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INTRODUCTION 

The Mediterranean diet is 
typically rich in fruits, vegetables, 
whole grains, fibres, legumes, 
nuts and seeds, olive oil (as a 
source of monounsaturated 
fatty acids [MUFA]) and with 
a moderate consumption of 
wine.  An appropriate and 
s y s t e m a t i c  c o n s u m p t i o n 
of the Mediterranean diet is 
associated with a reduction in 
global mortality in particular 
for cardiovascular causes and for 
cancer, and also might prevent 
the onset of type 2 diabetes 
mellitus [1]. 
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ABSTRACT

Background: Almonds are healthy nutraceuticals, which vary across different cultivars. We compared the 
composition, agreeability and gastrointestinal effects of two almond cultivars from different areas.
Methods: Californian Carmel (CAcv) and local Apulian Filippo Cea (FCcv) cultivars were compared for 
the chemical composition and sensory evaluation according to visual analogue and semiquantitative scales 
in 60 volunteers. Gallbladder/gastric motility (ultrasonography) and orocecal transit time (H2-breath test) 
were studied in another 24 subjects by comparing the effects of a standard liquid test meal with isovolumetric 
almond test meals (24 g of CAcv or FCcv almonds).
Results: Proteins prevailed in CAcv, while FCcv contained more lipids and 10-times more total phenol content 
than CAcv. For agreeability, CAcv scored higher than FCcv for smell, texture and appearance, although different 
perceptions existed in lean (scores for smell, taste, texture, appearance higher for CAcv than FCcv), obese 
(CAcv better than FCcv only for appearance) and elderly subjects (CAcv better than FCcv only for texture). 
Gallbladder emptying was stronger with FCcv than CAcv. Antral dilatation after ingestion of both cultivars was 
greater than the dilatation observed after the test meal. Gastric emptying, however, was similar after FCcv, CAcv 
and the test meal. The orocecal transit time in response to both cultivars was shorter than after the test meal. 
Conclusions: Differences in composition and effects of FCcv and CAcv cultivars support their potential use 
as valuable nutraceutical tools, to be confirmed in further clinical studies.

 Key words: breath test − Mediterranean diet − monounsaturated fatty acids − nuts − orocecal transit time 
− ultrasonography. 

Abbreviations: AUC: area under curve; BMI: body mass index; CAcv; Carmel cultivar; FCcv: Filippo Cea 
cultivar; MUFA: monounsaturated fatty acids; OCTT: orocecal transit time; VAS: visual analogue scale.

Available from: http://www.jgld.ro/wp/archive/y2018/n1/a7
DOI: http://dx.doi.org/10.15403/jgld.2014.1121.271.dll

Almonds (Amygdalus communis L.), a component of the 
Mediterranean diet, provide nutrients and phytochemicals 
[2]. Almonds are rich in fats (~50%, mainly MUFA), 
although the specific content differs depending on harvest 
and variety [3], and also are an excellent source of vitamin 
E, manganese, magnesium, copper, phosphorus, fibre, 
riboflavin, protein, phenols and polyphenols [4]. Moderate 
and regular consumption of almonds and nuts (~30 g daily) 
are associated with health-promoting effects [2, 5, 6] and could 
be recommended, as a nutraceutical tool, in metabolic diseases 
(i.e. glycaemic control in diabetics [7], hyperuricemia [8], 
hyperlipidaemia [9, 10]), to reduce the risk factors for coronary 
heart disease [11], and to improve the intestinal microbiota 
profile [12, 13]. Thus, the consumption of almonds is gaining 
interest locally and worldwide. Factors such as the almond 
genotype [14, 15], the growing region [16, 17], the climatic 
conditions during the growing season [18], the harvest time 
[19], the storage conditions might influence the chemical 
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composition of almonds and their nutraceutical effects. Given 
the high almond consumption, the Italian production cannot 
cover the whole domestic demand, and a significant amount of 
almonds must be imported. In Apulia, two varieties of almonds 
are the most popular, i.e., the native Filippo Cea cultivar 
(FCcv), produced only locally and used mainly for high-quality 
confectionary, and the imported Californian Carmel cultivar 
(CAcv), which is widely available in local supermarkets. 
The aim of the present study was therefore to compare the 
properties of the two almonds for chemical and texture analysis 
and for individual sensory perception. As information on the 
effects of almonds on gastrointestinal motility is scarce, we also 
compared the evoked gastrointestinal motility of both cultivars, 
which show distinctive nutraceutical features.

MATERIAL AND METHODS

Chemical and texture analysis of almonds
Chemical and texture analyses were performed in 

representative samples of both cultivars.  Protein content (total 
nitrogen x 5.18), ashes, and moisture content of almonds were 
determined according to the AACC methods 46-11A, 08-01 
and 44-15A, respectively [20]. Fat content was determined with 
a Soxhlet apparatus, using diethyl ether (Sigma Aldrich, Milan, 
Italy) for extraction. Total carbohydrates were calculated as 
difference. The lipid fraction, extracted by the Soxhlet method 
was subjected to the UV spectrophotometry analyses carried 
out according to the official methods of European Communities 
2568/91 [21]. The fatty acid composition was determined by 
gas-chromatographic analysis of fatty acid methyl esters 
according to the AOCS method [22], as previously reported 
[23]. The total phenol content was measured according to 
Pasqualone et al. [24]. The texture analysis was performed by 
a Texture Analyzer (Z1.0 TN, Zwick GmbH & Co. KG, Ulm, 
Germany) equipped with a 1 kN load cell and the software 
Text Expert 2. Almonds were placed on their longest side, 
and penetrated with a 2 mm diameter cylindrical probe. 
The following parameters were measured: pre-test speed 
200 mm min-1, test speed 1 mm s-1, penetration distance 4 
mm. The results (mean of 15 samples) were expressed as the 
maximum force (N) under the force-deformation within 4 
mm deformation.

Subjects
A total of 84 healthy volunteers were enrolled; 60 subjects 

underwent the study on sensory evaluation while 24 subjects 
underwent the gastrointestinal motility study. All subjects were 
healthy volunteers and enrolled at a tertiary referral centre 
(Clinica Medica “A. Murri”, Dept. of Biomedical Science and 
Human Oncology, University of Bari) in the province of Bari 
(Apulia region, about 4M inhabitants, Southern Italy). All 
subjects gave their informed consent and, at entry, underwent 
a full clinical evaluation in order to exclude clinically evident 
diseases. Exclusion criteria were diagnosis of organic diseases, 
therapies potentially influencing sensory perception or 
gastrointestinal motility, and history of peanut, tree nut, and 
seed allergy. The study was no-profit and approved by the 
Ethics Review Board of the University Hospital Policlinico in 
Bari (n. Almond1-1292-17).

Sensory evaluation
Each subject performed organoleptic assessment of 

both almond cultivars in double blind and random fashion. 
Quantitative visual analogue scales (VAS 0-100 mm on a 
horizontal line) were used to record the degree of appreciable 
odour, taste, chewing and visual perception (view) of almonds. 
Semi-quantitative scales (score 0-3) were used to record specific 
perceptions: smell (aroma, flavour), taste (sweet, salt, bitter, 
sour, persistence of food taste in mouth after swallow), mouth 
tactile sensations (hardness, crunchiness, chewiness, stickiness, 
oiliness, astringency), and visual aspect (shape, roughness, 
seed colour, pleasantness) [25]. Before each test the mouth was 
washed with plain water. Food, drink, smoking and physical 
activity were forbidden before and during the test. Potential 
differences in sensory perception were investigated according 
to body size (i.e. body mass index, BMI<30 Kg/m2 and BMI≥ 
30 Kg/m2) and age (i.e. age <65 years and age ≥65 years).

Test meals
The standard test meal (Nutridrink®; Nutricia, Milano, 

Italy) consisted of 200 mL liquid suspension containing 12 g 
(20%) protein, 11.6 g (19%) fat, and 36.8 g (61%) carbohydrates 
for a total of 300 kcal, 1260 kJ, 455 mOsm/L. Lactulose (10 g 
= 15 mL Lattulac®, SOFAR, Trezzano Rosa, Milan, Italy) was 
added to the test meal in order to simultaneously assess the 
orocecal transit time (OCTT). The final volume of the meal 
was therefore 215 mL. The almond test meal consisted of 24 g 
of FCcv or CAcv (i.e. 12 almonds) with 175 mL of water and 
15 mL lactulose (final volume 215 mL). Thus, the three test 
meals were different in composition but isovolumetric. Each 
meal was ingested at room temperature over one min in the 
presence of the examiner. Each subject underwent the motility 
tests on 3 different days ingesting a standard test meal, FCcv 
or CAcv almond test meal in a random fashion.

Gallbladder and gastric motility
Gallbladder, gastric motility and orocecal transit time 

were studied simultaneously [26-34]. Time-dependent 
changes of fasting and postprandial gallbladder volumes 
(mL) and antral areas (cm2) were measured from frozen 
sonograms on a portable scanner (Noblus, Hitachi Medical, 
Tokyo, Japan) equipped with a 3.5 MHz convex transducer. 
Experiments started at 8 am after an overnight fast of at least 
12h. Gallbladder volume and antral area were measured before 
the meal at -10, -5 and 0 min and after the meal every 5 min 
during the first 30 min and every 15 min thereafter up to 120 
min. Indices of gallbladder emptying were fasting volume (mL), 
residual volume (minimum volume measured postprandially, 
in mL and percent of fasting volume). 

Indices of gastric emptying were antral (basal) area 
(cm2), maximal postprandial antral area recorded at time 0, 
i.e., 5 min after meal ingestion, postprandial and minimal 
postprandial antral areas during the 2h emptying curve. 
Postprandial areas were also normalized to maximal areas after 
subtraction of basal areas, i.e. 100 x (At - Abas)/(Amax - Abas), 
where At = postprandial area at any given time; Abas=basal area; 
Amax=maximal antral area. For both gallbladder and stomach, 
further indices included area under the emptying curve (AUC 
expressed as mL and % x 120 min), and half-emptying time 
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(T1/2, min). T1/2 was calculated by linear regression analysis 
from the linear part of the emptying curves and was the time 
at which 50% decrease of gallbladder volume and antral area 
were observed.

Orocecal transit time
OCTT was measured by the lactulose H2-breath test 

according to standard guidelines [32, 35-38]. During the 10 days 
before the test, antibiotics, probiotics, or other drugs known 
to affect gastrointestinal motility or intestinal microbiota were 
prohibited. A special diet was given the day before the test, to 
avoid the presence of non-absorbable or slowly fermentable 
food in the intestinal tract. The diet consisted of meat, fish, eggs 
and olive oil, and water as drink. Breath samples were taken 
before the meal and, subsequently, every 10 min up to 180 min 
after the ingestion of meal, during which a rise of 10 p.p.m. 
above baseline on two consecutive measurements (i.e. OCTT 
in min) was observed in all subjects. Time-dependent changes 
of H2 in expired breath were studied using a pre-calibrated, 
portable hydrogen-sensitive electrochemical device (EC60-
Gastrolyzer; Bedfont Scientific, Medford, NJ, USA). Results 
are expressed as H2 excretion in parts per million (p.p.m.). 
Accuracy of the detector was ±2 p.p.m.

Statistical analysis
Analyses were performed using the statistical software 

NCSS10 (NCSS LLC, Kaysville, UT, USA) [39]. Values were 
expressed as mean ± standard error of the mean (SEM), and 
differences were evaluated by the paired- or unpaired two-tailed 
Student’s t-test, as appropriate. For non-normal distribution, 
variables were expressed as median and corresponding 
interquartile range (IQR), and differences were evaluated by the 
nonparametric Wilcoxon test. Differences between the indices 
of motility were checked by the analysis of variance (ANOVA) 
followed by Fisher’s least significant difference (LSD) test. A 
two-sided probability (P) of less than 0.05 was considered 
statistically significant.

RESULTS

The general characteristics of the enrolled subjects 
according to the test type are depicted in Table I. Subjects 
undergoing the sensory evaluation were significantly older 
and had a greater BMI than the subjects undergoing the 
motility studies. The difference is due to the original study 
design: whereas a wider age and BMI range was necessary 
for the studies on sensory evaluation, a narrower range was 
necessary for the motility studies. Both advanced age [40] and 

obesity [26], in fact, can act as potentially confounding factors 
of gastrointestinal motility.

Chemical and structural analysis of almonds
Almond cultivars had a different composition (Table II). 

CAcv had significantly (P<0.001) higher content of protein 
and slightly lower content of lipids. Moisture, carbohydrates 
and ashes contents were similar. The analysis of fatty acids 
composition showed that the content (%) of stearic and oleic 
acid was less (P<0.001) while the content of palmitic (P<0.01) 
and linoleic (P<0.001) acid was higher in CAcv than FCcv.  
Also, total phenol content was about 10 times lower in the CAcv 
than FCcv while K232, a marker of autoxidation degradation of 
the lipid fraction, was significantly higher (P=0.002) in CAcv 
than FCcv. A greater instrumental force (reflecting more 
hardness and less crunchiness) was required for breaking 
CAcv than FCcv.

Table I. Clinical characteristics of enrolled subjects

Sensory evaluation Motility studies

Number 60 24

Males: Females 30:30 10:14

Age years (range) 51.4±2.4 (18-80) 28.7±0.9* (23-37)

BMI, Kg/m2 (range) 27.9±0.7 (19.5-48.8) 22.1±0.5* (19.5-24.7)

BMI: body mass index; data are expressed as mean±SEM; *P<0.01 between 
groups.

Table II. Chemical and structural analysis of the two almond cultivars of 
different origin (Apulia and California)

Almond

Parameter Carmel (CAcv) Filippo Cea (FCcv)

Humidity (%) 3.91 ± 0.08 3.92 ± 0.04

Proteins (%) 22.19 ± 0.10** 17.70 ± 0.32

Lipids (%) 49.12 ± 1.10** 56.38 ± 0.12

Fatty acids (%)

Myristic acid (C14:0) 0.04 ± 0.00 0.02 ± 0.00

Myristoleic acid (C14:1) 0.04 ± 0.00 0.02 ± 0.00

Pentadecylic acid (C15:0) 0.00 ± 0.01 0.00 ± 0.01

Palmitic acid(C16:0) 6.09 ± 0.02* 5.76 ± 0.08

Palmitoleic acid (C16:1) 0.41 ± 0.01 0.42 ± 0.01

Margaric acid (C17:0) 0.05 ± 0.00 0.05 ± 0.01

Heptadecenoic acid 
(C17:1)

0.11 ± 0.00 0.08 ± 0.00

Stearic acid (C18:0) 1.51 ± 0.01** 3.32 ± 0.01

Oleic acid (C18:1) 65.87 ± 0.03** 71.87 ± 0.06

Linoleic acid (C18:2) 25.74 ± 0.03** 18.25 ± 0.03

Arachidic acid (C20:0) 0.07 ± 0.00 0.11 ± 0.01

Linolenic acid (C18:3) 0.07 ± 0.01 0.07 ± 0.00

Behenic acid (C22:0) 0.02 ± 0.00 n.d.

Ashes (%) 2.89 ± 0.01 2.72 ± 0.04

Carbohydrates (%) 21.90 ± 1.08 19.28 ± 0.20

K232 2.41 ± 0.03** 1.71 ± 0.03

K270 0.12 ± 0.00 0.17 ± 0.02

Total phenol content (mg/kg) 90.29 ± 9.33** 1432.85 ± 33.35

Force max (N) 41.00 ± 1.65*** 32.70 ± 1.37 

Data are expressed as mean±SEM of triplicate experiments, except for 
Force max (n=15 experiments); *P=0.01; **P<0.001; *** P=0.002 vs. FCcv.

Sensory evaluation
The study of sensory evaluation (Table III) showed that 

CAcv had significantly (P<0.01) higher VAS scores than FCcv 
for smell, texture, and appearance. The sub-analysis based on the 
semi-quantitative (0-3) scale showed that CAcv had significantly 
(P<0.01) higher scores than FCcv for sweet, hardness, oval shape, 
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pleasantness, and roughness. The analysis of VAS scores for 
sensory evaluation by major descriptors according to age and 
BMI is reported in Table IV. In subjects aged <65 and lean, scores 
of smell, taste, texture and appearance were all higher for CAcv 
than FCcv. In subjects aged <65 and obese, only appearance 
scored higher for CAcv than FCcv. In subjects aged ≥65 and 
lean, only texture scored higher for CAcv than FCcv.

Gastrointestinal motility
The results of the functional gastrointestinal motility 

studies in response to a standard (Nutridrink) and two almond 
test meals are reported in Table V and Fig. 1. 

Fasting gallbladder volumes were comparable across the 
three days of the test with means ranging from 23 to 26 mL. 
The ingestion of each test meal induced a mean gallbladder 

response of 62%, 47%, and 60% to Nutridrink, CAcv and FCcv, 
respectively. In particular, the residual gallbladder volume in 
response to the test meal both as mL and % fasting volume 
was comparable between Nutridrink and FCcv test meals but 
significantly larger (12.0±0.6 mL) in response to the CAcv test 
meal. The emptying speed was comparable for each test meal, 
ranging from 19 to 22 min (Table V). The graphic analysis of 
the emptying curves (Fig. 1A) compares the time-dependent 
changes of the gallbladder volume (mL and percent of fasting 
volume), AUC, emptying speed. A less complete emptying is 
observed in response to CAcv. 

Basal (fasting) antral areas were small and comparable 
during the three days of the tests with means ranging from 
4.7 to 4.8 cm2. The ingestion of each test meal induced a 
sudden antral dilatation (expressed as max postprandial 
area). However, the effect was similar and significantly greater 
(mean 36%) with both CAcv and FCcv than with Nutridrink. 
Nevertheless, residual antral areas and the estimated emptying 
speed remained comparable in response to the three test meals 
(Table V). The graphic analysis of the emptying curves (Fig. 1B) 
shows the time-dependent changes of the antral areas. A trend 
was shown towards smaller percentage postprandial areas in 
response to CAcv test meal than FCcv test meal.

Orocecal transit time
The ingestion of each test meal induced a consistent 

increase of H2 levels in exhaled air, as marker of OCTT (111 
min after Nutridrink, 80 and 82 min in response to CAcv test 
meal and FCcv test meal, respectively, P=0.00002 for both 
almonds vs. Nutridrink) (Fig. 2). Therefore, with both cultivars, 
OCTT was approximately 27% shorter than OCTT observed 
with Nutridrink.

Table III. Scores of sensory evaluation for two almond varieties in the 
whole group of subjects (N=60).

Almond

Carmel (CAcv) Filippo Cea (FCcv)

DESCRIPTORS

Smell1 60.0 (50.0-70.0)* 50.0 (32.5-63.8)

Aroma

wood2 0 (0-2) 0 (0-1)

straw2 0 (0-0) 0 (0-0)

tobacco2 0 (0-0) 0 (0-0)

other2 0 (0-0) 0 (0-0)

Flavour

almond2 1.5 (0-3) 1 (0-2)

straw2 0 (0-0) 0 (0-0)

wood2 0 (0-1) 0 (0-1)

tobacco2 0 (0-0) 0 (0-0)

rancid2 0 (0-0) 0 (0-0)

mould2 0 (0-0) 0 (0-0)

Taste1 70.0 (52.5-80.0) 60.0 (50.0-83.8)

sweet2 2 (1-2)* 1 (1-2)

salad2 0 (0-0) 0 (0-0)

bitters2 0 (0-1) 0 (0-1)

acid2 0 (0-0) 0 (0-0)

persistence2 2 (2-3) 2 (1-3)

Texture1 70.0 (50.0-80.0)* 60.0 (42.5-70.0)

hardness2 2 (1-3)* 1 (1-2)

crunchiness2 2 (1-3) 2 (1-3)

chewiness2 2 (1-2) 2 (1-2)

stickiness2 0 (0-1) 0 (0-1)

greasiness2 1 (0-2) 1 (0-2)

astringency2 0 (0-1) 1 (0-1)

Appearance1 72.5 (60.0-90.0)* 50.0 (40.0-70.0)

oval2 2.5 (2-3)* 2 (1-3)

pleasantness2 2 (2-3)* 1 (1-2.75)

roughness2 2 (2-3)* 2 (1-2)

colour intensity2 2 (2-3) 2 (1-3)

Data are expressed as median (IQR) of 1Visual analogue scales (0-100 mm) 
and 2 semiquantitative scale (0-3); *P<0.01 between similar descriptors.

Table IV. Scores of sensory evaluation for two almond varieties in subjects 
according to age and Body Mass Index (BMI)

Almond

Carmel (CAcv) Filippo Cea (FCcv)

Age <65 years

Lean (N=20)1

Smell 55.0 (42.5-60.0)* 40.0 (22.5-58.8)

Taste 72.5 (50.0-80.0)* 50.0 (41.3-68.8)

Texture 75.0 (51.3-88.8)° 60.0 (42.5-71.3)

Appearance 75.0 (60.0-90.0)° 50.0 (42.5-67.5)

Obese (N=20)2

Smell 55.0 (50.0-80.0) 50.0 (30.0-68.8)

Taste 75.0 (60.0-88.8) 70.0 (50.0-90.0)

Texture 65.0 (50.0-95.0) 62.5 (50.0-77.5)

Appearance 80.0 (70.0-100)° 50.0 (30.0-80.0)

Age ≥65 years

Lean (N=20)1

Smell 70.0 (42.5-77.5) 50.0 (40.0-70.0)

Taste 70.0 (42.5-80.0) 70.0 (42.5-97.5)

Texture 65.0 (50.0-80.0)* 50.0 (30.0-67.5)

Appearance 70.0 (42.5-80.0) 50.0 (42.5-80.0)
1BMI <30 Kg/m2; 2BMI≥30Kg/m2. Data are expressed as median (IQR) 
of Visual analogue scales (0-100 mm); *P<0.05, °P<0.01 CAcv vs. FCcv.
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Table V. Gastrointestinal motility studies in response to liquid test meal and two almond test meals 
in 24 healthy subjects.

Nutridrink 
Test meal

Carmel (CAcv) 
Test meal

Filippo Cea (FCcv) 
Test meal

Gallbladder emptying

Fasting gallbladder vol. (mL) 22.8±1.2 26.2±1.6 24.8±1.8

Residual gallbladder vol. (mL) 8.5±0.6 12.0±0.6* 9.9±1.0

Residual gallbladder vol. (%) 37.8±1.8 46.8±2.0° 39.7±2.0

AUC (mL x 120 min) 1590±108 2014±105* 1854±107

AUC (% x 120 min) 7007±240 7946±245* 7556±241

Half-emptying time (min) 19±1 22±2 21±2

Gastric emptying

Basal antral area (cm2) 4.7±0.2 4.8±0.1 4.7±0.1

Max. postprandial antral area (cm2) 10.6±0.3 13.7±0.3* 14.0±0.2*

Residual antral area (cm2) 4.8±0.1 4.9±0.1 4.7±0.1

AUC (cm2 x 120 min) 764±20 847±21° 928±21*

AUC (% x 120 min) 3310±190 2941±195 3826±198^

Half-emptying time (min) 29±1 29±4 32±1

Orocecal transit time (min) 111±6 80±4* 82±5*

Each test meal randomly given to the same subject. AUC, area under curve; data are expressed as 
means±SEM; *P<0.05 vs. Nutridrink; °P<0.05 vs. Nutridrink and FCcv; ^P<0.05 vs. CAcv.

Fig. 1. Gallbladder (A) and gastric (B) emptying curves in response to the ingestion of three test meals: (1) NU: Nutridrink 200 
mL + lactulose 15 mL (10 g) to a final volume of 215 mL; (2) FCcv: almond test meals with 24 g of Filippo Cea cultivar with 175 
mL of water + 15 mL lactulose to a final volume of 215 mL; (3) CAcv: almond test meals with 24 g Carmel cultivar with 175 mL 
of water + 15 mL lactulose to a final volume of 215 mL.  A) Time-dependent changes of gallbladder volume are given as means 
of mL (left) and area under curve (AUC, inlet), and as percentage of fasting volume (right) and half-emptying time (inlet).  B) 
Time-dependent changes of antral areas are given as means of cm2 (left) and area under curve (AUC, inlet), and as percent of 
maximal area (right) and half-emptying time (inlet). Statistics: *P<0.05 vs. CAcv and FCcv; °P<0.05 vs. CAcv; ^P<0.05 vs. FCcv.
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DISCUSSION

The present study provides a comprehensive evaluation 
of the chemical and texture features, and of the influence of 
almond ingestion on the individual sensory perception and 
gastrointestinal motility in healthy subjects of different age 
and body size. Two different cultivars i.e., the Apulian Filippo 
Cea and the Californian Carmel were compared in a blind 
randomized fashion. The results showed marked differences 
between the cultivars, and open interesting perspectives in 
terms of nutraceutical properties.

Since antiquity, almonds are an important nutritional 
resource for humans [41]. Over time, almond has become 
increasingly important not only as a food but also for its use in 
cosmetics, pharmaceuticals and the food industry [42]. World 
almond consumption in 2014 was 1,054,231 metric tons, with 
0.15 kg per capita considering the total world population [43]. 
Italy is one of the major world consumer, with more than 40,000 
metric tons of almonds consumed in 2014, 0.68 kg per capita 
considering the total Italian population, and 1.37 kg per capita 
considering the percentage of the consuming population [43]. 

Differences between the two cultivars were already 
evident by chemical analysis, with protein and lipid content 
comparable to that previously reported [15, 17, 18]. The most 
striking difference was the total phenol content (10 times 
higher in the FCcv than in CAcv). However, we found that 
the total phenol content in CAcv was much lower than that 
reported in literature [44, 45], possibly due to transport and 
storage, leading to oxidation phenomena. This hypothesis is 
supported by the significantly higher value of the K232, a marker 
of lipid oxidation phenomena in almonds [46] observed in 
CAcv, as compared with FCcv. Phenol compounds and their 
bioaccessibility contribute to healthy nutraceutical effects of 
almonds; for example phenol compounds in almond skin 
have been linked with positive health effects as the reduction 
of oxidative stress and inflammation [47-52]. A number of 
studies also link the consumption of almonds with lower levels 

of serum cholesterol and triglycerides, due to their content in 
polyunsaturated fatty acids [10, 11]. Furthermore, almonds 
have a low glycemic index and do not adversely impact insulin 
sensitivity, therefore reducing risk factors linked to diabetes 
[4]. Almonds are also an excellent source of bioavailable 
α-tocopherol, which protects against oxidation of low-density 
lipoprotein (LDL) cholesterol [4], and are indicated in the diet 
of elderly people because they help to increase bone mineral 
density [53].

The complete sensory evaluation assessed the degree of 
desirability of the two almond samples and the existence of 
possible differences in desirability, according to advanced 
age and obesity. Apparently, scores related to “appreciation” 
and appearance-related indices (olfactory, kinaesthetic-
tactile and visual perceptions) were higher for CAcv than for 
FCcv. Taste, however, was almost comparable between the 
two cultivars, although CAcv scored more sweetness than 
FCcv. This study provides additional and novel information 
because it shows that both obesity and advanced age can 
significantly influence sensory evaluation. Indeed, lean 
subjects have more complete perception than obese and 
elderly subjects. Differences point to distinct anatomical and 
pathophysiological processes in obesity and aging. Obese 
subjects display a significant correlation between elevated 
BMI and the presence of smell and taste dysfunction [54-57]. 
Visceral fat correlates with obesity and excreted adipokines 
[58] may alter the perception of odours [57, 59]. Also, studies 
found a negative correlation between the olfactory functions 
and age [57, 60], and negative effects of aging on taste [60]. 
Elderly subjects can lose their sense of smell and the ability 
to discriminate between smells. Mechanisms include the 
decrease of number of fibres in the olfactory bulb and 
olfactory receptors [61], or the neurological and cognitive 
decline (including Alzheimer’s disease) [60, 62]. Finally, 
chewing problems associated with teeth loss and dentures 
can also interfere with taste sensations in older people [60], 
and such aspects deserve further investigations.

Fig. 2. Study of orocecal transit time (OCTT) in response to the ingestion of three test meals: (1) 
NU: Nutridrink 200 mL + lactulose 15 mL (10 g) to a final volume of 215 mL; (2) FCcv: almond 
test meal with 24 g of Filippo Cea cultivar with 175 mL of water + 15 mL lactulose to a final 
volume of 215 mL; (3) CAcv: almond test meal with 24 g Carmel cultivar with 175 mL of water 
+ 15 mL lactulose to a final volume of 215 mL. A) Time-dependent curves of H2 levels (ppm) in 
exhaled air. (mean±SEM). B) Orocecal transit time (OCTT). Each symbol indicates individual 
OCTT, while mean±SEM are reported below. *: significant difference from Nutridrink (P<0.05).
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The ingestion of the almonds generated significant effects 
on gastrointestinal motility in healthy subjects. We decided 
a priori to administer a standard amount of CAcv or FCcv 
almonds (24 g, ≈50% fat) to promote a reproducible fat-induced 
gallbladder response. A consistent cholecystokinin-mediated 
gallbladder emptying occurs with 12 g of ingested fat [26] and 
in this study the estimated fat content was 11.8 g for CAcv and 
13.5 g for FCcv test meals. The isovolumetric composition of 
the test meals, moreover, provided accurate analyses of the 
emptying curve and kinetic parameters of gastric and small 
intestinal motility. Findings were compared with Nutridrink, 
the standard test meal adopted by our group [26, 32].

Of note, the ingestion of FCcv almonds was associated 
with a 15% smaller residual gallbladder volume (meaning 
more emptying) than that observed after the ingestion of the 
same amount of CAcv. This difference can be partly explained 
by the slightly increased lipid content of FCcv. However, the 
influence of additional factors (i.e. content in polyphenols) 
cannot be ruled out. 

Data on gastric motility showed that the ingestion of both 
cultivars caused a fast antral dilatation, as compared with the 
standard isovolumetric Nutridrink (i.e. 215 mL). Further 
studies should assess if this finding is associated with a more 
pronounced satiety feeling after almond ingestion, as compared 
with other meals containing a similar amount of nutrients. 
Previous studies found effects of almonds on fullness and 
hunger levels [63, 64], an acute satiating effect of almond 
ingestion, and a dose-dependent enhanced satiety following an 
almond snack in the midmorning [65]. Furthermore, a recent 
study showed comparable postprandial hunger, desire to eat, 
fullness, and neural responses to visual food stimuli after the 
ingestion of almonds or baked food, linking these results with 
energy and macronutrient contents [66]. The extent and timing 
of gastric emptying were comparable after the ingestion of 
almonds and test meal. Postprandial areas, however, tended to 
be smaller after CAcv than after FCcv, likely due to the higher 
lipid content of the FCcv. This emptying pattern, however, did 
not significantly alter the final antral emptying speed. 

The small intestinal transit time in response to the test meal 
was comparable to that observed in previous studies [28, 32], 
while it was 27% more rapid after both almonds.

The gastrointestinal response observed with almonds 
suggests their frequent consumption in distinct metabolic 
abnormalities. Almonds consumption is inversely associated 
with the incidence of cardiovascular disease [4, 67-69] 
and with body weight [66, 70-72]. FCcv, with higher lipid 
content than CAcv might act as a “natural” prokinetic agent 
on a hypomotile gallbladder, a condition at increased risk for 
biliary sludge or cholesterol cholelithiasis [73]. Also, FCcv, 
highly enriched in phenol content, could better counteract 
the ongoing oxidative stress in several chronic metabolic 
disorders. These hypotheses, however, need to be confirmed 
by specific clinical studies.

CONCLUSION

 The present study shows that the FCcv and the CAcv 
cultivars differ in chemical composition and structure, 
likely influencing distinct sensory evaluation in lean, obese 

and elderly subjects. Gastrointestinal motility shows also 
specific features, i.e. greater gallbladder emptying to FCcv, 
similar gastric emptying to FCcv, CAcv and test meal and 
small intestinal transit time to FCcv, CAcv faster than after 
test meal. Results point to a potential use of CAcv or FCcv 
as valuable nutraceutical tools, to be confirmed by further 
clinical studies. 
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