

On the total positivity of restricted Stirling numbers* Pietro Mongelli

Dipartimento di Matematica, Università degli Studi "la Sapienza", Rome, Italy

ARTICLE INFO

Article history: Received 22 July 2011 Received in revised form 28 November 2011 Accepted 28 November 2011 Available online 29 December 2011

ABSTRACT

This note shows that the matrix whose (n, k) entry is the number of set partitions of $\{1, \ldots, n\}$ into k blocks with size at most m is never totally positive for $m \ge 3$; thus answering a question posed in [H. Han, S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, European J. Combin. 29 (2008) 1544–1554].

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $S_{\leq m}(n, k)$ be the number of set partitions of $\{1, \ldots, n\}$ into k blocks with size $\leq m$. In [3], Han and Seo study these numbers only when m = 2 and formulate the following problem: decide when the matrix $S_{\leq m} := (S_{\leq m}(n, k))_{k,n \in \mathbb{N}}$ is totally positive i.e. all its minors are nonnegative (for information about totally positive matrices, see e.g. [4]). The authors show in [3] that the answer is positive when m = 2, by using techniques introduced in [1]. Moreover, if m goes to infinity, we get that the limit matrix is the matrix whose entries are the Stirling numbers of the second kind, which is again totally positive (see [1]).

In this note we show that the previous two cases (and the trivial case m = 1) are the only ones such that the matrix $S_{\leq m}$ is totally positive.

2. Counterexamples

We denote the matrix of the Stirling numbers of the second kind by $S := (S(n, k))_{k,n \in \mathbb{N}^{n}}$ i.e.

	/1	0	0	0	0	· · · /	
	0	1	1	1	1		
	0	0	1	3	7		
S =	0 0	0	0	1	6		
	0	1 0 0 0	0	0 1 3 1 0	1		
	(:	:	:	:	:	·.)	
	<u>۱</u> .	•	•	•	•	• • •	

 $^{^{\}diamond}$ This paper is part of the author's Ph.D. Thesis written under the direction of Prof. F. Brenti at the Univ. "la Sapienza" of Rome, Italy.

E-mail address: mongelli@mat.uniroma1.it.

0195-6698/\$ – see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2011.11.011

Recall (see e.g. [2], Section 5.1, Theorem A) that the Stirling numbers of the second kind satisfy the following relation for all $n, k \ge 1$

$$S(n,k) = \frac{1}{k!} \sum_{r=1}^{k} (-1)^{k-r} \binom{k}{r} r^n = \sum_{r=1}^{k} (-1)^{k-r} \frac{r^{n-1}}{(r-1)!(k-r)!}.$$
(1)

This formula will be useful since if the maximum size *m* of each block is at least n - k + 1 then $S_{\leq m}(n, k) = S(n, k)$.

Proposition 1. For all $m \ge 3$ the matrix $S_{\leq m}$ is not totally positive.

Proof. In the following, for all $m \ge 3$ we denote by D_m the following determinant

$$\begin{array}{ll} S_{\leq m}(m-1,1) & S_{\leq m}(m,1) & S_{\leq m}(m+1,1) & S_{\leq m}(m+2,1) \\ S_{\leq m}(m-1,2) & S_{\leq m}(m,2) & S_{\leq m}(m+1,2) & S_{\leq m}(m+2,2) \\ S_{\leq m}(m-1,3) & S_{\leq m}(m,3) & S_{\leq m}(m+1,3) & S_{\leq m}(m+2,3) \\ S_{< m}(m-1,4) & S_{< m}(m,4) & S_{< m}(m+1,4) & S_{< m}(m+2,4) \end{array} \right) .$$

Our goal is to show that D_m is negative when $m \ge 5$ thus proving our claim, except for the cases m = 3, m = 4. By the previous discussion, we can rewrite D_m as follows

$$\begin{vmatrix} S(m-1,1) & S(m,1) & 0 & 0\\ S(m-1,2) & S(m,2) & S(m+1,2) & S(m+2,2) - a\\ S(m-1,3) & S(m,3) & S(m+1,3) & S(m+2,3)\\ S(m-1,4) & S(m,4) & S(m+1,4) & S(m+2,4) \end{vmatrix}$$
(3)

where *a* is the number of partitions of m + 2 into 2 blocks, one of them with size at least m + 1. It is easy to compute *a*, since it counts the number of partitions of m + 2 into 2 blocks whose sizes are exactly m + 1 and 1. Therefore, a = m + 2.

We now use (1) for each entry in (3) and we obtain that

$$12 \cdot D_m = \begin{vmatrix} 1 & 1 \\ -1 + 2^{m-2} & -1 + 2^{m-1} \\ 1 - 2^{m-1} + 3^{m-2} & 1 - 2^m + 3^{m-1} \\ -1 + 3 \cdot 2^{m-2} - 3^{m-1} + 4^{m-2} & -1 + 3 \cdot 2^{m-1} - 3^m + 4^{m-1} \\ 0 & 0 \\ -1 + 2^m & -1 + 2^{m+1} - (m+2) \\ 1 - 2^{m+1} + 3^m & 1 - 2^{m+2} + 3^{m+1} \\ -1 + 3 \cdot 2^m - 3^{m+1} + 4^m & -1 + 3 \cdot 2^{m+1} - 3^{m+2} + 4^{m+1} \end{vmatrix}$$

We now subtract the first column from the second and we get (after a trivial Laplace expansion about the first row) that $12D_m$ is equal to

By adding two times the first row to the second and three times the first and second rows to the third we obtain

By multilinearity of the determinant, $12D_m$ is equal to

$$\begin{vmatrix} 2^{m-2} & 2^m - 1 & 2^{m+1} - 3 \\ 2 \cdot 3^{m-2} & 3^m - 1 & 3^{m+1} - 5 \\ 3 \cdot 4^{m-2} & 4^m - 1 & 4^{m+1} - 7 \end{vmatrix} - m \begin{vmatrix} 2^{m-2} & 2^m - 1 & 1 \\ 2 \cdot 3^{m-2} & 3^m - 1 & 2 \\ 3 \cdot 4^{m-2} & 4^m - 1 & 3 \end{vmatrix}.$$
(4)

We will show that the first determinant in (4) is negative and the second is positive when $m \ge 5$. After manipulations, the first determinant is

$$d1_m = -\frac{1}{144}24^m + \frac{2}{9}12^m - \frac{5}{16}8^m + \frac{1}{9}6^m + \frac{3}{8}4^m - \frac{8}{9}3^m + \frac{1}{2}2^m,$$
(5)

and the second determinant is

$$d2_m = \frac{5}{144} 12^m - \frac{1}{8}8^m + \frac{1}{12}6^m - \frac{3}{16}4^m + \frac{4}{9}3^m - \frac{1}{4}2^m.$$
 (6)

Obviously,

$$d1_m < -\frac{1}{144}24^m + \left(\frac{2}{9} + \frac{1}{9} + \frac{3}{8} + \frac{1}{2}\right)12^m$$
$$d2_m > \frac{5}{144}12^m - \left(\frac{1}{8} + \frac{3}{16} + \frac{1}{4}\right)8^m$$

and then

$$d1_m < 0 \quad \text{if } m \ge 8$$

$$d2_m > 0 \quad \text{if } m \ge 7$$

It follows that $D_m < 0$ for all $m \ge 8$. It is possible to compute the exact value of D_m when $m \le 7$ and we find that D_7 , D_6 , D_5 are negative, $D_4 = 0$ and $D_3 = 10$. When m = 3, 4, we consider the submatrix of $S_{\le m}$ whose entries are all the elements $S_{\le m}(n, k)$ with $m - 1 \le n \le m + 3$ and $1 \le k \le 5$. In both cases the determinant is negative. \Box

References

- [1] F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995) 175-218.
- [2] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansion, D. Reidel Publishing Co., Boston, MA, 1974.
- [3] H. Han, S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, European J. Comb. 29 (2008) 1544–1554.
- [4] A. Pinkus, Totally Positive Matrices, Cambridge Univ. Press, 2010.