro-
posals presented in the literature are based on the so-called shared dataspace
model, where processes interact through the production, test and removal of
data from a common repository. The languages Linda [11], Concurrent Con-
straint Programming [13], Gamma [1] are the most prominent representatives
of this model of coordination.

The availability of a variety of coordination languages raises an interesting
question concerned with the expressiveness of such languages. Simply stated,
a natural question when in front of two different languages L and L′ says: Is
L “more powerful” than L’? Some recent works by the authors [3,4,5,6,7,9,8]
have been devoted to an investigation of the expressive power of coordination
languages. The adopted approaches for language comparison can be classified
into two main groups:

� Work partially supported by Italian Ministry of University - MURST 40% - Progetto
TOSCA.

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Brogi et al.

• Relative expressive power. A natural way to compare the relative expressive
power of two languages is to verify whether all programs written in one
language can be “easily” and “equivalently” translated into the other one.
This idea is formalised by the notion of language embedding introduced in
[14] and refined by the notion of modular embedding defined in [2].

• Property preserving encoding. An alternative approach to comparing the
expressive power of languages relies on computation theory. Informally the
idea is to show that a behavioural property of programs (e.g., termination or
divergence) is decidable in a language L while not in L′, and hence there is
no encoding of one language into the other that preserves the given property.

The aim of this paper is to exploit an integration of the above approaches
to obtain a comparative analysis of the expressive power of the shared datas-
pace languages mentioned above, along with some relevant variants of them.
Observe that, even if all these languages are based on the common idea i of
shared dataspace, they exploit different formats of data (such as, e.g., tuples,
constraints, etc.). We obtain a common framework for language comparison
by considering unstructured data. We will establish equivalence and separa-
tion results for these languages by employing three different yard-sticks: Two
forms of modular embedding (strong and weak) and termination-preserving
encoding.

The overall result of the paper is a hierarchy of coordination languages that
provides useful insights for both the theory and the practice of coordination-
based approaches.

2 The calculi

In this section we introduce the syntax and semantics of the calculi that we
will analyse.

Definition 2.1 Let Data be a denumerable set of data, and let M(Data)
the set of the finite multisets on Data. The set Prog of programs is defined
by the following grammar:

P ::=
∑

i∈I µi.Pi | P |P | K

µ ::= out(a) | rd(a) | not(a) | in(a) | min(A)

with P , Pi programs, K a program constant, a ∈ Data, and A ∈ M(Data).

We assume that each index set I is finite and that each program constant
is equipped with a single definition K = P and, as usual, we admit guarded
recursion only [12]. We adopt the following abbreviations: 0 =

∑
i∈∅ µi.Pi,

µk.Pk =
∑

i∈{k} µi.Pi and
∏

i∈I Pi = P1| . . . |Pn given I = {1, . . . , n}.
The operational semantics of the calculus is defined by the transition sys-

tem of Table 1, where the state of a dataspace is modelled by a multiset of
data (viz., an element of M(Data)) and where ⊕ denotes multiset union.

2

Brogi et al.

(1) [out(a).P,DS] −→ [P,DS ⊕ {a}]

(2) [rd(a).P,DS ⊕ {a}] −→ [P,DS ⊕ {a}]

(3) [not(a).P,DS] −→ [P,DS] a �∈ DS

(4) [in(a).P,DS ⊕ {a}] −→ [P,DS]

(5) [min(A).P,DS ⊕A] −→ [P,DS]

(6)
[Pk, DS] −→ [P ′, DS ′]

[
∑

i∈I Pi, DS] −→ [P ′, DS ′]
k ∈ I

(7)
[P,DS] −→ [P ′, DS ′]

[P |Q,DS] −→ [P ′|Q,DS ′]

(8)
[P,DS] −→ [P ′, DS ′]

[K,DS] −→ [P ′, DS ′]
if K ≡ P

Table 1
Operational semantics (the symmetric rule of (7) is omitted).

Each configuration is a pair denoting the active processes and the dataspace,
i.e., Conf = {[P,DS] | P ∈ Prog,DS ∈ M(Data)}.

The out(a) primitive produces a new instance of datum a in the dataspace;
rd(a) and not(a) test the status of the dataspace: rd(a) succeeds if at least
an instance of datum a is present, whereas not(a) succeeds if the dataspace
does not contain datum a. The in(a) operation removes an instance of da-
tum a, whereas the min(A) operation removes the multiset A of data from
the dataspace. Programs can be composed by means of guarded choice and
parallel composition operators. Program constants permit to define recursive
programs.

A configuration C is terminated (denoted by C �−→) if it has no outgoing
transition, i.e., if and only if there exists no C ′ such that C −→ C ′. A
configuration C has a terminating computation (denoted by C ↓) if C can
block after a finite amount of computation steps, i.e., there exists C ′ such
that C −→∗ C ′ and C ′ �−→ . Given a sequence of programs P1, . . . , Pn, we
denote with n(P1, . . . , Pn) the set of data names occurring in P1, . . . , Pn.

In the following, we will consider different subcalculi of the calculus defined
in Definition 2.1, which differ from one another for the set of communication
primitives used. Syntactically, we will denote by L[X] the calculus which
uses only the set X of operations. For instance, L[rd, out] is the calculus
of Definition 2.1 where rd and out are the only communication operations
considered.

We will focus on comparing the expressive power of five such subcalculi
that represent well-known concurrent languages:

• Linda — the full calculus L[rd, not, in, out] [11] where agents can add,

3

Brogi et al.

delete and test the presence and absence of tuples in the dataspace;

• coreLinda — the subset L[rd, in, out] of Linda without the not primitive
for testing the absence of a tuple in the dataspace;

• ccp — the calculus L[rd, out] is similar to concurrent constraint program-
ming (ccp) [13], where agents can only add tokens to the dataspace and test
their presence, and where the dataspace evolves monotonically;

• nccp — the calculus L[rd, not, out] is similar to the timed ccp languages
defined in [4,16] since the not primitive (for testing the absence of informa-
tion) was introduced in [16] to model time-based notions such as time-outs
and preemption;

• Gamma — the calculus L[min, out] represents the language Gamma [1]
which features multiset rewriting rules on a shared dataspace.

3 Modular embeddings

3.1 The notion of language embedding

A natural way to compare the expressive power of two languages is to ver-
ify whether each program written in one language can be translated into a
program written in the other language while preserving the intended observ-
able behaviour of the original program. This idea has been formalised by the
notion of embedding as follows [14,2].

Consider two languages L and L′ and let PL and PL′ denote the set of
the programs which can be written in L and in L′, respectively. Assume that
the meaning of programs is given by two functions (observables) O : PL →
Obs and O′ : PL′ → Obs′ which associate each program with the set of its
observable properties (thus Obs and Obs′ are assumed being some suitable
power sets). Then we say that L is more expressive than L′, or equivalently
that L′ can be embedded into L, if there exists a mapping C : PL′ → PL
(compiler) and a mapping D : Obs → Obs′ (decoder) such that, for each
program P ′ in PL′ , the equality D(O(C(P ′))) = O′(P ′) holds.

PL′
O′

✲ Obs′

PL

C

❄ O ✲ Obs

D

✻

In other words, L can embed L′ (written also as L′ ≤ L) if and only if given a
program P ′ in L′, its observables can be obtained by decoding the observables
of the program C(P ′) resulting from the translation of P ′ into L.

Clearly, as discussed in [2], in order to use the notion of embedding as a
tool for language comparison some further restrictions should be imposed on

4

Brogi et al.

the decoder and on the compiler, otherwise the previous equation would be
satisfied by any Turing complete language (provided that we choose a powerful
enough O for the target language). Usually these conditions indicate how easy
is the translation process and how reasonable is the decoder. Also, note that
the notion of embedding in general depends on the notion of observables,
which should be expressive enough (considering a trivial O which associates
the same element to any program, clearly we could embed a language into any
other one).

The notion of embedding can be used to define a partial order over a family
of languages and, in particular, it can be used to establish separation results
(L′ ≤ L and L �≤ L′) and equivalence results (L′ ≤ L and L ≤ L′).

3.2 Modular embeddings

As already pointed out in the previous section, the basic notion of embedding
is too weak since, for instance, the above equation is satisfied by any pair of
Turing-complete languages. De Boer and Palamidessi hence proposed in [2] to
add three constraints on the coder C and on the decoder D in order to obtain
a notion of modular embedding suited for comparing concurrent languages:

(i) D should be defined in an element-wise way with respect to Obs, that is:

∀X ∈ Obs : D(X) = {Del(x) | x ∈ X}

for some appropriate mapping Del;

(ii) the coder C should be defined in a compositional way with respect to all
the composition operators, for instance: C(A|B) = C(A) | C(B). 1

(iii) the embedding should preserve the behaviour of the original processes
with respect to deadlock, failure and success (termination invariance):

∀X ∈ Obs, ∀x ∈ X : tm′(Del(x)) = tm(x)

where tm and tm′ extract the information on termination from the ob-
servables of L and L′, respectively.

An embedding is then called modular if it satisfies the above three properties.

The existence of a modular embedding from L′ into L will be denoted by
L′ ≤ L. It is easy to see that ≤ is a pre-order relation. Moreover if L′ ⊆ L
then L′ ≤ L that is, any language embeds all its sublanguages. This property
descends immediately from the definition of embedding, by setting C and D
equal to the identity function.

The notion of modular embedding has been employed in [5,6] to compare the
relative expressive power of a family of Linda-like languages. The separa-
tion and equivalence results established in [5,6], restricted to the languages

1 We assume that both languages contain the parallel composition operator |.

5

Brogi et al.

ccp

nccp coreLinda

Linda Gamma

✑
✑

✑
✑✰

✑
✑

✑
✑✰

◗
◗

◗
◗�

◗
◗

◗
◗�

◗
◗

◗
◗�

Fig. 1. The hierarchy defined by modular embedding.

described in Section 2, are summarised in Figure 1, where an arrow from a
language L1 to a language L2 means that L2 embeds L1, that is L1 ≤ L2.
Notice that, thanks to the transitivity of embedding, the figure contains only
a minimal amount of arrows. However, apart from these induced relations, no
other relation holds. In particular, when there is one arrow from L1 to L2 but
there is no arrow from L2 to L1, then L1 is strictly less expressive than L2.
The observables considered in [5,6] are defined as follows:
O(P) = {(σ, δ+) : [P, ∅] −→∗ [

∏
I 0, σ]} ∪ {(σ, δ−) : [P, ∅] −→∗ [Q, σ] �−→

, Q �=
∏

I 0}
where δ+ and δ− are two fresh symbols denoting respectively success and
(finite) failure.

The results illustrated in Figure 1 state that ccp is strictly less expressive of
both nccp and coreLinda. Namely this means that both (the introduction of)
the not primitive and (the introduction of) the in primitive strictly increases
the expressive power of the basic calculus L[rd, out]. Moreover, both nccp
and coreLinda are less expressive than the full Linda calculus, while they are
not comparable one another. Finally, Gamma is strictly more expressive that
coreLinda, while Gamma and full Linda are not comparable one another.

It is worth mentioning here two equivalence results that were established
in [5]. Namely the languages L[rd, in, out] and L[in, out] have the same ex-
pressive power, that is, one can be modularly embedded in the other and vice-
versa. The same hold for the languages L[rd, not, in, out] and L[not, in, out],
which have the same expressive power. This means that the rd primitive is
redundant both in coreLinda and in Linda, in the sense that its elimination
does not affect the expressive power of the two languages.

3.3 Weak modular embedding

In this section we compare the languages ccp and nccp and their variants which
use also the primitive in, by using a weaker notion of modular embedding. The

6

Brogi et al.

results presented here are derived from the similar ones for (timed) ccp which
appeared in [3].

We first define the following abstract notion of observables which distin-
guishes finite computations from infinite ones.

Definition 3.1 Let P be a process. We define

Oα(P) = {θ | there exists DS s.t.[P,DS] −→∗ [Q,DS ′] �→

and θ = α(P,DS · · ·Q,DS ′) }

where α is any total (abstraction) function from the set of sequences of con-
figurations to a suitable set.

Since our results are given w.r.t. Oα, they hold for any notion of ob-
servables which can be seen as an instance of Oα (e.g. input/output pairs,
finite traces etc.). In the following Oro : L[out, rd] → Obsro and Oron :
L[out, rd, not] → Obsron denote the instances of Oα representing the observ-
ables for the two languages considered in this Section.

As mentioned in Subsection 3.2, some restrictions on the decoder and the
compiler are needed in order to use embedding as a tool for language compar-
ison. It is natural to require that the decoder cannot extract any information
from an empty set and, conversely, that it cannot cancel completely all the
information which is present in a non empty set describing a computation.
Therefore, denoting by Obs the observables of the target language, we require
that

(i) ∀O ∈ Obs, D(O) = ∅ iff O = ∅.
Furthermore, it is reasonable to require that the compiler C is a morphism

w.r.t. the parallel operator, that is:

(ii) C(A|B) = C(A)|C(B).

These assumptions are weaker than those made in [2], where the decoder
was assumed to be defined point-wise on the elements of any set of observables
and it was assumed to preserve the (success, failure or deadlock) termination
modes, while the compiler was assumed to be a morphism also w.r.t. the
choice operator.

Obviously ccp can be embedded into nccp, being the former a sub-language
of the latter, and analogously for the variant of these language which use also
in either to replace rd or as a further primitive.

We now show that the presence of the not strictly augment the expressive
power of the language, since nccp cannot be embedded into ccp.

We first observe that, if a ccp process P |Q has a finite computation then
both P and Q have a finite computation. This is the content of the following
proposition whose proof is immediate.

7

Brogi et al.

Proposition 3.2 Let P be a ccp process. If Oα(P) = ∅ then Oα(P |Q) = ∅
for any other ccp process Q.

On the other hand, previous Proposition does not hold for nccp. In fact,
the presence of the not construct enforces a kind of non-monotonic behaviour:
Adding more information to the store can inhibit some computations, since
the corresponding choice branches are discarded. Thus we have the following
result

Theorem 3.3 When considering any notion of observables which is an in-
stance of Oα the language nccp cannot be embedded into ccp while satisfying
the conditions (i) and (ii).

We have also the following.

Corollary 3.4 When considering any notion of observables which is an in-
stance of Oα

• the language Linda cannot be embedded into coreLinda and

• the language L[out, not, in] cannot be embedded into L[out, in]

while satisfying the conditions (i) and (ii).

4 Termination preserving encodings

An alternative approach to the study of the expressiveness of coordination
languages (adopted, e.g., in [7]) consists in borrowing techniques from the
theory of computation, that are used as a tool for languages comparison.

The key idea to provide a separation result between two languages consists
in devising a behavioural property of programs (such as, e.g., the existence
of a terminating computation or the existence of a divergent computation),
that is decidable for one of the languages but turns out to be undecidable for
the other one; hence, we can conclude that there exists no encoding of one
language on the other one which preserves the given property.

In this section we show that there exists no termination-preserving encod-
ing of Linda in Gamma, coreLinda and nccp. The results are a consequence
of the following facts:

(i) There exists an implementation of Random Access Machines (RAMs)
[17] in Linda which preservers the terminating behaviour. As RAMs are
Turing equivalent, termination is not decidable for Linda.

(ii) There exists a termination-preserving encoding of Gamma on finite Place/
Transition nets. As termination is decidable for this class of nets, the
same holds for Gamma.

(iii) There exists a termination-preserving encoding of coreLinda in Gamma.
As termination is decidable for Gamma, the same holds for coreLinda.

8

Brogi et al.

(iv) There exists a termination-preserving encoding of nccp in coreLinda. As
termination is decidable for coreLinda, the same holds for nccp.

The result (iii) is a consequence of the existence of a modular embedding
from coreLinda to Gamma; the proofs of the remaining results are sketched
below.

4.1 Termination is undecidable for Linda

We show that (the rd-free fragment of) Linda is Turing equivalent by providing
an encoding of Random Access Machines in Linda that preserves the existence
of a terminating computation.

4.1.1 Random Access Machines

A Random Access Machine [17], simply RAM in the following, is a compu-
tational model composed of a finite set of registers r1 . . . rn, that can hold
arbitrary large natural numbers, and a program I1 . . . Ik, that is a sequence of
simple numbered instructions.

The execution of the program begins with the first instruction and contin-
ues by executing the other instructions in sequence, unless a jump instruction
is encountered. The execution stops when an instruction number higher than
the length of the program is reached.

The following two instructions are sufficient to model every recursive func-
tion:

• Succ(rj): adds 1 to the content of register rj;

• DecJump(rj , s): if the content of register rj is not zero, then decreases it
by 1 and go to the next instruction, otherwise jumps to instruction s.

The (computation) state is represented by (i, c1, c2, . . . , cn), where i indi-
cates the next instruction to execute and cl is the content of the register rl for
each l ∈ {1, . . . , n}. Let R be a program I1 . . . Ik, and (i, c1, c2, . . . , cn) be the
corresponding state; we use the notation (i, c1, c2, . . . , cn) −→R (i′, c′1, c

′
2, . . . , c

′
n)

to state that after the execution of the instruction Ii with contents of the reg-
isters c1, . . . , cn, the program counter points to the instruction Ii′ , and the
registers contain c′1, . . . , c

′
n. Moreover, we use (i, c1, c2, . . . , cn) �−→ R to indi-

cate that (i, c1, c2, . . . , cn) is a terminal state, i.e., i > k.

In this section we recall an encoding of RAMs [7] in (the rd-free fragment
of) Linda.

Consider the state (i, c1, c2, . . . , cn) with corresponding RAM program R.
We represent the content of each register rl by putting cl occurrences of da-
tum rl in the dataspace. Suppose that the program R is composed of the
sequence of instructions I1 . . . Ik; we consider k programs P1 . . . Pk, one for
each instruction. The program Pi behaves as follows: if Ii is a Succ instruc-
tion on register rj, it simply emits an instance of datum rj and then activates
the program Pi+1; if it is an instruction DecJump(rj , s), the program Pi is

9

Brogi et al.

a choice between consumption and test for absence on datum rj. If an in-
stance of rj is present in the dataspace, the in(rj) operation is performed and
the subsequent program is Pi+1; otherwise, the not(rj) operation is performed
and the subsequent program is Ps. According to this approach we consider
the following definitions for each i ∈ {1, . . . , k}:

Pi = out(rj).Pi+1 if Ii = Succ(rj)

Pi = in(rj).Pi+1 + not(rj).Ps if Ii = DecJump(rj , s)

We also consider a definition Pi = 0 for each i �∈ {1, . . . , k} which appears
in one of the previous definitions. This is necessary in order to model the
termination of the computation occurring when the next instruction to execute
has an index outside the range 1, . . . , k.

The encoding is then defined as follows:

[[(i, c1, c2, . . . , cn)]]R = [Pi,
⊕

1≤l≤n

{rl, . . . , rl︸ ︷︷ ︸
cl times

}]

The correctness of the encoding is stated by the following theorem.

Theorem 4.1 Given a RAM program R and a state (i, c1, c2, . . . , cn), we have
(i, c1, c2, . . . , cn) −→R (i′, c′1, c

′
2, . . . , c

′
n) if and only if [[(i, c1, c2, . . . , cn)]]R −→

[[(i′, c′1, c
′
2, . . . , c

′
n)]]R.

As a corollary of this theorem, we have that the encoding preserves termina-
tion.

Corollary 4.2 Given a RAM program R, we have that R terminates if and
only if [[(1, 0, 0, . . . , 0)]]R↓.

4.2 Termination is decidable for Gamma

In order to show the impossibility to provide a termination-preserving encod-
ing of Linda in Gamma, we prove that termination is decidable for Gamma.
We resort to a semantics based on Place/Transition nets, a formalism for which
termination is decidable[10,7]. Here, we report a definition of the formalism
suitable for our purposes.

Definition 4.3 A P/T net is a triple N = (S, T,m0) where S is the set of
places, T is the set of transitions (which are pairs (c, p) ∈ M(S)×M(S)), and
m0 is a finite multiset of places. Finite multisets over the set S of places are
called markings; m0 is called initial marking. Given a marking m and a place
s, m(s) denotes the number of occurrences of s inside m and we say that the
place s contains m(s) tokens. A P/T net is finite if both S and T are finite.

A transition t = (c, p) is usually written in the form c → p. The marking
c is called the preset of t and represents the tokens to be consumed. The
marking p is called the postset of t and represents the tokens to be produced.

A transition t = (c, p) is enabled at m if c ⊆ m. The execution of the
transition produces the new marking m′ such that m′(s) = m(s)− c(s)+p(s).

10

Brogi et al.

dec([P,DS]) = dec(P)⊕DS

dec(
∑

i∈I µi.Pi) =
∑

i∈I µi.Pi

dec(K) = dec(P) if K = P

dec(P |Q) = dec(P)⊕ dec(Q)

min(A,Q,P) min(A).Q+ P ⊕ A → dec(Q)

out(a,Q,P) out(a).Q+ P → a⊕ dec(Q)

Table 2
Definition of the decomposition function dec and net transitions T .

The basic idea underlying the definition of an operational net semantics for
a process calculus is to decompose a term into a multiset of sequential com-
ponents, which can be thought of as running in parallel. Each sequential
component has a corresponding place in the net, and will be represented by a
token in that place. Reductions are represented by transitions which consume
and produce multisets of tokens.

In our particular case, sequential components are of the form
∑

i∈I µi.Pi.

Any datum is represented by a token in a particular place a. Data produc-
tion and consumption is represented as follows: out(a) produces a new token
in place a, while min(A) removes A(a) tokens from each place a.

The axioms in the first part of Table 2 describe the decomposition of pro-
grams and dataspaces in corresponding markings. The decomposition of a
dataspace corresponds to the dataspace itself. A sequential component pro-
duces one token in the corresponding place; a program constant is treated as
its corresponding program definition; the parallel composition is interpreted
as multiset union.

The axioms in the second part of Table 2 define the possible transitions
denoted by T .

Definition 4.4 Let C = [P,DS] be a configuration such that P has the
following related program constant definitions: K1 = P1, . . . , Kn = Pn. We
define the triple Net(C) = (S, T,m0), where:

S = {Q | Q is a sequential component of either P , P1, . . ., Pn} ∪

{a | a ∈ n(P, P1, . . . , Pn) ∪DS }

T = {c → p ∈ T | the sequential comp. and the data in c are also in S}

m0 = dec(C)

Note that, given a configuration C, the corresponding Net(C) is a finite

11

Brogi et al.

[[[P,DS]]] = [[[P]], [[DS]]]

[[out(a).P]] = in(a0).out(a+).[[P]] + in(a+).out(a+).[[P]]

[[rd(a).P]] = in(a+).out(a+).[[P]]

[[not(a).P]] = in(a0).out(a0).[[P]]

[[P |Q]] = [[P]]|[[Q]]

[[
∑

i∈I Pi]] =
∑

i∈I [[Pi]]

[[K]] = K

[[DS]] = {a+ | a ∈ DS} ⊕ {a0 | a ∈ n(P, P1, . . . , Pn) ∧ a �∈ DS}

Table 3
Encoding of nccp in coreLinda

P/T net.

The correctness of the semantics is stated by the following theorem:

Theorem 4.5 Let D be a configuration of Gamma and Net(D) the corre-
sponding net. Let m be a marking of Net(D) such that m = dec(C) for some
configuration C. We have that C −→ C ′ iff m → dec(C ′) in Net(D).

As a corollary, we have that the net semantics preserves the existence of a
terminating computation.

Corollary 4.6 Given a configuration C of Gamma, we have that C↓ if and
only if Net(C) has a terminating firing sequence.

As the existence of a terminating firing sequence is decidable for P/T nets,
we can conclude that termination is decidable for Gamma.

4.3 Encoding of nccp in coreLinda

To show that termination is decidable in nccp, we provide a termination-
preserving encoding of nccp in (the rd free fragment of) coreLinda. The en-
coding is reported in Table 3. We also replace each constant definition K = P
by K = [[P]].

The presence of one or more instances of datum a is represented by a single
datum a+ in the dataspace, whereas the absence of datum a is represented by
a datum a0. The mapping of the not(a) (resp. rd(a)) operations consists in
testing the presence of datum a0 (resp. a+) in the dataspace. On the other
hand, the mapping of the out(a) operation replaces a0 with a+, or leaves the
dataspace unchanged if a+ was already contained in the dataspace.

12

Brogi et al.

ccp

nccp coreLinda

Linda Gamma

✛ × ✲×

✛ × ✲×
tp

✑
✑

✑
✑✰✑

✑
✑

✑✸w
×

✑
✑

✑
✑✰✑

✑
✑

✑✸tp×

◗
◗

◗
◗�◗
◗

◗
◗❦

×

◗
◗

◗
◗�◗
◗

◗
◗❦

×
◗

◗
◗

◗�◗
◗

◗
◗❦tp

×

Fig. 2. Synthesis of all the results.

Theorem 4.7 Let C be a configuration of nccp. If C −→ C ′ then [[C]] −→+

[[C ′]]. If [[C]] −→+ D′ then there exists C ′ s. t. C −→+ C ′ and D′ −→∗ [[C ′]].

Corollary 4.8 Let C be a configuration of nccp. Then C↓ iff [[C]]↓.

5 Concluding remarks

In the previous sections we have discussed the use of three different yard-sticks
for measuring the expressive power of a family of Linda-like languages. In
particular the five languages on which we focused (ccp, nccp, coreLinda, Linda
and Gamma) have been compared both by means of modular embedding (≤)
and weak modular embedding (≤w) and by means of termination-preserving
encoding (≤tp).

The results established in Sections 3 and 4 are synthesised in Figure 2,
where only the strongest results are reported. Namely the existence of a modu-
lar embedding is a stronger result than the existence of a weak modular embed-
ding which is in turn stronger than the existence of a termination-preserving
encoding. The situation is obviously reversed for the case of negative results.

Figure 2 illustrates how the hierarchy established by means of modular em-
beddings (see Fig. 1) is enriched by the results established by weak modular
embeddings and termination-preserving encodings. In particular, the separa-
tion result between ccp and nccp has been strengthened in the sense that nccp
cannot be modularly embedded into ccp even if the constraints on the modu-
larity of the coding are relaxed as shown in Sect. 3.3. The separation results
between nccp and Linda, and between coreLinda and Linda have been further
strengthened by showing that there is no termination-preserving encoding nei-
ther of Linda in nccp nor of Linda in coreLinda. The incomparability result
of Linda and Gamma has also been strengthened by showing that there is no
termination-preserving encoding of Linda in Gamma.

13

Brogi et al.

References

[1] J.P. Banatre and D. Le Métayer. Programming by Multiset Transformation.
Communication of the ACM, 36(1) 98–111, 1993.

[2] F.S. de Boer and C. Palamidessi. Embedding as a tool for language comparison.
Information and Computation, 108(1):128-157, 1991.

[3] F.S. de Boer, M. Gabbrielli, and M.C. Meo. Semantics and expressive power of a
timed concurrent constraint language. In G. Smolka. editor, Proc. Third Int’l Conf. on
Principles and Practice of Constraint Programming (CP 97). LNCS, Springer-Verlag,
1997.

[4] F.S. de Boer, M. Gabbrielli and M.C. Meo. A Timed CCP Language. Information and
Computation, 161, 2000.

[5] A. Brogi and J.M. Jacquet. On the expressiveness of Linda-like concurrent languages.
Electronic Notes in Theoretical Computer Science, 16(2), 2000.

[6] A. Brogi and J.M. Jacquet. On the expressiveness of coordination via shared dataspaces.
Science of Computer Programming. Forthcoming. (A short version appeared in
P. Ciancarini and A. Wolf, editors, “Coordination: Languages and Models - Proceedings
of Third International Conference,COORDINATION’99”, LNCS 1594, pages 134–149.
1999. Springer-Verlag.)

[7] N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Linda Coordination
Primitives. Information and Computation, 156(1/2):90–121, 2000.

[8] N. Busi, R. Gorrieri, and G. Zavattaro. Temporary Data in Shared Dataspace
Coordination Languages. In Proc. of FOSSACS 2001, LNCS 2030, pages 121–136.
Springer-Verlag, Berlin, 2001.

[9] N. Busi and G. Zavattaro. On the Expressiveness of Event Notification in Data-driven
Coordination Languages. In Proc. of ESOP2000, LNCS 1782, pages 41–55. Springer-
Verlag, Berlin, 2000.

[10] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In
Theoretical Computer Science, 147:117–136, 1995.

[11] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[13] V.A. Saraswat and M. Rinard. Concurrent Constraint Programming. In Proc
Seventeenth ACM Symposium on Principles of Programming Languages, 232–245, ACM
Press, 1990.

[14] E. Y. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):412-510, 1989.

[15] V.A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent
Constraint Programming. In Proc. Eighteenth ACM Symposium on Principles of
Programming Languages, pages 333-353. ACM Press, 1991.

[16] V.A. Saraswat, R. Jagadeesan, and V. Gupta Timed Default Concurrent Constraint
Programming. Journal of Symbolic Computation, 22(5-6):475–520, 1996.

[17] J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal of
the ACM, 10:217–255, 1963.

14

