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TOPOLOGY OF FOUR-MANIFOLDS WITH
SPECIAL HOMOTOPY GROUPS

ALBERTO CAVICCHIOLI AND FULVIA SPAGGIARI

We study the homotopy type and the s-cobordism class of a closed connected
topological 4-manifold with vanishing second homotopy group. Our results are
related to problem 4.53 of Kirby in Geometric Topology, Studies in Advanced Math.
2 (1997), and give a partial answer to a question stated by Hillman in Bull. London
Math. Soc. 27 (1995) 387-391.

1. INTRODUCTION

The first step to classify topological 4-manifolds is the determination of their
homotopy type. The second step is to study the s-cobordism class to obtain at least
theorems on the stable classification of 4-manifolds, that is, up to connected sums with
copies of S2 x S2. The third step is the classification of the homeomorphism type.
For this, one can use the surgery sequence [35] which was proved to be exact for a
large class of fundamental groups. The proof for polycyclic groups and for elementary
amenable groups follows from Freedman' s early work [11, 12] (see also [13]). It was
later generalised to subexponential groups [14, 15, 25]. A similar program has been
realised (in part or entirely) for several families of topological closed 4-manifolds having
special fundamental groups. We only mention some references in this direction. For
topological closed 4-manifolds with finite fundamental groups we refer to [1, 3, 4,16].
Complete classifications are known when TTI is cyclic. The homotopy type and the
s-cobordism class of a closed topological 4-manifold with free fundamental group were
classified in [6] and [8] (further developments can be found in [19, 24, 27]). Results
on closed topological 4-manifolds with Wi-free second homotopy and on 4-manifolds
having the fundamental group of an aspherical surface (respectively 4-manifold) were
obtained in [7, 9, 32]. The stable classification of spin 4-manifolds and splitting results
(up to homotopy equivalence) for certain classes of 4-manifolds were given in [17, 33].

The aim of this paper is to study the homotopy type and the s-cobordism class of
closed topological 4-manifolds with vanishing second homotopy group.

One of the results we shall prove is the following
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322 A. Cavicchioli and F. Spaggiari [2]

THEOREM. Let X4 be a closed connected orientable topological 4-manifold with
ni(X) = A * F(r) and TT2(X) = 0, where F{r), r > 1, denotes the free group of rank
r, and A has one-end. Let Y be the closed 4-manifold obtained from X by choosing
a set of embedded loops representing the generators of the free part F(r) of ITI(X) and
then doing surgeries on them. Then we have:

(1) The manifold Y is aspheric&l;
(2) There exists a homotopy equivalence between X and the connected sum

WofY with r copies of S1 x S3;
(3) If Wh (A) a H2(A; Z2) a 0 and

<r5 : [X x I,d(X x J),G/TOP] -> L5(m(X))

is surjective, then X and W are s-cobordant (hence they become home-
omorphic after taking connected sums with copies of S2 x S2).

The theorem is related to a question stated by Hillman in [19]: Let X4 be a closed
orientable topological 4-manifold with ni(X) torsion free and infinite, and n2(X) = 0.
Is X s-cobordant to a connected sum of aspherical 4-manifolds with copies of
S1 x S3? Our result partially answers the question, and describes explicitly the as-
pherical summand of the connected sum. The techniques involved in our proofs are
based on obstruction arguments, (co)homological algebra with local coefficients, and
surgery theory. Examples of closed topological 4-manifolds satisfying the algebraic
conditions of the theorem are explicitly constructed.

2. FOUR-MANIFOLDS WITH VANISHING SECOND HOMOTOPY

This section is devoted to studying the homotopy type and the s-cobordism class
of a closed connected topological 4-manifold M4 such that TT2(M) = 0 (results on
4-manifolds with vanishing second homology can be found in [10]). Let A = Z[7Ti(M)]
denote the group ring of n = 7r1(M). The right action of TT on the chains of the
universal cover M of M induces a left A-module structure on H*(M; A). The group
ring A has a canonical anti-involution defined by sending g to g = wi(g)g~1. (Here
w\ = w\(M) denotes the first Stiefel-Whitney class considered as a homomorphism
from ni(M) to Z2; it sends loops preserving orientation to +1 and those reversing
orientation to — 1, where Z2 = {±1}). This map induces a right A-module structure
on H*(M;A), denoted by H*(M; A).

LEMMA 2 . 1 . Let M4 be a closed connected topological 4 -manifold such that
ir2(M) = 0. Then we have

(1) H\w; A) a TT3(M) , where n =

(2) #2(TT;A) = 0

(3)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700040399
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 25 Mar 2020 at 12:03:19, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700040399
https://www.cambridge.org/core


[3] Topology of four-manifolds 323

PROOF: (1) follows from Poincare duality and the Hurewicz isomorphism. In fact
we have

7r3(M) £ 7r3(M) £ H3{M) S H3{M;A) £ J J ^ M ; A) £ i f f a ; A)

(2) follows from the exact sequence in [18, Lemma 4, p. 16]:

0 • H (TT;A) > TT2(M) > HomA(7r2(Af),A)

(3) follows by noting that K(n, 1) is homotopy equivalent to M plus cells of dimension
^ 4 . D

For general references on the theory of groups see for example [5, 29]. Concerning
connections between group theory and the algebraic characterisation of four-manifolds
see [18, 21]. Here we briefly summarise some classical facts about ends of groups. Recall
that a finitely generated group TX has 0, 1, 2 or infinitely many ends. It has 0 ends if
and only if it is finite, in which case H°{ir\ A) = Z and ff*(7r; A) = 0 for every i ^ 1.
Otherwise, H°(w; A) = 0 and H 1(TT; A) is a free Abelian group of rank e(7r) - 1, where
e(7r) is the number of ends of TX (see [34]). The group n has more than one end if and
only if it is either a nontrivial generalised free product with amalgamation n = A *c B
or an HNN extension A*c<f>, where C is a finite group, and A ̂  C ̂  B. In particular,
it has two ends if and only if it is virtually Z if and only if it has a maximal finite normal
subgroup G such the quotient TT/G is either Z or Z2*Z2 (infinite dihedral). Any group
with infinitely many ends has nonabelian free subgroups (hence it cannot be elementary
amenable).

LEMMA 2 . 2 . Let M4 be a closed connected topological 4-manifold such that
7r2(M) = 0. If n = ni(M) is finite, then M is homeomorphic to either S4, RP4 or the
unique non-smoothable homotopy RP*.

PROOF: If n is finite, then M is a closed 4-manifold. By Lemma 2.1 (1), we have
TT3(M) = H3(M) = 0, so M is homotopy equivalent to S4. Then M is homeomorphic
to S4 by a celebrated theorem of Freedman (see for example [13, Corollary 7.IB,
p. 102]). Therefore the only possibilities for M are the finite quotients of S4. It is
well-known that Z2 is the only non-trivial finite group that can act freely on S4 (see
for example [21, p. 234]). Again by [13] M must be homeomorphic to either S4, RP4

or the unique non-smoothable homotopy RP4. Surgery theory establishes the existence
of such a homotopy RP4, while Ruberman gave an explicit construction of it (see [30]).
We recall that Freedman proved that every smooth fake RP4 is homeomorphic to the
standard RP4. Finally, we remark that the non-smoothable homotopy RP 4 cannot be
expressed as *RP4 (see [13, Section 10.3], for this notation) since the latter is formally
RP4 by [13, Section 10.4, pp. 166-167]. D
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324 A. Cavicchioli and F. Spaggiari [4]

LEMMA 2 . 3 . Let M4 be a closed connected topological 4-manifold such that
n2(M) = 0. Then we have

(1) If 7T = ni(M) has one end, then M is aspherical;
(2) If IT has two ends, then M is finitely covered by S1 x S3. If further it is

torsion free, then M is homeomorphic to either S1 x S3 or the twisted S3 -bundle over
S1.

PROOF: (1) By Lemma 2.1 (1), we have H3(M) = H1^; A) = 0. Furthermore,

H^^M) = 0 since n is infinite. Thus M is contractible, and M ~ K(n, 1).

(2) In this case we have n^M) ^ 0 , ! < 2 , w3(M) S H3(M) ^ H1^; A) S Z,
and H4(M) = 0. Then M is homotopy equivalent to S3. By [18, Theorem 10, p. 23,
and Theorem 1, p. 119], it follows that M is finitely covered by S1 x S3. If TT is torsion
free, then M is homotopy equivalent to either S1 x S3 or the twisted S3-bundle over
S1. Then M is homeomorphic to one of these manifolds by surgery over Z. Here we
use the Freedman surgery theorem [13], and an extension of it for the nonorientable
case (see [23, Theorem F, p. 709], and [36]). D

The statement of the next theorem uses the first A:-invariant of a manifold for
which we refer for example to [18, p. 14], and [37, p. 421].

THEOREM 2 . 4 . Let M and N be closed connected topological A-manifolds with
7r2(M) = Tt2(N) = 0. Then M and N are homotopy equivalent if and only if there is an
isomorphism B : %X{M) -*• ni(N) such that wi(N)o0 = wi(M) and 6*ki(N) = fci(M),
where w\ and &i are the first Stiefel-Whitney class and the first k -invariant of the
considered manifolds.

PROOF: Let P3{M) be the third stage of a Postnikov tower for M, and

cM : M-¥ K(in(M),l)

the classifying map for the universal covering of M. Let /M : M —> P3(M) be
a 4-equivalence, that is, /M induces isomorphisms on nt for every i < 3. Let
CM = cp3(M) ° IM be a factorisation of CM through P3(M). A map

g : X-> K{in{M),l)

lifts to a map from X to P3{M) if and only if g*ki(M) = 0, where ki(M)
e H4(ni(M);7r3{F)) is the first A;-invariant of M. Since n2(M) = 0, the fibre F
of the fibration

F y P3(M) > K(in(M),l)

is homotopy equivalent to K(ir3(M),3), hence n3(F) = ir3(M). In our case, any
isomorphism [TTX, W2, k] = [TT̂ , ir2, k'\ of algebraic 2-types can be realised by a homotopy
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[5] Topology of four-manifolds 325

equivalence between Ps{M) and P3(M'). For the concept of algebraic 2-type see for

example [16] and [18, p. 14]. The hypothesis imply that there is a map /13 : Pz(M)

-¥ Ps{N) which induces isomorphisms on 7̂  for every i < 3 . Since Ps(N) is obtained

from N by attaching cells of dimension ^ 5, the cellular approximation theorem gives

a map h : M —• N such that the diagram

N • P3(N)
fN

commutes. Then h induces isomorphisms on TTJ for every i ^ 3. Hence / : M -> N
is a homotopy equivalence (by using the theorems of Hurewicz and Whitehead). This
implies that h is a homotopy equivalence. Q

Let M4 be a closed connected orientable topological 4-manifold. Let HEid (M)
denote the set of homotopy classes of (simple) self-homotopy equivalences of M which
induce the identities on n = wi{M) and on H, = H»(M). Let Mjop(M) be the set
of normal invariants of M, and £4(71-) the 4-th Wall group (as a general reference on
surgery theory of compact manifolds see [35]).

The following result was proved in [8]

THEOREM 2 . 5 . With the above notations, if H2(ir, Z2) = 0, then the sequence

TOP
HEid (Af) • N?OP(M) — i — • £4(TT)

is exact, where <rjop is the surgery obstruction map in the topological category.

We apply Theorem 2.5 in our case, and we get

THEOREM 2 . 6 . Suppose that M and N are closed orientable homotopy equiv-
alent 4-manifolds with vanishing second homotopy groups. If Wh (TT) = ^ ( T T ; Z2) = 0
and <T5 : [Nx I, d(N x / ) , G/ TOP] -»• L5(ir) is surjective, where n = TTI(M) = 7Ti(7V),
then the manifolds are s-cobordant (and hence they become homeomorphic under a
stabilisation with copies of S2 x S2). If farther, IT is good, that is, a group for which
the embedding theorem is known (see [11] and [12, p. 99]), then the manifolds are
homeomorphic.

PROOF: If Wh(7r) = 0, any homotopy equivalence is simple, and /i-cobordant
is equivalent to s-cobordant. If /-^(""i^) = 0, then the sequence in Theorem 2.5
is exact. By the Sullivan theorem, there is a bijection between A/4

TOP(M) and the
group [M,G/TOP] of the homotopy classes of maps from M to G/TOP. Since
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326 A. Cavicchioli and F. Spaggiari [6]

7T2(G/TOP) ss Z2 , 7r3 (G/TOP) a 7r5(C?/TOP) s 0 and TT4(G/TOP) a Z with
vanishing Jfc-invariant in H*{K(Z2,2)), the Postnikov resolution of G/TOP gives a
map G/TOP -»• /£T(Z2,2) x A"(Z,4) which is a 5-equivalence, that is, we can assume
that the 5-skeleton of G/TOP is the same as that of K{Z2,2) x A"(Z,4). (For the
Sullivan theorem and the calculations of homotopy groups see for example [28, Chapter
5], and [35, p. 113]). Thus we have isomorphisms

NJOV(M) a [M, G/ TOP] a [M, K(Z2,2) x K(Z, 4)] a H2(M; Z2) © HA{M)

a H2(M;Z2)eZ = H2(w;Z2) ©Z a Z

by Lemma 2.1 (3) and the hypothesis H2(n;Z2) = 0. Then the signature difference
gives a bijection from Af?OP(M) a Z to L4(l) a Z C L4(ir). Let /i : M ->• iV be a
simple homotopy equivalence: by the above and using Theorem 2.5 there is a normal
cobordism H : P -+ N x I, I = [0,1], such that H\Q_P = h and H\Q+P = idw.
But as : [N x I,d(N x / ) ,G/TOP] -»• is(7r) is surjective, so there is another normal
cobordism H' : P' —* N x / from idjv to itself with surgery obstruction <rJOF(P',H')
= -aJop(P,H) in L&(ir), by the argument of [13, Proposition 11.6B]. The union of
these two normal cobordisms along d+P = d-P' is a normal cobordism from h to
idjv with vanishing surgery obstruction. So we may obtain an s -cobordism by 5 -
dimensional surgery theory (rel d). Finally, if TT is good, then the result follows from
Theorem 7.1A of [13, p. 101]. D

To complete the section we describe many examples of closed connected topological
4-manifolds with vanishing second homotopy.

1. SURGERY ON TWO-KNOTS Let M = M(K) be the closed 4-manifold obtained
by surgery on a 2-knot K in S4. Then M is aspherical if and only if the knot
group n = n(K) is a PD^-group and the image of the orientation class of M in
H^(ir\ Z) is non zero (use [18, Theorem 5, p. 16]). The argument has been extended to
elementary amenable normal subgroups with restricted torsion (see Chapter X of [18]).
In particular, if ir = n(K) is elementary amenable, then M = M(K) is aspherical if
and only if TT has one end and H2(n; A) = 0 .

2. PRODUCTS Let M3 be a closed irreducible sufficiently large 3-manifold. Then
we have M3 ~ K(ir, 1) and Wh (TT) = 0, where ir = 7Ti (Af3). Examples are given by hy-
perbolic 3-manifolds and aspherical Seifert fibred spaces. Then the closed 4-manifold
M3 x S1 is aspherical with infinite torsion free fundamental group. Other examples of
aspherical 4-manifolds are given by the topological products of two aspherical closed
surfaces. It is known that many homology 3-spheres are K(n, 1)' s, as for example the
Brieskorn manifolds £ = Y,(jp,q,r) with p, q, r pairwise coprime and infinite funda-
mental group. Then the products E x S1 are closed aspherical 4-manifolds. In this
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[7] Topology of four-manifolds 327

case, we have i J 2 ( £ x S r ;Z) S # 2 ( £ * § 1 ;Z 2 ) = 0. For a topological product of a
lens space L = L(p,q) (including S 3 and S2 x S1) with S1 , we have 7Ti = Zp © Z ,
7r2 £ 0, TT3 S Z , ^ ( L x S ' i Z J S Z p and i / 2 (L x S^.Z^ £ Z ^ 2 ) (which is trivial
for p odd). Ruberman constructed in [31] a closed topological 4-manifold which is
simple homotopy equivalent to L(3,1) x S 1 but which contains no quotient of S 3 (by
a finite group acting linearly) representing a nontrivial element of TT3 S Z. Finally,
let HW denote the Hantzde-Wendt 3-manifold, which is orientable and flat with
fundamental group presented by generators x and y and relations xy2x~l = y~2 and
yx2y~l = x~2. Then HW x S 1 is orientable and aspherical with H2 (HW x S1; Z) £ Z |
and H2(HW x S1; Z2) Sr Z j .

3. HOMOLOGY 4 - SPHERES In [22, Problem 4.17, p. 252], one asks for examples
of homology 4-spheres which are K(n, 1) ' s. Examples of rational homology 4-spheres
which are aspherical were constructed by Luo in [26].

4. BUNDLES S1-bundles over closed irreducible 3-manifolds are examples of
closed 4-manifolds with 7r2 ^ 0. Surface-bundles over aspherical surfaces with aspher-
ical fibres are examples of closed 4-manifolds with n2 = 0. A study of the homotopy
type and the s-cobordism class of a closed 4-manifold with surface fundamental group
can be found in [9]. Aspherical complex surfaces which are fibre bundles have been
characterised in [20] by using their Euler characteristics and fundamental groups.

5. F O U R - M A N I F O L D S COVERED BY S 3
 X R These are examples of manifolds

with 7T2 = 0. This class was deeply studied by Hillman, and a lot of interesting results
concerning their topological and geometrical structures can be found in [18, Chapter
VIII] and [21, Chapter 11]. We only mention an interesting example. For any n > 1
odd and (a, n) = 1, let us consider the group

w = Zn x 8 Z = (x, t : xn = 1, txt~l = x»)

whose Abelianisation is Z(n i ,_i) © Z . All such groups are realised by geometric

4-manifolds M which fibre over S 1 with fibre a lens space. In particular, we have

X(M) = 0, M a S3 x K, H2{M;Z) SS Z ^ . j ) and H2(M;Z2) a 0.

3. H O M O T O P Y T Y P E , COBORDISM AND STABLE CLASSIFICATION

To complete the study of closed 4-manifolds M with J T 2 ( M ) = 0 there remains

the case when n = wi(M) has infinitely many ends. Then n is isomorphic to either

A *c B or A *c <t>, where C is finite, and either [A : C] > 2, or [B : C] > 2, or

[A : (f>{C)] > 2. If 7r is torsion free, then we must have (7 = 1, so ir = A* B or A*It.

This implies that ir = Ay * •• • * Ap * F(r), where each Ai has one end. Here we shall

consider the case TT = A * F{r), r ^ 1, where A has one end, and prove the theorem

stated in Section 1.
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328 A. Cavicchioli and F. Spaggiari [8]

From now on, let X denote a closed connected orientable topological 4-manifold
such that n = A * F(r), r ^ 1, and w2 = 0, where A has one end. Let Y be the
closed 4-manifold obtained from X by choosing a set of embedded loops representing
the generators of the free part F{r) of IT and then doing surgeries on them.

LEMMA 3 . 1 . The manifold Y is aspherical, that is, Y ~ K(A, 1).

PROOF: Let 7 1 , . . . , -yr : S
1 x D3 -t X be embeddings representing the generators

of the free part of ni(X), and denote by F the normal subgroup generated by [71],... ,
[7r] € rri{X). Put A = ni(X)/T, and let X ->• X be the covering with ni(X) = T.

Doing surgeries on 71, . . . , 7r we denote

1 j

X0 = x\\Jji(S
1xD3) and Y = X0U (J (D2 x S2).

t=i t=i

This is equivalent to doing A-equivariant surgeries on X. Let

Xo = x \ (j 7f (S1 x D3) and Y = Xo U (j (D2 x S2).
t=i t=i

a€A a€A

Then iti(Y) = 0, that is, Y -¥ Y is the universal covering space. Note that

and

(2) 0 -> H2(X0;Z[T)) -> H2(X;Z[T}) -»• H2(X,X0;Z[T}) -> 0

is exact (see Sublemma 2 below). By (1) the sequence in (2) can also be written

(3) 0 > 7r2(X0) > n2(X) »• 7r2(X,X0) > 0.

Since ^(A") = Tti{X) = 0, we get ^(.Xo) = 0. So we obtain the exact sequence

(4) 0 > 7T2(f) • 7T2 (? ,£„) > MX0)=^ • 0 .

SUBLEMMA 1. If wi{X) = A * F(r) with [71], . . . , [7r] e F(r) free generators,

then the homomorphism

TT2(Y,X0) -». m(X0) **i{X) =T
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[9] Topology of four-manifolds 329

is injective.

PROOF: The space Y is obtained by adjoining D2 x S2' s to Xo and attaching

them by 7?, a G A. Then ir2 (Y, Xo) is generated by elements j3" corresponding to 7?,

for i = 1 , . . . , r and a € A. These elements are mapped to 7" € 7Ti (X) = F C A* F(r).

This implies the injectivity of the map n2(Y, XQ) -> ni(X0).

Sublemma 1 and exact sequence (4) imply that

The statement of Lemma 3.1 follows then from Lemma 2.3. Q

SUBLEMMA 2 . If 7rx(X) = A * F{r) and Hl(BA; Z[A\) = 0, fcien sequence (2)

0 > H2(X0;Z[T}) > H3(X;Z\T]) > H2(X,X0;Z[T}) y 0

is exact.

PROOF: Since (2) is equivalent to (3), and nq(X) S nq(X), nq(X,Xo)

= nq(X, Xo) for the universal covering X -> X and q ^ 2, it suffices to prove that the

sequence

H3(X;A) > ^3(Jt,Xo;A) > 0

is exact, where A = Z[7r1(X)]. This follows from the diagram

H3(X;A) • H3(X,X0;A)^H3(X\X0,dX0;A)

iA) H\X\X0;A)* © if^S1 x D3)

I I''
) ===== Hl{Bin(X)',A).

Of course, we have isomorphisms

r r

//l{B7n(X); A) a H1 (S>1 V \/ S1; A) S i f 1 ^ ; A) © ifJ ( \ / S1; A) .
i=l i=l

But ^(BylsZ^]) S 0 implies Hl(BA; A) a 0. Hence the map

induces an isomorphism x* • Hl(Bni{X)\ A) -> ff1^ \ Xo; A). In other words, the

map H3(X; A) -> H3(X, XQ; A) is an isomorphism. This proves the sublemma. D
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330 A. Cavicchioli and F. Spaggiari [10]

SUPPLEMENT. Obviously Hz(X,X0;Z[r]) S 0, so we have under the above hy-
potheses

LEMMA 3 . 2 . There is a degree one map f : X ->Y.

PROOF: Let m :$1xD3-*X, t = 1, . . . , r , be the embeddings on which surgeries
are done to obtain Y. Then

o 5 — ( Y v T\ I I I I I r>2 v r>3 I
U74 \ i= l /

is the trace cobordism with d$l = X and d\Sl = Y. Seen from the opposite side, we

have

where 7i|s2xo 1S tae transverse sphere of 7<. Since Y ~ K(A, 1), the identity map of
Y extends to £2, that is, Y is a retract of Q. If p : ft —¥ Y is a retraction, then the
composite map

f:=poj-.x —i—+ n _ e _ > r

is a degree one map. D

THEOREM 3 . 3 . Tie manifold X is homotopy equivalent to W = y # r (S1 x S3).

P R O O F : Let e i , . . . , e r e Hi(X;Z) b e t h e elements given by 7 i l s ixo i ••• »

7 r l s 1 x 0 ' respectively. Denote by

ul,...,ureH1(X;Z)*Komz(H1(X;Z),Z)

the "dual elements" of ei , . . . , e r , that is, complete e i , . . . , er £ ^ ( X j Z J / T O R
(here TOR = 0) to a basis, and select from the dual basis the elements ui, ... , ur

dual to e i , . . . , e r . Here ut are represented by maps u, : X ->• S1 = if (Z, 1). Let

vi,...,vr6H3(X;Z)

be the Poincare duals of the elements ei, ... , er. Here V{ are represented by maps

Vi:X-> K{Z,3>). Then the map

r

9 =H(ui xVi):X^ J J S 1 x K(Z,3)

factors over

g:X->f[{Slx83).
t=i

Now we need the following
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[11] Topology of four-manifolds 331

SUBLEMMA. The map

r

f x g : X -> Y x J ] (S1 x S3)

induces an isomorphism
r

w3{X) ®A Z -» 0 ^ ( S 1 x S3) a Zr

Cnote that 7T3(y) = 0).

PROOF: Consider the spectral sequence

E\q = Tor£ (Hq(X; A), Z) =>

Since TT2(X) = 0, we have E*q = 0 for q = 1,2 and arbitrary p. Further,

and

Hence

But d

is the

we get

H3{X;1

40 = 0 because

H<

classifying map.

d\0 : El

^)=^3°°0®

i(A-;Z)->J

Since

0 -+££3 SiJ3(X; A) ®AZ.

^-^(^WiZJeEoVlr

5 ^ = Kerd40 C H4(Bvi{X)\Z)

and the map
H4{X) -> H4(Bin(X)) j *

is just / , , it follows that Kerd40 £ 0. But H^Bn^X)) = Z, and d40 = 0, hence we
have the diagram

—>• n ^(s1 x SJJ
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332 A. Cavicchioli and F. Spaggiari [12]

where H3(Biri(X); Z) S H3(Y). This implies the statement of the sublemma. D

Now we consider W = Y#r(S1 x S3). Obviously, ni(X) = n^W), and B
is obtained from W as follows. First build

r
W* = WU (D4L)Dtu-UDt_1) ~ r v (yS 1 xS3).

i

Then adjoin a 4-disc to each component S1 x S3, that is, S1 x S3 U {1} x £>4 ~h.e.
S1 V S4. Finally, fill a 5-disc D5 to each component S1 V S4. In particular, we have

Let h : X —> Bni(X) be the classifying map. By the cellular approximation
theorem we get

Consider the following maps

XO) - ^ W > Y V ( V S1 x S3) • F x f[ (S1 x S3)
v»=i ' i=\

and
jf(3) c x -m+ Y x f[ (S1 x S3).

»=i

Let

A : H3(X^,X^) -• 7T3(y x J J (S1 x S3))

be the diflFerence cochain of the above maps (see [2, Theorem 4.2.14]). Since

is surjective, the map A lifts equivariantly to

Then h^ can be changed by A to give a map

(/i')(3) : X<3> -> W

such that the composition

> W )• Y V ( V S1 x S3) C Y x f[ (S1 x S3)
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[13] Topology of four-manifolds 333

is homotopic to

The obstruction for extending (h'y3' to X belongs to

r

H4(X; n3(W)) £ H0(X; n3{W)) £ »3(W) ®A Z a 0 ^ ( S 1 x S3)

by using the sublemma. By the choice of (h'Y3' ~ (/ x g)^3\ the obstruction is zero
since g defines an extension. Thus X ~ W, as claimed. D

THEOREM 3 . 4 . If

and

0-5 : [X x I,d{X x J ) ,G/T0P] -> L6(»r)

is surjective, tien X and W = K#r(S1 x S3) are s-cobordant, hence they are stably

homeomorphic.

PROOF: We have

) ; ^ ) 2 ( ; a ) a ( ; a ) S£ 0

and

Wh{n) = Wh(A * F(r)) = Wh(A) e Wfc(F(r)) = Wh(A) ® W/i(Z)r S Wh{A)

as PVft(Z) = 0. Now we can apply Theorem 2.6. D

Examples of groups with vanishing Whitehead torsion are given by torsion free
poly-(finite or cyclic) groups (see [13, p. 101] or [18, p. 68]). A torsion free poly-
Z group of Hirsch length 4 is the fundamental group of an infrasolvmanifold M of
dimension 4 (see [18, Chapter VI], and [21, Chapter 7]). Such a manifold is aspherical
with x(M) = 0 and one-ended ni(M). Aspherical 4-manifolds with poly-(finite or
cyclic) fundamental groups were also considered in [13, Section 11.5, p. 205].
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