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1 Introduction

In the hydraulic laboratory environment a separation of an irregular wave
field into incident waves propagating towards a structure, and reflected waves
propagating away from the structure is often wanted. This is due to the fact
that the response of the structure to the incident waves is the target of the
model test.

Goda and Suzuki (1976) presented a frequency domain method for estimation
of irregular incident and reflected waves in random waves. Mansard and
Funke (1980) improved this method using a least squares technique.

In the following, a time-domain method for Separating the Incident waves
and the Reflected Waves (SIRW-method), is presented. The method is based
on the use of digital filters and can separate the wave fields in real {me.

2 Principle
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Figure 1: Wave channel with piston-type wave generator.

To illustrate the principle of the SIRW-method the set-up shown in Fig. 1
will be considered. The surface elevation n(z,t) at a distance z from the wave
generator may be written as the sum of the incident and reflected waves. The
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incident wave propagating away from the wave generator, and the reflected
wave propagating towards the wave generator. Even though the method
works for irregular waves it will be demonstrated in the following pages for
the case of monochromatic waves.

n(z,t) = mni{z,t)+ nrlz,1)

= ajcos(2nft — kx + ¢1) + arcos(2w ft + kx + ¢g) (1)
where
F . frequency
a=a(f) : wave amplitude
k=k(f) : wave number

¢ =¢(f) : phase

and indices I and R denote incident and reflected, respectively.

At the two wave gauges we have:

n(z1,t) = arcos(2nft — kxy + ¢r) + agcos(2w ft + kx; + ¢r) (2)
n(za,t) = aycos(27ft — kzy + ¢1) + arcos(27 ft + kzy + dr)
= aqreos(2nft — kxy — kAz + ¢7) +
agpcos(2m ft + kxy + kAz + ¢g) (3)

where z3 = z; + Az has been substituted into eq. (3).

It is seen that the incident wave is phaseshifted A¢ = kAz from signal
n(z1,t) to signal n(z,,t), and the reflected wave is phaseshifted A¢ = —kAz
due to opposite travel directions. These phaseshifts are called the physical
phaseshifts and are denoted ¢2"¥° and ¢%**, respectively.

The idea in the following manipulations of the elevation signals is to phase-
shift the signals from the two wave gauges in such ways that the incident
parts of the wave signals are in phase while the reflected parts of the signals
are in mutual opposite phase. In this case the sum of the two manipulated
signals is proportional to and in phase with the incident wave signal.

An amplification C' and a theoretical phase shift ¢*¢® are introduced into
the expressions for n(z,t). The modified signal is denoted n*. For the i’th



wave gauge signal the modified signal is defined as:

n*(zi,t) = Cajcos(2mft — kx; + ¢ + ¢3h€30) n
Cagcos(2m ft + kx; + ¢r + ¢*)

This gives at wave gauges 1 and 2:

W*(zl,t) e CCL[COS(Z?Tff — kml + qu s ¢§I160) i
Cagcos(27 ft + kzy + ¢r + o)

n*(z2,t) = Cajcos(2mft — kxy + ¢r + ¢5°) +
Cagcos(27 ft + kzy + dg + ¢5°)

= Carcos(2rft — kxy — kAz + o7 + ¢5%°) +
Cagcos(2mft + kxy 4+ kAT + ¢g + ¢5°)

The sum of n*(z1,t) and n*(zs,t), which is denoted n°(t), gives:

7?Cazc(t) g T]*(mlg t) + 7?*(1,'2’ t)

= CG’ICOS(ZT’Tft = k(L‘l + ¢I i Gléiheo) +
Cagcos(27 ft + kz1 + ¢p + ¢1%°) +
CCL[COS(Q’?Tft — k.ﬂ?l — kAz + ¢I - @Eheo) d
Carcos(2n ft + kz1 + kAz + g + ¢4*°)

= 2Carcos(0.5(—kAxz — it 4 glfice))
cos(27 ft — k1 + ¢r + 0.5(—kAz + g + piteo)) +
2Carcos(0.5(—kAzx + ¢t — giieo))
cos(27 ft + kzy + dr + 0.5(kAz + ¢ihe® + ¢iheo))



It is seen that 7°*'*(¢) and n;7(z1,t) = ascos(2mft — kxy + ¢;) are identical
signals in case:
2Cc0s(0.5(—kAx — ¢tre° 4 ihee)) = 1 (8)
0.5(—kAz + 1" + ¢f°) = n.2x ne(0,+£1,4£2,..) (9)
0.5(—kAz + gihee — gtheoy — % +m-7 me(0,+1,42,.) (10)

Solving eq (8) - eq (10) with respect to ¢i¢° ¢t and C gives eq (11) - eq
(13). n and m can still be chosen abitrarily.

iheo = kAz+7/24+ mnr + n2n (11)
thee = _n/2 —mmw + n2r (12)

1
c - (13)

2cos(—kAz — 7/2 — mm)

All the previous considerations and calculations were done in order to find
an amplification and a phaseshift for each of the two elevation signals n; and

2.

Eq (11) - eq (13) gives the result of our efforts, i. e. n7(zy,t) = 5%e(t).
Remembering that ¢ = giheo(f) gtheo = gtheo(f) and C = C(f) it is
seen that the goal is already reached in frequency domain. However, the
implementation of the principle will be done in time domain using digital
filters.

It is seen that singularities may occur. The consequences and the handling
of the singularities will be treated later on in the paper. Here it should just
be mentioned that one way to bypass the singularities is to use a velocity
meter instead of one of the two wave gauges. Nevertheless, this paper will
concentrate on using elevation signals from two wave gauges.
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Figure 2: Flow diagram for signals in the SIRW-method.

The purposes of the filters shown in Fig. 2 are exactly a frequency depen-
dent amplification and a frequency dependent phaseshift on each of the two

elevation signals.

Taking n = 0 and m = 0 the frequency response functions H,(f) for filter 1
and H,(f) for filter 2 calculated due to eq (8) - eq (11) are given below in

complex notation:

Re{H\(f)} =
Im{H,(f)} =
Re{Hy(f)} =
Im{Hy(f)} =

1

2cos(—kAz — 7/2)
1

2cos(—kAz — 7/2)
1

2cos(—kAzx — 7/2)
1

2cos(—kAz — 7 /2)

- cos(kAz +7/2)

- sin(kAz + 7 /2) (14)
- cos(—m/2)
- sin(—7/2) (15)

Based on eq (14) and (15) it is straight forward to design the time domain
filters. The design of the filters will be given on the next pages.



3 Design of filters

The impulse response of the filters is found by an inverse discrete Fourier
transformation, which means that N discrete values of the complex frequency
response are used in the transformation, see Fig. 3.
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Figure 3: Magnitude (gain) of the frequency responses of a discrete filter.
N =64 , d = 0.5 m, Af=0.10 Hz, Btgpie, = 0.16 sec,lam= 0.2m.

This gives an impulse response of finite duration, i.e. the impulse response
R or the filter coefficients are found by:

N-1 .
W =h(j- Atpyer) = >, H"- el TN (16)
r=0
where
¥, ..., N1
=3

and HT is the complex frequency response given by eq (14) and (15) at the
frequency f=71-Af.



The frequency increment, Af, in the frequency response is found by

Af =

N - Atf'ilter (17)

where At e, 15 the time increment of the filter.

h(t), Fiter 1

2.0

1.0

0.0+

-1.04

-2.0J

h{t), Filter 2

2.0}

1.0

0.0+

-1.04

-2.0

0.0

2.0 4.0 6.0 8.0 10.0
time (sec.)

Figure 4: Filter coefficients corresponding to Filter 1 and Filter 2. N = 6 ,
waterdepth = 0.5 m, Af=0.10 Hz, Atgiyser = 0.16 sec.,Az = 0.2m.

The price paid for handling only N frequencies in this transformation, is a
minor inaccuracy in the performance of the filter at input frequencies, which
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do not coincide with one of the calculated frequencies in the discrete filter.

If the length of the filter (N) is increased, more frequencies are included,
and in principle the overall accuracy of the filter is improved. In practice,
however, there is a limit beyond which the accuracy of the filter starts to
decrease due to other effects in the model.

The convolution integral (summation), eq (18), describes the input-output
relationship for the filters. Notice, that it can be shown from eq (18) that
the output 7*(z,t) is delayed N/2-1 time steps relative to the input n(z,t).

N-1
P = Z h? I (18)
§=0
where
Jip= Do s, N1

nP~J : elevation at time t = (p — ) - At piser
7P : output from filter at time t = p - At fier
h? : the filter coefficient corresponding to time ¢ = 7 - At fizer

Fig. 3 indicates that in the present example, singularities are present at
frequencies of app. 2.0 Hz and 2.8 Hz. The figure also shows that due to
the fact that the frequency response is calculated only at discrete frequencies
in the filters, the singularities will not destroy the calculations. However,
it 1s recommended to cut off the frequency responses whenever the value is
larger than app. 5-10. For practical use this means that, if |H(f)| > 5 when
calculated, then |H(f)| should be valued 5. Furthermore, it is recommended
to place the singularities in a frequency range where the wave spectrum is
without significant energy. This can always be done by choosing appropriate
values of Azx and Atger.



4 Results

NUMERICAL EXAMPLES

In order to evaluate the SIRW-method we will look at two numerical examples
with known incident and reflected waves. The error is described by the
difference between the calculated incident wave signal 7°%° and the actual
incident wave signal 7.

1 (cm) om
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Figure 5: A comparison between 0y, 1°¢ and n,, .

h=4Af, L =TAf.
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Figure 6: A comparison between 1y, n°° and 1.
hi=4257F, Hh="T5L].

In the examples the total elevation is described by eq (19), corresponding to
50 % reflection of the incident waves.
n(z,t) = 0.01-cos(27mfit — kiz) + 0.01 - cos(27 fot — kox) +
0.01-0.5- cos(27 fit + ki) +
0.01-0.5- cos(2m fat + kox) (19)

The signals are sampled with a frequency of 6.4 Hz. Fig. 5 illustrates the
functionality of the method, when f; and f, both are coinciding with some
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Figure 7. A comparison between nr, n1°*¢ and n,,.
The filters have been cosine tapered.

frequencies of the discrete filter, i.e. n-Af. As expected the method is exact
for signals only consisting of energy placed at the discrete frequencies (Fig.
5), though it is seen that errors are present during warm up of the filters.

The second example (Fig. 6) is identical to the first example except that f;
and f, are not coinciding with frequencies in the digital filter i.e. f; = 4.2Af,

It must be stressed that the output signal shown in Fig. 6 corresponds to the
worst case situation, where the wave frequencies are placed midway between
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filter frequencies. One way to improve the results is to apply a tapering of
the filter coefficients, because the output from a digital filter is more stable in
case the absolute values of the filter coefficients are almost zero in both ends
of the filter, Karl (1989). Cosine tapering of the filter coefficients improves
the accuracy of the SIRW method as demonstrated in Fig. 7.

PHYSICAL MODEL TESTS

The SIRW-method previously described were also tested in a laboratory
flume at the Hydraulics and Coastal Engineering Laboratory, Aalborg Uni-
versity, cf Fig &.

First, the waves (incident part of the timeseries) given by eq (19) were gen-
erated and sent towards a spending permeable beach (slope 1:8) in order to
obtain a good estimate of the incident waves. Next, a reflecting wall were
mounted in the flume giving a fairly high reflection (app. 50 %) and the
same incident waves were reproduced by play back of the same digital steer-
ing signal to the wave maker.

In Fig. 9 the output from the SIRW-filters is compared with the incident
waves measured in case of very low reflection.

10.0m 5.0m

Iy
X

[ o
r | i
7777 7, T 7
spending beach

Figure 8: Set-up for physical model tests.
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Figure 9: A comparison between npeasvred peele gng '17;”1“8““”“!.

fi=42AF , f, = T.5AF.

The specific part of the signals, where reflection is present but re-reflection
from the wave paddle is still not present, is shown. In the the specific exam-
ple the STRW-method reduces the error (variance) from 30 % of the incident
energy to 3 % of the incident energy.

13



5 Conclusions

A time-domain method for Separating Incident and Reflected Irregular Waves
(The SIRW-method) has been presented.

By numerical and physical model tests it is demonstrated that the method
is quite efficient in separating the total wave field into incident and reflected
waves. Please note, that all the tests shown were done with fairly small filters
(few filter components), and that longer filters will improve the efficiency of
the method. Taking the example shown in Fig. 6 and doubling the number
of filter coefficients the error (variance) will decrease to 2/3 of the shown
example.

The accuracy of the SIRW-method is comparable with the accuracy of the
method proposed by Goda and Suzuki (1976), but the SIRW-method has the
advantage that in case the incident wave signal is wanted in time domain (i.e.
for zero-crossing analysis) the singularity points are treated more properly
than in the Goda-method. The SIRW-method can easily be extended to give
same accuracy as the method proposed by Mansard and Funke (1980).

Though, the largest advantage of the SIRW-method is that it works in real
ttme. Brorsen and Irigaard (1992) used digital filters to make a new open
boundary condition in a Boundary Element Model, based on a filtering of
the surface elevation. The boundary condition accumulated errors, because
separation of the surface elevation into incident and reflected waves were not
possible in real time at that moment and, consequently, the Boundary Ele-
ment Model could only run for some time.

At the moment the SIRW-method is implemented at Aalborg Hydraulics
Laboratory, Aalborg University and the method is used in a project dealing
with active absorption. Results from this research will be published in the
near future.
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